
HAL Id: hal-01713140
https://hal.science/hal-01713140

Submitted on 20 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

BEST: a Binary Executable Slicing Tool
Armel Mangean, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou

To cite this version:
Armel Mangean, Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou. BEST: a Binary Executable
Slicing Tool. 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016),
Jul 2016, Toulouse, France. pp.7:1–7:10, �10.4230/OASIcs.WCET.2016.7�. �hal-01713140�

https://hal.science/hal-01713140
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


BEST: a Binary Executable Slicing Tool
Armel Mangean1, Jean-Luc Béchennec2, Mikaël Briday3, and
Sébastien Faucou4

1 École Centrale de Nantes, IRCCyN UMR 6597, Nantes, France
2 CNRS, IRCCyN UMR 6597, Nantes, France
3 Université de Nantes, IRCCyN UMR 6597, Nantes, France
4 Université de Nantes, IRCCyN UMR 6597, Nantes, France

Abstract
We describe the implementation of Best, a tool for slicing binary code. We aim to integrate
this tool in a WCET estimation framework based on model checking. In this approach, program
slicing is used to abstract the program model in order to reduce the state space of the system.
In this article, we also report on the results of an evaluation of the efficiency of the abstraction
technique.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems, D.2.4
Software/Program Verification, D.2.5 Testing and Debugging

Keywords and phrases Program Slicing, Binary Code Analysis, WCET Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2016.7

1 Introduction

In the recent years, several works have explored techniques to statically estimate the worst-
case execution times (WCET) of a program using model checking [10, 6, 4]. The most
important issue encountered when using model checking to perform WCET estimation is the
exponential size of the state space that must be exhaustively explored during the analysis [20].
To fight this problem, state-of-the-art model checking tools for dense timed systems such
as Uppaal [14] use powerful symbolic algorithms and data structures. It has been shown
that it allows to deal with small but realistic instances of the WCET problem [10, 6]. It
is expected that model checking technology will continue to improve in the coming years,
widening the range of instances that can be solved.

A different and complementary direction to deal with the explosion of the state space
consists in abstracting the models of the programs [4, 3] or the models of the hardware
components [5]. The idea is to remove the information which does not impact the WCET.
This work follows this direction, with a focus on the models of programs. In the continuation
of prior work [4] we explore the use of program slicing [19] at the level of the binary code to
abstract the model of the program.

In this paper we introduce Best, a program slicer for binary code. We describe its
architecture and implementation. We explain the interface between Best and Harmless [12],
a toolchain built around a Hardware Architecture Description Language (HADL). Thanks to
this interface, the core of Best is independent from the target instruction set of the binary
code. We also use Best and the Mälardalen benchmarks to show how to compute abstract
model of programs and report on the benefits that could be reached with this approach.

The paper is organized as follows. In Section 2 we give an overview of related works.
In Section 3 we outline an approach to the estimation of WCET with model checking.
In Section 4 we provide a summary of program slicing. In Section 5 we describe the

© Armel Mangean, Jean-Luc Béchennec, Mikaël Briday and Sébastien Faucou;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Editor: Martin Schoeberl; Article No. 7; pp. 7:1–7:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


7:2 BEST: a Binary Executable Slicing Tool

implementation of Best and its interface with Harmless. In Section 6 we report on an
evaluation of the abstraction approach using Best. In Section 7 we conclude the paper.

2 Related works and contribution

In the context of static WCET analysis, program slicing has been explored [17, 15, 4].
Program slicing is mostly used to accelerate the static analysis of flow facts [17, 15]. Our
goals are different, as well as the slicing technique. In contrast to our work, program slicing
is applied to structured programs at the source code level (or intermediate code level [17]).
Our tool works at the binary code level. As a positive side effect, it is independent from both
the programming language and the compiler. To our best knowledge, there is no established
tool for slicing non-x86 binary code and Best aims at filling this gap.

Our work is the continuation of previous work by Cassez and Béchennec [4]. In this work
they propose a prototype tool based on the classical dataflow equations approach [19] that
computes slices for ARM-based binary code. Unlike that, our tool is independent from the
target instruction set thanks to its interface with the Harmless toolchain. Furthermore, our
tool is based on a state-of-the-art graph-based approach [13]. We also provide an evaluation
focused on the benefits of the program abstraction technique.

Brandner and Jordan [3] propose a graph pruning technique to increase the precision of
static WCET estimation. Branches of the Control Flow Graph (CFG) are pruned based on
the criticality of their basic blocks. The criticality is defined as the normalized duration of
the longest path passing through the block [2]. According to the authors this approach is akin
to “program slicing in the time domain”. Based on this pruning approach, a refinement based
WCET calculation meta-algorithm is proposed. We do not address a full WCET analysis
in this paper. However, their technique could be combined with our approach to improve
WCET calculation. Such a combination should allow to further abstract the program in
order to deal with state space explosion.

3 WCET estimation using model-checking

WCET estimation can be reduced to a reachability problem in a network of timed automata [4].
The Uppaal tool that supports timed automata extended with bounded integer variables is
used to build the models, and to solve the reachability problem.

A model of the hardware is built where each architectural feature (pipeline(s), cache(s),
bus(es), memory, . . . ) is modeled by one or more timed automata. These automata are
synchronized through channels to model the actual hardware behavior. For instance the
automaton modeling the fetch stage of a pipeline is synchronized with the automaton
modeling the instruction cache which is synchronized with the automaton modeling the bus
and so on. The timings of the hardware are modeled by guards and clocks on some edges
of the automata. A simple model of a memory controller could be the timed automaton of
Figure 1. Notice that this model accounts only for the timing.

A model of the program is automatically built from the binary code. In this model,
each location corresponds to an instruction. An edge leaving a location corresponds to the
execution of the instruction. For conditional branches, two edges leave the location according
to the behavior of the branch (taken or not taken). Each edge is synchronized with the
automaton that models the instruction fetch so that it may only be fired if the hardware
fetches a new instruction. Memory locations are updated according to the semantics of the
instruction and to its advance in the pipeline. The model of the program has an initial state,



A. Mangean, J.-L. Béchennec, M. Briday and S. Faucou 7:3

MainMemStart?

MainMemEnd!

t = 0

t ≤ MAINMEMTRANS

t == MAINMEMTRANS

Figure 1 Simple modeling of a memory using Uppaal. In the initial state (on the top left)
the memory waits for an access (MainMemStart synchronization channel). When the access is
requested, clock t resets and the automaton remains in the bottom right state until t reaches the
MAINMEMTRANS value. Then the memory returns to the initial state and notifies the end of the
memory access (MainMemEnd synchronization channel).

I, that corresponds to the entry point of the program and a final state, F , that corresponds
to the point at which the WCET has to be computed.

At last, a global clock x is used to measure the time. It is initialized at 0.
The WCET is then the largest value, max(x), of x when F is reached. max(x) can

be computed with a model-checker and the following reachability property R(T ): “Is F

reachable with x ≥ T ?”. If R(T ) is true and R(T + 1) is false then T is the WCET of the
program.

This approach is modular since the hardware and software models are built separately
and the hardware model does not depend on the software to check. No assumption is made
about the structure of the binary code generated by the compiler and the model of the
program is built automatically without need for annotations

Modeling the values stored in memory

Data stored in memory and registers – called a location in the remaining of the paper – and
used by the program can be either included in or abstracted away from the model. Each
location included in the model is associated with a bounded variable. When the program
accesses a location, the timing is computed by the models of the hardware. If the location
is included in the model, the associated variable is also read / written. If the location is
abstracted away, the data to be written is discarded and any read access returns the special
value ⊥.

On the one hand, every location included in the model adds a dimension to the state
of the system and thus contributes to the growth of the state space. On the other hand, ⊥
values can lead the model checker to explore paths that are not in the systems when they
impact a conditional branch instruction. Thus the problem is to automatically compute the
minimal set of locations that impact on the control flow of the program and that should be
included in the model. In this paper, we focus on this problem.

4 Program Slicing

4.1 Notations
Let I be a finite set of instructions. Let L be a totally ordered finite set of labels. A program
P is a finite subset of L × I such as ∀(l, i) ∈ P, (l, i′) ∈ P ↔ i = i′. We denote V the set

WCET 2016



7:4 BEST: a Binary Executable Slicing Tool

of variables of P . If we consider the program in Figure 2a, I is the subset of instructions of
the 32 bits PowerPC instruction set used by the program, L is the set of memory addresses
aligned on 4 bytes boundaries in the range [3000, 3034] and V is the set of memory locations
explicitly or implicitly used (i.e. {r1, r3, r8, r9, r10, lr, ctr}).

A basic block is a sequence of instructions of P with one entry point, its first instruction,
and one exit point, its last instruction. A basic block is maximal if it is not contained in any
other basic block. Let GP = 〈VP , EP , uGP

, vGP
〉 where VP is the finite set of maximal basic

blocks of P and EP ⊂ VP × VP is such that there is an edge between v1 ∈ VP and v2 ∈ VP if
and only if the first instruction of v2 can be executed immediately after the last instruction
of v1 in P . uGP

∈ VP and vGP
∈ VP are respectively the entry block and the exit block of P .

Then GP is the CFG of P .

4.2 General overview
Program slicing has been introduced by Weiser [19]. Weiser defines a program slice as an
executable program that is obtained from the original program by deleting zero or more
statements, computing the same values for a given subset of variables of the program. He
claims that a slice corresponds to the mental abstractions that people make when they are
debugging a program. The original formulation of program slicing proposed by Weiser is
based on iterative solutions of data-flow equations. Ottenstein and Ottenstein [16] were
the first to redefine slicing as a reachability problem in a dependence graph representation
of a program. They use a Program Dependence Graph (PDG) [8] for static slicing of
single-procedure structured programs. Efforts have been made to extend this approach to
unstructured programs [1, 13] and multiple-procedure programs [11, 13]. More details on the
topic can be found on the survey by Tip [18].

We consider in this section a toy example to highlight the slicing method. It is a
simple program that computes iteratively the first 30 values of the Fibonacci sequence
(Fn = Fn−1 + Fn−2, with F0 = 1 and F1 = 1). The code targets the PowerPC instruction
set. The program works as follow:

The _start label (Figure 2a, line 1) is the program entry point. It gets minimal startup
code that initializes the stack pointer r1 and calls the main at 3010 (Figure 2a, line 7). If
the main() function returns, it enters in an infinite loop (Figure 2a, line 5) ;
Figure 2a, lines 8 to 11 initialize the sequence. The loop is controlled by the dedicated
ctr counter register ;
Figure 2a, lines 13 to 16 are the instructions in the loop. r9 and r10 stores respectively
the current and the last value and are used to compute the next value (in r3).

A slice is computed with regards to a slice criterion C = 〈l, v〉 with l ∈ L a label and
v ⊆ V a set of variables. So, if we consider the program in Figure 2a and the slicing criterion
〈3030, {ctr}〉, i.e. the value of register ctr when the instruction pointer contains the address
3030, we obtain the slice shown in Figure 2b. Indeed, the instruction bdnz 3024 at address
3030 (Figure 2b, line 16) implicitly modifies the register ctr, ctr is set by mtctr r8 at 3018
(Figure 2b, line 10) and r8 is set by li r8,29 at 3010 (Figure 2b, line 8).

To compute a slice in binary code, we need to handle arbitrary control flows (as opposed
to control flow of structured programs) and inter-procedurality. In our use case, we must also
exclude the techniques that change the order of the instructions. Given all these constraints,
we have to use slicing techniques based on graph manipulations [13].

This approach is based on the computation of several graphs. The first one is the CFG
of the program. Figure 3a gives the CFG of fibcall-O2.elf. Then the Data Dependence



A. Mangean, J.-L. Béchennec, M. Briday and S. Faucou 7:5

1 00003000 <_start >:
2 3000: li r1 ,1 ;r1 <- 1
3 3004: ori r1 ,r1 ,49296 ;ri

<- r1 | 49296
4 3008: bl 3010 ;call main
5 0000300 c <loop >:
6 300c: b 300c ; branch
7 00003010 <main >:
8 3010: li r8 ,29 ;r8 <- 29
9 3014: li r10 ,1 ;r10 <- 1

10 3018: mtctr r8 ;ctr <- r8
11 301c: li r9 ,1 ;r9 <- 1
12 3020: b 3028 ; branch
13 3024: mr r9 ,r3 ;r9 <- r3
14 3028: add r3 ,r9 ,r10 ;r3

<- r9+r10
15 302c: mr r10 ,r9 ;r10 <- r9
16 3030: bdnz 3024 ;ctr --,
17 ; branch if ctr !=0
18 3034: blr ; return

(a) Dump of fibcall-O2.elf.

1 00003000 <_start >:
2 3000: -- --
3 3004: -- --
4 3008: -- --
5 0000300 c <loop >:
6 300c: -- --
7 00003010 <main >:
8 3010: li

r8 ,29
9 3014: -- --

10 3018: mtctr r8
11 301c: -- --
12 3020: -- --
13 3024: -- --
14 3028: -- --
15 302c: -- --
16 3030: bdnz

3024
17
18 3034: --

(b) Slice for C = 〈3030, {ctr}〉.

Figure 2 Dump and slice of a binary executable.

Graph (DDG) and the Control Dependence Graph (CDG) are computed from the CFG.
The DDG captures data dependencies between instructions. Its nodes are the instructions
of P . There exists an edge between two nodes of the DDG when the source node does a
reaching definition of a memory location used by the target node. The CDG captures control
dependencies between basic blocks. Its nodes are the maximal basic blocks of P . There
exists an edge between two nodes of the CDG when the source node determines whether the
target node is executed or not.

After the DDG and the CDG, the next graph is the Program Dependence Graph (PDG) [8].
It is built by merging the DDG and the CDG. Node sets of the DDG and the CDG being
disjoint (nodes are instructions in the DDG and maximal basic blocks in the CDG), the PDG
gets its consistency from special edges that represent the belonging of a set of instructions to
a basic block. In summary, the PDG captures the belonging of set of instructions to basic
blocks, data dependencies at instruction level and control dependencies at basic block level.
Figure 3b gives the PDG of fibcall-O2.elf.

If P does not contain procedure calls, or if these calls are “inlined” when the CFG is built,
it is possible to compute slices on the PDG. The slice corresponding to a given criterion is
obtained by performing a backward reachability analysis. The slice is initialized with the
slice criterion. When an instruction in the slice is the target of a data dependence edge, the
source instruction is added to the slice. When an instruction in the slice belongs to a basic
block which is the target of a control dependence edge, the last instruction of the source
basic block is added to the slice. This procedure is iterated until a fixpoint is reached.

In Figure 3b, dashed, bold and solid edges represent respectively the belonging of a
set of instructions to a block, a control dependency between two basic blocks, and a data
dependency between two instructions. Considering once again the program in Figure 2a
and the slicing criterion 〈3030, {ctr}〉, we obtain the slice shown in Figure 2b. Indeed,
the backward reachability analysis shows that the instruction at address 3030 has a data
dependency with the instruction at 3018 which has also a data dependency with the instruction
at 3010 and the basic block BB2 has no control dependency apart from the entry point.

Slicing the PDG is suboptimal for programs with procedure calls [13]. To overcome this
limitation, inter-procedural slicing techniques use a fourth graph, the System Dependence
Graph (SDG) [11]. To build the SDG, in a first step, the PDG of each procedure must be
built. In a second step, these PDGs are connected with call, parameter-in and parameter-out
edges to account for procedure calls and parameters passing. The slicing algorithm on the
SDG is based on two backwards analyses similar to the one used for the PDG. The first

WCET 2016



7:6 BEST: a Binary Executable Slicing Tool

BB0

BB1BB4

BB2

BB5

BB3

(a) CFG of fibcall-O2.elf.

BB0 BB1 BB4 BB2 BB5

BB3

3000
3004
3008

300c

3024 3028
302c
3030

3010
3014
3018
301c
3020

3034

(b) Simplified PDG of fibcall-O2.elf.

Figure 3 Dump and slice of a binary executable.

backward analysis does not follow parameters-out edges. It only adds to the slice instructions
up to the entry point. The second backward analysis does not follow call and parameter-in
edges. It adds to the slice all instructions down to the procedures output parameters. As a
result, unwanted dependencies to output parameters from called procedures are not added
to the slice.

4.3 Abstraction of programs for WCET estimation.
Program slicing has many use cases in software engineering. In this paper we want to compute
the set of memory locations that impact the WCET of a program. To determine this set of
locations we have to determine a suitable slicing criterion. This criterion is the set of pairs
〈l, v〉 such that l is the label of a conditional branch instruction and v is the set of memory
locations read by this instruction. If we consider the program in Figure 2a, it has only one
conditional branch instruction: bdnz 3024 at address 3030. The branch is taken if the count
register ctr is not zero. So, to compute the locations that should be part of the state of the
model we have to compute the slice for the criteria {〈3030, {ctr}〉}. The set of variables used
either explicitly or implicitly by the initial program is {r1, r3, r8, r9, r10, lr, ctr}. The subset
of variables used in the slice is {r8, ctr} (see Figure 2b). Only these two registers have to be
included in the state of the model.

Let us underline that computing this slice gives us extra informations. For each register
in the slice, we also know which instructions impact its value at a given execution point. In
the general case, not all the instructions using a register in the slice are in the slice. Such
instructions must be processed as instructions using registers not in the slice. Their output
must not be written to the state. This allows to further reduce the number of states to
explore.

5 Implementation

Architecture

Our tool, Best for Binary Executable Slicing Tool, computes slices on binary executable
files. Its architecture is illustrated in Figure 4.

The decoding and interpretation of the binary files relies on a library generated by the
Harmless toolchain [12]. Harmless is an Hardware Architecture Description Language
that is used to model a whole processor. In this study, we are only interested in the model



A. Mangean, J.-L. Béchennec, M. Briday and S. Faucou 7:7

BEST
C++/LEMON

CFG 
reconstruction

Program 
slicing

Binary 
executable

Program

HARMLESS
C++

Instruction 
set interface 

module

decoder and 
interpreter

UPPAAL 
and

Dot file

Base model

UPPAAL 
and

Dot file

Abstracted 
model

Figure 4 Structure of the tool.

of the instruction set. The Harmless compiler is primarily designed to generate either
functional or cycle accurate simulators. We re-targeted it to extract static information of the
instruction set. The library generated from Harmless can read a binary file (.elf format
in our case) and give information about each instruction such as:

the instruction mnemonic;
the memory locations that are read by the instruction;
the memory locations that are written by the instruction;
is the instruction a branch instruction? is it a conditional branch? what is its target (if it
is statically defined)?

In this study we have used only the PowerPC instruction set, but Best is not architecture-
dependent, thanks to this library.

Using this library, Best does a CFG reconstruction from a PowerPC binary executable
file. Then it applies program slicing to compute the set of memory locations that should be
in the model. The main output is an abstract model of the program that can be used to solve
the WCET estimation problem with Uppaal. For validation and visualization purposes,
the different models built along the computation can be exported as graphs or as timed
automata in the Uppaal format [14].

Best is distributed in open-source1. To the best of our knowledge, there is no established
program slicing tool for non-x86 binary code, especially in open-source. Best aims to fill this
gap. It is implemented in C++. Apart from Harmless it relies on the graph manipulation
library Lemon [7].

Limitations and Future work

The current version of Best has different limitations that we want to break in the near future.
First, the computation of the abstraction is limited to the register file. The other levels of
memory (stack words, all other parts of the volatile memory and non-volatile memory) are
automatically excluded from the model. It will be straightforward to take into account the
other levels by extending the technique used for the register file. The first step will be the
analysis of the stack frame. Being able to track data dependencies between memory and
registers through stack loads and stores will produce a more accurate model of the binary
executable, and so more accurate WCET estimations.

The second limitation is the limited support for programs with multiple procedures. The
slice is currently computed on the PDG. It is not much of hard work to build the SDG and

1 Available at https://github.com/TrampolineRTOS/BEST.

WCET 2016

https://github.com/TrampolineRTOS/BEST


7:8 BEST: a Binary Executable Slicing Tool

Table 1 Ratio of registers (resp. instructions) in slice compared to the unsliced program.

Compiler Optim. Registers in slice Instructions in slice
Avg. Min Max. Std. dev. Avg. Min Max. Std. dev.

Gcc

-O0 61.8% 43.7% 78.9% 8.8% 21.6% 1.7% 43.2% 8.9%
-O1 64.6% 19.1% 87.5% 13.6% 36.7% 3.24% 67.9% 10.2%
-O2 64.3% 13.3% 92.9% 20.3% 37.8% 2.9% 72.5% 15.7%
-O3 62.8% 9% 96.4% 21.7% 34.7% 0.4% 72.2% 18%

Cosmic -no 40.5% 8.6% 86.7% 16.6% 34% 1.9% 60.2% 15.2%
default 37% 2.8% 66.7% 15.8% 37% 2.8% 66.7% 15.8%

adapt the slicing algorithm because Best has been designed on structures and algorithms
intended to produce inter-procedural slices. The main benefit of inter-procedural slicing
resides on a more accurate slicing of procedure parameters i.e. even smaller slices.

6 Experimental results

We have conducted experiments to measure the reduction of the set of memory locations
that must be included in the model. Given the current restriction of Best, we have focused
on the registers. To do so, Best outputs the following information for each program:

the number of registers used either explicitly or implicitly and the number of instructions
in the original program ;
the number of registers used either explicitly or implicitly and the number of instructions
in the sliced program (using the slicing criterion defined in Section 4).

We used the Mälardalen WCET benchmarks [9] to generate the programs. We had to
exclude certain programs to account for the current limitation of our tool: program containing
floating point arithmetic or switch-case statements and recursive programs.

We used the library generated by the Harmless compiler from a description of a PowerPC
e200z4 core based on the 32 bits PowerPC instruction set. This architecture includes 32
general purpose registers (r0, r1, . . . , r31) and 5 dedicated registers (cr, xer, lr, ctr, pc).
We used two different compilers: Gcc 5.3.1 and Cosmic C 4.3.7. For a given compiler, the
generated binary may be very different according to the optimizations. For instance without
optimization Gcc generates code where local variables are loaded from and stored to the
stack frame each time they are used, whereas in higher optimization levels local variables are
allocated in registers. Thus we created different program versions for each optimization level
offered by each compiler (4 levels for Gcc and 2 levels for Cosmic C).

All in all, we created 6 versions of each of the 16 Mälardalen benchmarks fitting our
constraints and we ran Best on these 96 programs. Due to space limitations the detailed
results are provided online2. The results are summarized in Table 1 and 2. Table 1 gives
the ratio of registers and instructions in the slice compared to the original program. Table 2
gives the number of registers in the slice. It is not meaningful to compare our results with
pior work [4] because we consider a different instruction set and different compilers (or at
least compiler version for Gcc). We do not comment either on the execution time of Best
that were below one second in every case.

2 Available at https://github.com/TrampolineRTOS/BEST.

https://github.com/TrampolineRTOS/BEST


A. Mangean, J.-L. Béchennec, M. Briday and S. Faucou 7:9

Table 2 Average number of registers in slice.

Gcc Cosmic
-O0 -O1 -O2 -O3 -no default
8.8 13 11.8 12.1 11.9 12

These results confirm that slicing is an effective abstraction technique for our use case.
It allows a significant reduction of the number of variables that should be included in the
model (reduction of the dimension of the state space) as well as the number of instructions
the output of which should be taken into account (reduction of the number of states to
explore). As expected, the best results are obtained for programs with very simple control
flow, namely fdct.c and jfdctint.c, whereas the worst results are obtained for programs
with nested control statements and procedure calls , namely ndes.c and adpcm.c. However,
let us underline that the structure of the source code is not always the dominant factor. For
some programs, it appears that the compiler (version and/or optimization) has more impact
on the capacity of the program slicer to abstract the binary. Example of such programs are
expint.c and fir.c.

7 Conclusion

This article describes the working principles of a tool that computes abstract models of binary
executables to be processed by a WCET estimation toolchain based on model checking. Our
tool uses program slicing to compute the set of memory locations of the program that have
an impact on the WCET of the program. The content of these memory locations is tracked
in the abstract model of the program whereas the content of the other ones is abstracted
away. A first prototype has been implemented and evaluated. The evaluation has been
performed on the Mälardalen benchmarks using two compilers for the PowerPC architecture
with varying optimization levels. On average, 41% of the registers can be abstracted. This is
a promising result.

References
1 Hiralal Agrawal. On slicing programs with jump statements. ACM Sigplan Notices,

29(6):302–312, 1994.
2 Florian Brandner, Stefan Hepp, and Alexander Jordan. Static profiling of the worst-case

in real-time programs. In International Conference on Real-Time and Network Systems
(RTNS), 2012. doi:10.1145/2392987.2393000.

3 Florian Brandner and Alexander Jordan. Refinement of worst-case execution time bounds
by graph pruning. Computer Languages, Systems & Structures, 40(3-4):155–170, 2014.
doi:10.1016/j.cl.2014.09.001.

4 Franck Cassez and Jean-Luc Béchennec. Timing Analysis of Binary Programs with UP-
PAAL. In International Conference on Application of Concurrency to System Design
(ACSD), 2013.

5 Franck Cassez and Pablo González de Aledo Marugán. Timed automata for modeling caches
and pipelines. In Workshop on Models for Formal Analysis of Real Systems (MARS), 2015.
doi:10.4204/EPTCS.196.4.

6 Andreas Engelbredt Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen,
and Kim Guldstrand Larsen. METAMOC: modular execution time analysis using model
checking. In 10th International Workshop on Worst-Case Execution Time Analysis, WCET

WCET 2016

http://dx.doi.org/10.1145/2392987.2393000
http://dx.doi.org/10.1016/j.cl.2014.09.001
http://dx.doi.org/10.4204/EPTCS.196.4


7:10 BEST: a Binary Executable Slicing Tool

2010, July 6, 2010, Brussels, Belgium, pages 113–123, 2010. doi:10.4230/OASIcs.WCET.
2010.113.

7 Balázs Dezső, Alpár Jüttner, and Péter Kovács. LEMON – an Open Source C++ Graph
Template Library. ENTCS, 264(5):23–45, 2011.

8 Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(3):319–349, 1987.

9 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen WCET
benchmarks: Past, present and future. In 10th International Workshop on Worst-Case
Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages 136–146,
2010. doi:10.4230/OASIcs.WCET.2010.136.

10 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards
WCET analysis of multicore architectures using UPPAAL. In 10th International Workshop
on Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium,
pages 101–112, 2010. doi:10.4230/OASIcs.WCET.2010.101.

11 Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(1):26–
60, 1990.

12 Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, Guillaume Savaton, and Yvon Trinquet.
Harmless, a hardware architecture description language dedicated to real-time embedded
system simulation. JSA, 58(8):318–337, 2012.

13 Akos Kiss, Judit Jász, Gábor Lehotai, and Tibor Gyimóthy. Interprocedural Static Slicing
of Binary Executables. In International Workshop on Source Code Analysis and Manipu-
lation, 2003.

14 Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. STTT, 1(1-2):134–
152, 1997.

15 Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast and precise
static loop analysis based on abstract interpretation, program slicing and polytope models.
In International Symposium on Code Generation and Optimization (CGO), pages 136–146,
2009.

16 Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in a software
development environment. ACM Sigplan Notices, 19(5):177–184, 1984.

17 Christer Sandberg, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Faster WCET
flow analysis by program slicing. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES), pages 103–112, 2006. doi:10.1145/
1134650.1134666.

18 Frank Tip. A Survey of Program Slicing Techniques. Journal of programming languages,
3(3), 1995.

19 Mark Weiser. Program Slicing. In International Conference on Software Engineering
(ICSE), 1981.

20 Reinhard Wilhelm. Why AI + ILP is Good for WCET, but MC is not, nor ILP alone.
In International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), 2004.

http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://dx.doi.org/10.4230/OASIcs.WCET.2010.136
http://dx.doi.org/10.4230/OASIcs.WCET.2010.101
http://dx.doi.org/10.1145/1134650.1134666
http://dx.doi.org/10.1145/1134650.1134666

	Introduction
	Related works and contribution
	WCET estimation using model-checking
	Program Slicing
	Notations
	General overview
	Abstraction of programs for WCET estimation.

	Implementation
	Experimental results
	Conclusion

