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Abstract. In this article we discuss the hydrodynamic response of a
superfluid to a periodic drive. Using a WKB description of the hy-
drodynamic modes of the system, we show that contrary to Landau’s
argument, there is no critical velocity, but that the dissipated power
nevertheless increases rapidly when the maximum velocity of the per-
turbation reaches the central sound velocity of the superfluid.

1 Introduction

The existence of frictionless flow in quantum fluids at low temperature is one of the
most dramatic macroscopic manifestations of quantum mechanics. As originally con-
jectured by Landau [1], one key feature of superfluid flows is the existence of a critical
velocity above which dissipation nevertheless arises and in its simplest form, this crit-
ical velocity marks the threshold beyond which a moving impurity can generate a
stationary wake of elementary excitations (phonons or rotons for helium). As such
this physical phenomenon is similar to the Cherenkov radiation in electrodynamics [2]
or to the generation of surface waves by an object moving at the surface of liquid [3,
4]. Experimental evidences for the existence of this critical velocity were presented in
superfluid helium[5], ultracold gases [6–11] and polariton condensates [12]. However
it was also rapidly pointed out that in actual experiments, additional decay chan-
nels were lowering the predicted critical velocity. It was first observed that in the
case of a strong perturbation, vortex shedding could supersede generation of elemen-
tary exitations [13–17], while in attractive Fermi gases paired-breaking excitations
can become dominant in the weakly interacting limit [18]. In trapped gases, density
inhomogeneities [19,20] and thermal fluctuations [21–23] can also strongly decrease
the critical velocity. Finally, the threshold is even completely smeared out when the
impurity does not move at a constant velocity [24,22], just like accelerated charged
particles radiate electromagnetic waves at any speed [25].

Previous studies were focusing on mean-field descriptions of the system and in
this paper we investigate theoretically the hydrodynamic response of an arbitrary
superfluid to a time-periodic external potential. We restrict our study to the case of an
elongated superfluid in which the transverse degrees of freedom can be integrated out.
Using the WKB approximation we determine the high-energy modes of the superfluid
for an arbitrary equation of state. In particular we show that the high-frequency
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spectrum has a phonon-like dispersion relation. Using those results we compute the
power transferred from a stirring potential to the superfluid and we confirm the
absence of critical velocity for an accelerated impurity.

2 Hydrodynamic modes of a superfluid in an elongated potential

2.1 Linearized equations

In this first paragraph, we recall some general results on the hydrodynamic modes of
a superfluid. We consider a superfluid trapped in an elongated harmonic potential.
Integrating-out the transverse degrees of freedom [26], we describe its dynamics by a
semi-classical one-dimensional Hamiltonian

H =

∫
dz

(
~2

2m
(∂zχ)2 + e(n) + nV (z)

)
, (1)

where z is the weak-trapping direction, m the mass of the particles, n the 1D particle-
density, χ the phase of the order parameter, e(n) the 1D energy-density, and V (z) =
mω2

zz
2/2 the trapping potential along z. Writing Hamilton’s equations for the conju-

gate variables n and χ yields the usual hydrodynamic equations

∂tn+ ∂z(nv) = 0, (2)

~∂tχ+m
v2

2
= −V (z)− µ(n), (3)

where µ(n) = ∂ne(n) is the chemical potential of the system and v = ~∂zχ/m the
superfluid velocity. In stationary regime, the density is constant and the phase χ varies
linearly with time as χs = −µ0t/~. Inserting these expressions in Eq. (2,3) yields the
Local Density Approximation (LDA) equation for the density µ(ns) + V (z) = µ0. In
particular, assuming that µ(n = 0) = 0, the boundaries of the cloud are located in
z = ±Z, with mω2

zZ
2/2 = µ0.

We now focus on the solutions of Eq. (2,3) close to equilibrium. We take χ = χs+ϕ
and n = ns + δn with ϕ� χs and δn� ns. Expanding the hydrodynamic equations
to first order in perturbation, Eq. (2,3) can be recast as

∂tδn = −∂z(nsv), (4)

~∂tϕ = −∂µs

∂ns
δn, (5)

where µs stands for µ(ns). Taking δµ = ∂ns
µsδn, we finally obtain a wave-like equation

∂2
t δµ−

1

m

(
∂µs

∂ns

)
∂z (ns∂zδµ) = 0. (6)

The eigenmodes of the system correspond to time-oscillating solutions δµ(z, t) =
ψq(z)e

−iωqt, where ψq and ωq are solutions of the Eigenvalue problem [27,26]

ω2
qψq = L[ψq], (7)

where q is an integer labelling the eigenmodes and L the linear operator defined by

L[ψ] = − 1

m

(
∂µs

∂ns

)
∂z (ns∂zψ) . (8)
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L is hermitian for the scalar product

(f |g) =

∫
dz
∂ns

∂µs
f(z)∗g(z), (9)

and, since by thermodynamic stability ∂nsµs > 0, it is also a positive operator, mean-
ing that the hydrodynamic eigenfrequencies ωq are all real.

In the literature Eq. (7) was solved in the case of a polytropic equation of state
µ = αnγ , where α and γ are two constant parameters (in the case of a weakly
interacting Bose-Einstein condensate, γ = 1/2, while for a unitary Fermi gas [28,29],
γ = 2/5. For a 3D polytropic gas characterzed by a 3D polytropic exponent γ3D and
confined in a harmonic potential, we have 1/γ = 1/γ3D+1, hence γ < 1). In this case,
the eigenfunctions are polynomials1 and the corresponding eigenvalues are given by

ωq = ωz
√
q[2 + γ(q − 1)]/2. (10)

At large frequencies, we recover an acoustic-like linear spectrum since two subsequent
modes are separated by a constant frequency gap ∆ω = ωz

√
γ/2. Moreover, take c1D

the sound velocity in absence of axial trapping, we have [28]

c1D =

√
n

m

∂µ

∂n
=

√
γµ

m
. (11)

We can then recast the high-frequency dispersion relation in a Fabry-Perot-like form

ωq ' 2π(q + q0)
c
(0)
1D

Leff
(12)

where c
(0)
1D is the local 1D-sound-velocity at the trap center, Leff = 2πZ is the effective

acoustic length of the cloud and q0 = 1/γ − 1/2 is a “quantum defect”.

2.2 WKB Approximation

We now generalize the previous results to an arbitrary equation of state µ(n) and
we show that the high-energy hydrodynamic spectrum still follows a phonon-like
dispersion relation similar to (12). Take ψq = A(z)eiθ(z) where A and θ are two real
functions. Eq. (7) turns then into the following set of equations:

mω2
qA = −(∂zµs)(∂zA)− ns(∂

2
zA)(∂ns

µs) + nsA(∂zθ)
2(∂ns

µs), (13)

0 = A(∂zns)(∂zθ) + 2ns(∂zθ)(∂zA) +Ans(∂
2
zA). (14)

Eq. (14) is readily integrated and yields the conservation of the probability current
nsA

2k(z) = const, with k(z) = ∂zθ the local wave-vector. For a homogeneous system,
the solutions of the wave equation are plane waves characterized by a uniform wave-
vector k. In a trap, the spatial dependence of the local density implies that k(z) varies
spatially over a typical length scale given by the size Z of the cloud. In the WKB
approximation, we consider high-frequency modes and we assume that the typical

1 More precisely Gegenbauer polynomials, which are defined as the family of orthogonal
polynomials for the weight function w(z) = (Z2 − z2)α - in the present case α = 1/γ − 1
[30].
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Fig. 1. Domain of validity of the two asymptotic regimes. The red shaded area shows the
region where they are both valid and where the quantization of the frequencies can be made
by matching the two asymptotic expressions.

wavelength k−1 of the excitation is much smaller than Z. In this limit we can neglect
higher-order spatial-derivatives in Eq. (13) which simplifies into

ω2
q =

ns

m

∂µs

∂ns
k(z)2, (15)

hence

θ(z) = θ(0)±
∫ z

0

dz′
ωq

c1D(z)
, (16)

with mc1D(z)2 = ns∂nsµs the local sound-velocity and the ± sign corresponds to
the direction of propagation of the wave. The general solution is the sum of left and
right-propagating waves and we can finally write that

ψq ∝
1√

ns(z)k(z)
cos

(∫ z

0

ωdz′

c1D(z′)
+ θ(0)

)
. (17)

(Note that in practice, θ(0) ≡ 0[π/2] since the solution must be either odd or even in
a harmonic potential).

The frequency quantization arises from the boundary conditions at the cloud
edge. In this region, the density and the sound velocity vanish and we can no longer
approximate ψq by a local plane wave. We obtain another asymptotic expansion valid
for z → Z, by expanding Eq. (7) as

ω2
qψq =

2µ0

mZ
∂zψq −

(
2γµ0

m

)(
1− z

Z

)
∂2
zψq, (18)

where we have used the LDA condition µz = µ0(1 − z2/Z2) ' 2µ0(1 − z/Z) and we
have assumed that for small densities we could approximate the equation of state of
the superfluid by a polytropic expression µs ' αnγs .

This equation can be solved analytically in terms of Bessel functions of the first
kind Jα, and the regular solution is given by

ψq ∝
J1/γ−1

(
ωZ
√

2m
µ0

(1− z/Z)
)

√
1− z/Z

1/γ−1
. (19)

Expanding this solution far from the boundary yields the asymptotic expression [30]

ψq ∝
cos
(
ωqZ

√
2m
µ0

(1− z/Z)− π
2γ + π

4

)
√

1− z/Z
1/γ−1/2

. (20)

The quantization condition is obtained by matching the two asymptotic expressions
(17) and (20). Expanding the phase of Eq. (17) close to z = Z, we indeed see that
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∫ z

0

ωdz′

c1D(z′)
=

∫ Z

0

ωdz′

c1D(z′)
+

∫ z

Z

dz′

c1D(z′)
'
∫ Z

0

ωdz′

c1D(z′)
− ωZ

√
2m

µ0
(1− z/Z), (21)

where we have used the polytropic expression of the sound velocity at vanishingly
small density.

We can match this expression to the phase appearing in Eq. (20) in the range
1 � (1 − z/Z) � ω2

z/ω
2
q (See Fig. 1). Indeed, on the one hand Eq. (20) is obtained

under the assumption that i) we are close to the edge ((1 − z/Z) � 1), and ii)

the argument appearing in Bessel function is large, hence ωq
√

(1− z/Z)2m/µ0 � 1.
Since µ0 = mω2

zZ
2/2, it means that (1−z/Z)� ω2

z/ω
2
q . On the other hand, the WKB

expression was derived by neglecting the terms (∂zµs)(∂zA) and ns(∂
2
zA)∂nsµs with

respect to mω2
qA in Eq. (13). Since A ∝ 1/

√
ns(z)k(z), it scales as a power-law with

1 − z2/Z2, and close to the edge, we have therefore (∂zµs)(∂zA) ∼ ns(∂
2
zA)∂ns

µs ∼
mω2

zA/(1−z/Z) hence the validity criterion (1−z/Z)� ω2
z/ω

2
q . Since the expansion

(21) is obtained for (1−z/Z)� 1, we deduce that Bessel and WKB expressions must
match in the region ω2

z/ω
2
q � (1 − z/Z) � 1. In particular it requires the condition

ω2
z � ω2

q which is satisfied by higher-frequency modes.
Comparing Eq. (20) and (21), we see that the WKB waves are reflected at the

edge of the cloud with a dephasing π/γ − π/2. Requiring the existence of a standing
wave when the excitation travels back and forth between z = ±Z finally yields the
resonance condition

2ωq

∫ Z

−Z

dz′

c1D(z′)
− 2π

γ
+ π = 2qπ, (22)

hence the high-frequency spectrum

ωq = π
q + 1/γ − 1/2∫ Z
−Z

dz′

c1D(z′)

. (23)

We recover the asymptotic expression (12) obtained for a purely polytropic gas, with
the same expression for the quantum defect and a generalized effective length

Leff = 2c
(0)
1D

∫ Z

−Z

dz′

c1D(z′)
. (24)

Finally, if we normalize ψq according to the scalar product (9), we get

ψq(z) =

√
2m∆ωc1D(z)

n(z)
cos

[∫ z

0

dz′
ωq

c1D(z′)
+ q

π

2

]
(25)

where ∆ω−1 = Leff/2πc
(0)
1D is the density of state.

In Fig. 2 we compare the WKB wave-functions and the exact Gegenbauer polyno-
mials in the case γ = 1/2 (mean-field BEC) and we observe a very good agreement,
even for low-order modes.

We see that for a one-dimensional trap system, the high-frequency spectrum has
a phonon-like structure, and the eigenfunction can be locally described by plane-
waves. Note that this result is valid as long as kR⊥ � 1, where R⊥ is the transverse
size of the cloud. If we now take into account the transverse degrees of freedom, the
dispersion relation becomes sub-linear [27,26,20].
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Fig. 2. Comparison between Gegenbauer polynomials (blue curves) and WKB approxima-
tion (red curves) for γ = 1/2.

3 Response to an external drive

3.1 General formalism

We now study the excitation of the hydrodynamic modes by an external potential
created by a moving laser beam oscillating at a frequency Ω along the axis of the
cloud. The response of the cloud is obtained by solving the hydrodynamic equations
(2,3) where we add to the trapping potential an excitation term u(z, t) = f(z−b(t))eεt
and b(t) = b0 cos(Ωt) that we turn on adiabatically over a time 1/ε → ∞ to get rid
of transient evolution. The chemical potential now obeys the following equation:

∂2
t δµ+ L[δµ] = −L[u]. (26)

To solve this equation, we first note that the external drive is periodic and that both
u and δµ can be Fourier expanded as

u(z, t) =
∑
p,q

up,qψq(z)e
i(pΩ+ε)t, (27)

δµ(z, t) =
∑
p,q

δµp,qψq(z)e
i(pΩ+ε)t. (28)

Inserting these expression in Eq. (26) we get

δµp,q =
ω2
qup,q

p2Ω2 − ω2
q − iεsg(pΩ)

. (29)

where sg is the sign function and we have used the fact that the ψq are the eigenvectors
of L for the eigenvalue ω2

q .
The mechanical power transferred from the stirring potential to the cloud is given

by the expression

P = −〈
∫
dz′ns(z

′)(∂zu(z′, t))v(z′, t)〉, (30)
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where 〈.〉 denotes the time average. Using the fact that v = ~∂zϕ/m we get after
integrating by part

P =
~
m
〈
∫
dz′∂z(ns(z

′)(∂zϕ(z′, t)))u(z′, t)〉 = −~〈(L[ϕ]|u)〉. (31)

From particle number conservation (Eq. 3), we see that ~L[ϕ] = ∂tδµ, hence the final
expression

P = 〈(∂tδµ|u)〉 =
∑
p,q

ipΩω2
q |up,q|2

ω2
q − p2Ω2 + iεsg(pΩ)

. (32)

where we have used Eq. (29) and the fact that the ψq form an ortho-normalized basis
for (|). Finally, since the power is a real quantity the sum simplifies into

P = 〈(∂tδµ|u)〉 = π
∑
p,q

|pΩ|3|up,q|2δ(p2Ω2 − ω2
q ). (33)

3.2 High-frequency drive

We now specialize the previous expression to the case where the excitation frequency
Ω is much larger than ωz (this condition is indeed satisfied in [6]). This assumption
leads to two simplifications: firstly, we can treat the sum over q as a continuous
integral, with respect to the sum over p. In other words, the acoustic spectrum can
be considered as continuous with respect to the discrete harmonics of the excitation.

Second, since c
(0)
1D ∝

√
µ0/m and µ0 = mω2

zZ
2/2, we see Landau’s critical velocity is

reached for a modulation amplitude b0 = c
(0)
1D/Ω � Z, which means that the stirring

potential remains localized close to the cloud center.
Before calculating explicitly the dissipated power, we first show that the Fourier

components up,q vanish when p and q have opposite parities. Indeed, we have

up,q =
1

T

∫ T

0

dt

∫ Z

−Z
dz
∂ns

∂µs
ψq(z)

∗u(z − b0 cos(Ωt))e−ipΩt. (34)

where T = 2π/Ω is the period of the excitation. Using the symmetries z → −z and
Ωt→ π−Ωt, we see that for an even pertubating potential up,q(z) = (−1)p+qup,q(z).

Since the perturbation remains localized close to the cloud center, we can use
WKB approximation and replace ψq by a sinusoid. For both parities of p, we then
obtain

|up,q|2 =
2n0∆ω

mc
(0)
1D

3 ũ

(
ωq

c
(0)
1D

)2

Jp

(
ωqb0

c
(0)
1D

)2

, (35)

with ũ(k) =
∫
dz cos(kz)u(z). Hence the dissipated power is

P = 2π
Ω2n0

mc
(0)
1D

3

∑
p≥0

p2ũ

(
pΩ

c
(0)
1D

)2

Jp

(
pΩb0

c
(0)
1D

)2

. (36)

From this expression, we deduce the absence of critical velocity for the onset of
dissipation. Indeed, at low Ω/c1D, we can expand the previous expression as

P ' πΩ
4n0b

2
0

mc
(0)
1D

5 ũ (0)
2
. (37)
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Fig. 3. Dissipated power for a gaussian perturbation of size w = 0.09Z with an amplitude
b0 = 0.4Z. Inset: The dissipated power is represented in log-scale to show its increase ∝ Ω4

(red dashed curve) at low frequency.

Note that we recover here Ω4b20 scaling characterizing the power radiated by an elec-
trodynamic dipole [25]. We recover a trace of Landau’s critical velocity by considering
the limiting case of a inifinitely narrow excitation potential. In this case, we can as-
sume that ũ is constant and the dissipated power then becomes

P = 2π
Ω2n0

mc
(0)
1D

3

∑
p≥0

p2Jp

(
pΩb0

c
(0)
1D

)2

ũ(0)2. (38)

The asymptotic behaviour of Bessel functions for large orders is given by [30]

Jν(νsech(α)) ∼ e−ν(α−tanh(α))√
2πν tanh(α)

(39)

Jν(νsec(β)) ∼

√
2

πν tan(β)
cos(ν tan(β)− νβ − π/4), (40)

with ν → ∞. For a maximum stirring velocity V = Ωb0 smaller than the sound

velocity c
(0)
1D, we take sech(α) = V/c

(0)
1D and we can see using Eq. (39) that the large

order terms of the series decay exponentially for p → ∞. By contrast, for V > c
(0)
1D,

we take sec(β) = V/c
(0)
1D and using Eq. (40) we see that the terms of the series diverge

as p for large p, hence an infinite dissipated power when Landau’s critical velocity is
reached.

For realistic systems, this divergence is cured by the finite extension of the exciting
potential, which leads to a finite dissipation for velocities larger than the sound veloc-
ity at the center of the trap, and even a decrease of the dissipation at large velocities.
In Fig. 3, we illustrate this regularization by assuming that u is a finite-size gaussian
perturbation. We observe that due to the destructive interferences between the waves

emitted by an extended object, the amount of energy dissipation occurring at v ' c(0)
1D

decreases when the size of the object increases. For similar stirring parameters as in
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[6], we observe an apparent threshold for dissipation around v ' 0.6c
(0)
1D close to the

measured value v ' 0.4c
(0)
1D.

4 Conclusion

In this article we have calculated the high-frequency spectrum of an elongated super-
fluid using WKB approximation. We showed that when subject to a periodic drive,
dissipation occurs at all velocity, in contradiction with Landau’s argument. In addi-
tion to vortex nucleation and transverse inhomogeneity of the cloud [19,20], this effect
contributes significantly to the reduction of the apparent critical velocity observed in
many experiments. Nevertheless, Landau-like features can be observed for an elon-
gated superfluid excited by a narrow potentials oscillating at frequencies higher than
the axial frequency, and lower than the transverse trapping frequency.

For low frequency excitations, the low-order harmonics couple to the discrete part
of the spectrum, creating a weakly-damped coherent-oscillation of the low-lying modes
of the superfluid, as for instance observed for in early BEC experiments [31] and dual
Bose-Fermi superfluid counterflows [32]. On top of these oscillations, the higher-order
harmonics will couple to the phonon-like sector, which dominates the sum appearing
in Eq. (36) when the velocity is larger than the sound velocity, and will give rise
to a Landau-like behaviour. Note that strictly speaking we can no longer treat the
hydrodynamic modes of the superfluid as a continuous spectrum for Ω ' ωz. However,
at finite temperature, damping broadens the eigenmodes leading to a continuous-like
spectrum when the decay rate becomes comparable to ∆ω. In the present work this
broadening is introduced phenomenologically but a more quantitative understanding
of thermal effects is therefore required to obtain a comprehensive understanding of
the damping mechanism.

The authors thank I. Danaila, P. Parnaudeau, and the ultracold Fermi group for stimulat-
ing discussions. They acknowledge support from Région Ile de France (DIM IFRAF/NanoK),
ANR (Grant SpiFBox) and European Union (ERC Grant ThermoDynaMix and CRITISUP2).
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8. Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Léonard, Jérôme Beugnon,
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11. Marion Delehaye, Sébastien Laurent, Igor Ferrier-Barbut, Shuwei Jin, Frédéric Chevy,
and Christophe Salomon. Critical velocity and dissipation of an ultracold bose-fermi
counterflow. Phys. Rev. Lett., 115:265303, Dec 2015.
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20. Pierre-Philippe Crépin, Xavier Leyronas, and Frédéric Chevy. Hydrodynamic spectrum
of a superfluid in an elongated trap. EPL (Europhysics Letters), 114(6):60005, 2016.

21. Andrew G. Sykes, Matthew J. Davis, and David C. Roberts. Drag force on an impurity
below the superfluid critical velocity in a quasi-one-dimensional bose-einstein conden-
sate. Phys. Rev. Lett., 103:085302, Aug 2009.

22. Vijay Pal Singh, Wolf Weimer, Kai Morgener, Jonas Siegl, Klaus Hueck, Niclas Luick,
Henning Moritz, and Ludwig Mathey. Probing superfluidity of bose-einstein condensates
via laser stirring. Phys. Rev. A, 93(2):023634, 2016.

23. Guillaume Lang, Frank Hekking, and Anna Minguzzi. Dynamic structure factor and
drag force in a one-dimensional strongly interacting bose gas at finite temperature.
Phys. Rev. A, 91:063619, Jun 2015.

24. AD Chepelianskii, Frédéric Chevy, and Elie Raphael. Capillary-gravity waves generated
by a slow moving object. Physical review letters, 100(7):074504, 2008.

25. John David Jackson. Classical electrodynamics. Wiley, 1999.
26. S Stringari. Dynamics of Bose-Einstein condensed gases in highly deformed traps. Phys.

Rev. A, 58(3):2385, 1998.
27. E Zaremba. Sound propagation in a cylindrical Bose-condensed gas. Physical Review

A, 57(1):518, 1998.
28. P. Capuzzi, P. Vignolo, F. Federici, and M. P. Tosi. Sound propagation in elongated

superfluid fermionic clouds. Phys. Rev. A, 73:021603, Feb 2006.
29. W. Zwerger, editor. The BCS-BEC Crossover and the Unitary Fermi Gas, volume 836

of Lecture Notes in Physics. Springer, Berlin, 2012.
30. Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with

formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.
31. R Onofrio, C Raman, JM Vogels, JR Abo-Shaeer, AP Chikkatur, and W Ketterle.

Observation of superfluid flow in a Bose-Einstein condensed gas. Physical Review Letters,
85(11):2228, 2000.

32. I Ferrier-Barbut, M. Delehaye, S. Laurent, A.T. Grier, M. Pierce, B.S Rem, F. Chevy,
and C. Salomon. A mixture of Bose and Fermi superfluids. Science, 345:1035–1038,
2014.


