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Abstract

This short paper aims at discussing and comparing LMI results built using the S-variable approach
starting from equivalent yet different representations of uncertain systems. Using the fact that S-variable
results are well suited to handle descriptor systems and that descriptor system modeling is very versatile,
we compare results in terms of the impact of modeling on the computational burden and on conservatism.
Multi-affine representations allow reduced numerical burden while affine representations lead to less
conservative results. Numerical examples show that conservatism reduction is not systematic, but is in
some cases quite significant without major increase of the numerical burden.
Keywords LMIs, Polytopic uncertainties, S-variables, Robustness, Descriptor systems

1 Introduction
During the past twenty years an efficient method for handling affine polytopic uncertainties which involves
additional S-variables has been intensively used for robustness purpose. The method originated in [6, 2, 10]
and has had many derivations. The book [4] discusses many of these, including analysis/control design
problems, and conservatism/numerical complexity issues. Among the nice features of the approach which is
noticed as soon as [15, 1, 16, 3] is that it is well suited for systems in descriptor form, and this descriptor
form is appropriate for manipulating systems rational in the uncertainties (or non-linearities), as if affine
[8, 1, 16]. Any rational in the uncertainties linear system can be converted to a descriptor linear system with
affine dependency in the parameters for which S-variable results apply readily. Moreover, it is shown in [11]
that S-variable results apply as well to models which are multi-affine in the parameters, a modeling inspired
form multi-simplex models from [9].

One conclusion drawn from [11] is that S-variable results apply readily to affine and to multi-affine
descriptor models. But, in case a system has a multi-affine representation it can always be converted to
an affine representation. This is usually at the expense of increasing the size of the descriptor model and
hence increases the numerical burden for the solvers in the end. If we employ a multi-affine representation,
we obtain an LMI that is more conservative but computationally less demanding, whereas if we employ an
affine representation, we obtain an LMI that is less conservative but computationally more demanding. The
question addressed in this short paper is whether the increase of thes numerical burden worths the effort
in terms of reduced conservatism. We provide notations for handling the affine and multi-affine models.
We show the intrinsic source of conservatism in the multi-affine results and we show on examples that it is
indeed the case, but not always.

The outline of the paper is a follows. The second section is devoted to multi-affine modeling using multi-
simplex representation of uncertainties. The third section recalls the S-variable results for descriptor systems
(for the simplest case when the E matrix is full column rank, for more advanced results the reader is invited
to consult [4]). The fourth section is then dedicated to numerical examples which illustrate the impact of
modeling on the conservatism of LMI results.

∗This manuscript has been submitted to IFAC-ROCOND’18 in February 2018.
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Notation:
In stands for the identity matrix of size n. 0n,m is the zero matrix with n rows and m columns. When the
size can be deduced from the context the subscripts are avoided. AT is the transpose of the matrix A. A ≻ B
is the matrix inequality stating that A − B is symmetric positive definite. The terminology “congruence
operation of A on B” is used to denote ATBA. If A is full column rank, and B ≻ 0, the congruence operation
of A on B gives a positive definite matrix: ATBA ≻ 0. A matrix inequality of the type N(X) ≻ 0 is said to
be a linear matrix inequality (LMI for short), if N(X) is affine in the decision variables X. In the following,
decision variables are highlighted using the blue color. Ξv̄ = {ξv=1...v̄ ≥ 0,

∑v̄
v=1 ξv = 1} is the unitary

simplex in Rv̄. The elements ξ of unitary simplexes are used to describe polytopic type uncertainties. In the
following, uncertainties are highlighted using the red color. The vertices of Ξv̄ are the v̄ vectors ξ[v] with all
zeros coefficients except one equal to 1.

2 Polytopes and Multi-affine representations
We shall consider uncertain representations depending on parameters θ assumed to lie in a set Θ defined as
the cross product of p̄ polytopes:

θ ∈ Θ = {(θ1, . . . , θp̄) ∈ Θ1 × · · · ×Θp̄} . (1)

The p̄ components of θ are independent vectors θp ∈ Rmp . Each set Θp is assumed to be a polytope with
v̄p vertices from the set Vp =

{
θ
[1]
p , . . . , θ

[v̄p]
p

}
. Θp is the convex hull of the vertices, or equivalently, each θp

writes as the weighted sum of vertices with weight from unitary simplexes:

Θp = Co(Vp) =

{
θp =

v̄p∑
v=1

ξp,vθ
[v]
p : ξp ∈ Ξv̄p

}
. (2)

In the following, V = V1 × · · · × Vp̄ is the finite set of all extremal values of the parameters gathered in θ.
A generic element of V will be denoted θ[v] with v = (v1, . . . , vp̄) the vector of indices of vertices for each
component. I is the set of all vectors of indices v. θ[v] is the one to one mapping from I to V. The cardinality
of V is ¯̄v = Πp̄

p=1v̄p. Choosing any ordering of the ¯̄v components of V the set shall also be described using
the notation V =

{
θ[1], . . . θ[ṽ], . . . θ[¯̄v]

}
where ṽ is a scalar indexing of the ¯̄v elements.

A matrix M(θ) is said to be multi-affine in the parameters if it is affine in each θp taken independently.
A multi-affine matrix can be written as the multi-sum of weighted vertices from V denoted as

M(θ) =
∑
v∈I

ξ1,v1 · · · ξp̄,vp̄M(θ[v]) : ξp ∈ Ξv̄p (3)

As we will see on an example, it is quite trivial to notice that any such matrix belongs as well to the polytopic
set defined by

M(θ̃) =

¯̄v∑
ṽ=1

ξṽM(θ[ṽ]) : ξ ∈ Ξ¯̄v (4)

The simplest case is when the θp elements are scalars (mp = 1) defined in intervals θp ∈ [ θ
[1]
p , θ

[2]
p ], which

are polytopes of v̄p = 2 vertices. For the case when all elements are scalar, the cardinality of V is ¯̄v = 2p̄. In
case of two scalar parameters, the multi-sum reads as

M(θ) =
∑

v∈{(1,1),(1,2),(2,1),(2,2)} ξ1,v1ξ2,v2M(θ[v])

= ξ1,1ξ2,1M(θ[(1,1)]) + ξ1,1ξ2,2M(θ[(1,2)])
+ ξ1,2ξ2,1M(θ[(2,1)]) + ξ1,2ξ2,2M(θ[(2,2)]).

The fact that
ξ1,1ξ2,1 + ξ1,1ξ2,2 + ξ1,2ξ2,1 + ξ1,2ξ2,2 = ξ1,1 + ξ1,2 = 1

allows to conclude that the multi-affine matrix M(θ) is included in the polytope of four vertices M(θ[(1,1)]),
M(θ[(1,2)]), M(θ[(2,1)]), M(θ[(2,2)]). The converse is not true in general. There are potentially elements in
the convex hull of these four vertices that are not in the multi-affine model. An example to this fact is the
matrix M(θ) =

[
θ1 θ1θ2 θ2

]
with θ1 ∈ [1, 2] and θ2 ∈ [1, 2]. The middle of vertices

[
1 1 1

]
and[

2 4 2
]

is equal to
[

3
2

5
2

3
2

]
. It is inside polytope (4), but since 5

2 ̸= ( 32 )
2 it is not a realization (3)

of M(θ).
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3 LMI S-Variable conditions
The previous section allows to conclude about the fact that multi-affine polytopes can be considered as
included in polytopes of larger size. This might bring some conservatism. To evaluate this fact we study the
LMI conditions for robust analysis of polytopic and multi-polytopic systems. To do so we consider one type
of LMI conditions issued from the S-Variable approach.

Let an uncertain descriptor systems described by the following equation:

Exx(θ)ẋ(t) + Eπx(θ)π(t) = A(θ)x(t) (5)

where x ∈ Rnx is the state and π ∈ Rnπ is some auxiliary signal linked to the state via algebraic constraints.
Neither Exx(θ) nor A(θ) are supposed to be square and have n rows. For simplicity of the presentation
the matrix

[
Exx(θ) Exπ(θ)

]
is assumed to be full column rank for all θ ∈ Θ. More general cases are

described in [4].
For conciseness of notation denote

M(θ) =
[
Exx(θ) Eπx(θ) −A(θ)

]
the uncertain matrix which fully describes the dynamics of the system.

Proposition 1 If the system (5) is defined using a multi-affine matrix M(θ) then there exists another aug-
mented representation

Êxx(θ)ẋ(t) + Êπx(θ)π̂(t) = Â(θ)x(t) (6)

in which the matrix of size n̂-by-(2nx + n̂π), where n̂ ≥ n and n̂π ≥ nπ,

M̂(θ) =
[
Êxx(θ) Êπx(θ) −Â(θ)

]
is affine in the parameters.

Rather than proving the proposition for a general representation we shall consider an illustrative example.
The proof of the general case follows the same lines. Let the system described by[

1 θ1
0 1

]
ẋ(t) =

[
−θ2 0
θ1θ2 −1

]
x(t). (7)

This multi-affine representation admits the following equivalent affine representation 1 θ1
0 1
0 0

 ẋ(t) +

 0
−θ1
1

 π̂(t) =

 −θ2 0
0 −1
θ2 0

x(t). (8)

The proof comes from the fact the last row of the affine representation gives π̂ = θ2x1, which when included
in the second row, gives exactly the multi-affine representation.

Theorem 1 The uncertain system (5) defined by a multi-affine matrix M(θ) is robustly stable if there exist
¯̄v nx-by-nx symmetric matrices P [v] ≻ 0 and a common to all inequalities (2nx + nπ)-by-n matrix S such
that for all vertices v ∈ I the following LMIs hold

Q(P [v]) ≺ SM(θ[v]) +MT (θ[v])ST (9)

where

Q(P [v]) =

 0nx,nx
0 P [v]

0 0nπ,nπ
0

P [v] 0 0nx,nx

 .

Proof If the inequalities of Theorem 1 hold for all vertices v ∈ I, these hold as well for all reordered
vertices θ[ṽ] with ṽ = 1 . . . ¯̄v. By convexity of matrix inequalities this implies that the inequalities hold for
the convex hull of the vertices, that is for all ξṽ ∈ Ξ¯̄v one has:

Q(P (θ̃)) ≺ SM(θ̃) +MT (θ̃)ST (10)
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for the following parameter-dependent Lyapunov matrix

P (θ̃) =

¯̄v∑
ṽ=1

ξṽP
[ṽ].

Congruence of η =
(
ẋT πT xT

)T on inequality (10) gives that

ẋT (t)P (θ̃)x(t) + xT (t)P (θ̃)ẋT (t) < 0

holds along the trajectories of M(θ̃)η(t) = 0. Hence robust stability of the embedding polytopic uncertain
system is proved by the parameter-dependent Lyapunov function xTP (θ̃)x. The multi-affine representation
M(θ) being included inside the polytopic embedding M(θ̃), stability of the multi-affine model is proved.

■
The proof is well known but is recalled here because it clarifies that these conditions for proving robust

stability of multi-affine models are equivalent to proving robust stability of a larger embedding polytopic set
of models.

An alternative method to prove robust stability of the multi-affine models is to take advantage of the
equivalent augmented representation proposed in Proposition 1.

Corollary 1 The uncertain system (5) defined by a multi-affine matrix M(θ) is robustly stable if there exist
¯̄v nx-by-nx symmetric matrices P̂ [v] ≻ 0 and a common to all inequalities (2nx + n̂π)-by-n̂ matrix Ŝ such
that for all vertices v ∈ I the following LMIs hold

Q̂(P̂ [v]) ≺ ŜM̂(θ[v]) + M̂T (θ[v])ŜT (11)

where

Q̂(P̂ [v]) =

 0nx,nx
0 P̂ [v]

0 0n̂π,n̂π
0

P̂ [v] 0 0nx,nx

 .

At this stage here are the characteristics of the two results:

• Theorem 1 is such that

– The decision variables are the ¯̄v matrices P [v] of size nx-by-nx and a (2nx + nπ)-by-n matrix S;
– The ¯̄v constraints (9) have (2nx + nπ) rows (and as many columns);
– Stability also holds for a polytopic model in which the multi-affine representation is embedded.

• Corollary 1 is such that

– The decision variables are the ¯̄v matrices P [v] of size nx-by-nx and a (2nx + n̂π)-by-n̂ matrix S;
– The ¯̄v constraints (11) have (2nx + n̂π) rows (and as many columns).

Theorem 1 is hence potentially more conservative than Corollary 1 but is of smaller size (both in number
of decision variables and in size of the constraints).

4 Numerical examples
4.1 Example 1
The LMI conditions are tested on the example (7) with θ1 ∈ [−10δ , 10δ ] and θ2 ∈ [ 1 , 1 − δ ]. The LMI
conditions are tested for different values of δ and are summarized in Table 1. OK indicates that the LMIs
are feasible for this value of δ. Corollary 1 is feasible for larger values of δ thus illustrating that it is less
conservative than Theorem 1. The last columns indicate the number of decision variables and the total
number or rows of the LMI constraints (including contraints P [v] ≻ 0).

For θ1 = 0 and θ2 = 0, which is a possible realization when δ = 1, the system is not asymptotically
stable. For this example Theorem 1 is highly conservative while Corollary 1 is not. Conservatism reduction
thanks to Corollary 1 is not at the expense of a major increase of the computation burden.
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Table 1: Example 1
δ 0.556 0.557 0.999 1 nb vars nb rows

Theorem 1 OK - - - 20 24
Corollary 1 OK OK OK - 27 28

4.2 Example 2
We consider now a more complex example with three uncertain parameters:

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 θ1θ2 θ2θ3,1 1

 ẋ =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0
θ1θ2θ3,2 0 0 −1

x (12)

with θ1 ∈ Co (−10δ , +10δ ), θ2 ∈ Co ( 1 , 1− δ ) and

θ3 =

(
θ3,1
θ3,2

)
∈ Co

((
δ
0

)
,

(
0
δ

)
,

(
−δ
−δ

))
.

Choose π1 =
[
θ1θ3,2 0 0 0

]
x−

[
0 θ1 θ3,1 0

]
ẋ to get this other multi-affine model

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0

 ẋ+


0
0
0
θ2
1

π1 =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0
0 0 0 −1

θ1θ3,2 0 0 0

x. (13)

Choose π2 =
[
θ1 0 0 0

]
x to get this third multi-affine model

1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 θ1θ2 θ2θ3,1 1
0 0 0 0

 ẋ+


0

−θ2
−θ3,2
−θ2θ3,2

1

π2

=


−θ2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
θ1 0 0 0

x.

(14)

Combining π1 and π2, the system has the following affine representation
1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0
0 0 0 0

 ẋ+


0 0
0 −θ2
0 −θ3,2
θ2 0
1 −θ3,2
0 1

π =


−θ2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
0 0 0 0
θ1 0 0 0

x. (15)

Models (12), (13) and (14) are multi-affine, and (15) is affine. The LMI results are tested for each of these
models and results are summarized in Table 2.

In this example the LMIs built based on models (12) and (13) give exactly the same results in terms
of conservatism but for an increased numerical burden in case of model (13). The same comment holds
when comparing the LMIs built based on models (14) and (15). This illustrates the fact that results for
multi-affine representations are not necessarily more conservative. But the results for affine representations
are, as guaranteed by the theory, the less conservative ones, and the more demanding in terms of numerical
complexity.
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Table 2: Example 2
δ 0.469 0.470 0.602 0.603 nb vars nb rows

(12) OK - - - 152 144
(13) OK - - - 165 156
(14) OK OK OK - 165 156
(15) OK OK OK - 180 168

In order to reduce further the conservatism [5] suggests to augment the model representation by including
higher derivatives of the states. See also [4] for discussions about this method. For the treated example,
starting from model (13) and including the second derivative of the state, it amounts to considering the
augmented system:  Ex(13)(θ) 0

0 Ex(13)(θ)
0 I

(
ẍ
ẋ

)
+

 Eπ(13)(θ) 0
0 Eπ(13)(θ)
0 0

 π̃1

=

 A(13)(θ) 0
0 A(13)(θ)
I 0

(
ẋ
x

)

where
Ex(13)(θ) Eπ(13)(θ) A(13)(θ)

=


1 θ1 0 0
0 1 θ3,1 0
0 0 1 0
0 0 0 1
0 θ1 θ3,1 0

 =


0
0
0
θ2
1

 =


−θ2 0 0 0
θ1θ2 −1 0 0
θ1θ3,2 0 −1 0
0 0 0 −1

θ1θ3,2 0 0 0


We do not provide all the formulas, but the augmentation procedure applies the same way to all four

models (12), (13), (14), (15) and we shall denote (12-a), (13-a), (14-a), (15-a) the augmented versions of
these. In the augmented models the last rows correspond to the fact that ẋ and ẋ are the same vectors on
both sides of the equality constraint. As discussed in [4] the method hence includes the information that the
first derivatives of the uncertain parameters are zero. The rows involved to include this key information are
parameter independent and this fact can be used to reduce partly, and without conservatism, the numerical
burden (see Chapter 3 in [4]). Table 3 provides the results for the augmented systems. The size of the LMIs
and the number of decision variables are while employing this size reduction technique.

Table 3: Example 2 with augmentation
δ 0.541 0.542 0.643 0.644 nb vars nb rows

(12-a) OK - - - 528 240
(13-a) OK - - - 572 264
(14-a) OK OK OK - 572 264
(15-a) OK OK OK - 624 288

Same conclusions apply as for Table 2. Moreover, as expected, the LMIs tested for Table 3 are less
conservative than those for Table 2 when comparing results based augmented and non-augmented models.
What is more surprising is the conservatism of results based on model (12-a) compared to those based on
model (14). With less decision variables, and without introducing the knowledge about derivatives of the
parameters, the results based on (14) are less conservative.

To finalize the study of this example it should be said that for δ = 0.644 the vertex defined by the
following values

θ1 = 6.44, θ2 = 0.3560, θ3 =

(
−0.644
−0.644

)
gives an unstable system. LMI results based on models (14-a) and (15-a) are hence non-conservative.
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4.3 Example 3
Now we modify slightly Example 2 and replace the set where the θ3 parameter lies to the following polytope
of four vertices

θ3 =

(
θ3,1
θ3,2

)
∈ Co

((
δ
0

)
,

(
0
δ

)
,

(
−δ
0

)
,

(
0
−δ

))
.

Results are given in Table 4 where (12-0) indicates that the model used is (12) and no augmentation is
applied; (12-1) indicates that a first augmentation including ẍ in the equations is applied as in Example
2; (12-2) indicates that an other augmentation including x(3) in the equations is applied. We do not give
results based on equations (13) and (15) because these are once again strictly the same as for LMIs built
based on equations (12) and (14) respectively. Only the maximal values of δ for which some LMI results are
feasible are given.

Table 4: Example 3
δ 0.502 0.587 0.659 0.841 0.849 nb vars nb rows

(12-0) OK - - - - 192 192
(14-0) OK - OK - - 205 208
(12-1) OK OK - - - 672 320
(14-1) OK OK OK OK - 716 352
(12-2) OK OK - - - 1440 448
(14-2) OK OK OK OK OK 1533 496
(12-3) OK OK - - - 2496 576
(14-3) OK OK OK OK OK 2656 640

For the third augmentation that involves derivatives of the state up to x(4) the LMI results provide no
measurable improvement compared to the second augmentation (at least with the precision of thee digits
that we used). But, applying results from [12, 13] on the dual variables of the LMIs obtained for (15-3) with
δ = 0.850 we were able to find a de-stabilizing worst case:

θ1 = 8.4995, θ2 = 0.15, θ3 =

(
0.3947
0.4552

)
for which the poles of the system are

0.0030± 3.4839i, −0.0124, −1.0000.

There is clearly an unstable pair of poles which indicates that the upper bound δ = 0.849 obtained at the
second relaxation is tight (at the precision of three digits that we have chosen). It should be noticed that
without the results of [12, 13] which were implemented using the methodology described in [4], it would have
been quite complex to find this worst case that is not at one of the ¯̄v = 16 vertices.

In terms of computation, all tests have been hone on a MacBook Pro 2.9 GHz Intel Core i5 with Mat-
lab2016b. LMIs were coded using YALMIP (R20141030 release) [7] and solved using SDPT3 (version 4.0)
[14]. Solver time for the 4 LMI problems built for models (12-3), (13-3), (14-3) and (15-3) for δ = 0.849 is
about 70 seconds.

The code of the examples is available on the web at:
http://homepages.laas.fr/peaucell/papers/rocond18.m

5 Conclusions
The goal of this short paper is to discuss the conservatism of S-variable LMI results when these are applied to
multi-affine representations. We have shown that at the expense of a minor augmentation of the numerical
burden it is preferable to convert the models into affine representations. Doing so does not increase much
the numerical burden, but reduces the conservatism quite significantly on examples. Yet it is not always the
case, and we provide examples of the two situations. Methods to detect beforehand if the removal of some
of the products between parameters will indeed reduce the conservatism is left as an open question.
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