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ABSTRACT

Augmented feedback has been shown to improve interaction in
virtual environments and to facilitate motor learning. Recent studies
proposed this type of feedback to guide users, to highlight specific
areas or to help them to perform a specific task. They can follow
a path, pass through specific waypoints or even mimic an avatar.
However these approaches do not show the gap between learners’
performance and the desired one. Our hypothesis is that by revealing
this gap to the users, they will reduce it step by step and tend to the
required performance. Thus, in this paper, we propose a new visual
metaphor to guide trainees’ gestures by showing trajectory errors
instead of showing the path to follow. In a first study we evaluated
trainees’ improvement by measuring the mentioned gap. First results
indicate that our approach allows an enhanced task performance.

Index Terms: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Virtual reality; K.6.1 [MAN-
AGEMENT OF COMPUTING AND INFORMATION SYSTEMS
]: Project and People Management—Training

1 INTRODUCTION

Within the last few years, the popularity of Virtual Reality (VR)
technologies has substantially increased. It has attracted a wider
public including gamers or new technology enthusiasts, and has been
popularized among industrials. This immersive technology allows
them to train their operators and workers in a safe, yet faithful to
reality, environment.

Motor learning is defined as processes leading to relatively per-
manent changes in the capability for movement, acquired through
practice or experience [18]. It involves physiological and cognitive
mechanisms, making some complex tasks or gesture hard to perform.
Also, VR has shown some promising solutions in various fields such
as sport [4], medical science [12] or technical gesture [9].

Augmented feedback, or extrinsic feedback, has been shown to
improve interaction in virtual environments and to facilitate motor
learning [6, 19]. It can show the gap between the learner’s perfor-
mance and the desired one. It can be used to highlight certain aspects
of the movement realised, or some part of the instructions that may
have been forgotten. Thus, in this context of motor learning, aug-
mented feedback fosters the perception of errors, allowing learners
to correct on their own.

Therefore, in this paper, we propose a new type of visual guid-
ance feedback for motor learning in virtual environments based on
error orientation. It is called EBAGG which stands for Error-Based
Assistance for Gesture Guidance. Our work is based on the theory of
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embodied cognition [23], which stipulates that people’s representa-
tions of their own environment depend on their prior perceptual and
motor experiences. Thus by experiencing errors, users are supposed
to perform better their gestures. As the visual modality appears to be
beneficial for motor learning, our paper is focused on the validation
of visual guidance feedback. The paper is divided in several sections
: section 2 is a review of related studies, section 3 is the presentation
of our metaphor. The evaluation of its ability to improve gesture
is described in section 4 and finally, in section 5 we conclude and
introduce future works.

2 RELATED WORKS

In this section, we review several existing approaches for guidance
in virtual environments, including techniques of trajectory visualiza-
tion, assistance guiding users in real-time and error orientation.

2.1 Trajectory visualization prior to the gesture

During the last decades, one way to show a gesture was to display
its trajectory.

In the context of maritime or fluvial navigation, the ideal trajectory
can be suggested by displaying multiple traces showing the limits of
the path to follow. Benton and Walker [2] used augmented reality
(AR) and Fricoteaux et al. [5] VR, to display this suggested road
in the same manner as in a head-up display. Also, the road can be
represented by several waypoints or a continuous line [7].

Moreau et al. [13] also used the technique of waypoints. In
a virtual environment for skill transfer and acquisition of obstetric
gestures, learners had to reproduce a technical gesture represented by
concentric ”guide spheres”, located at specific points of the reference
path. Trainees had to pass the forceps blades the closest to the center
of those spheres to perform as good as the reference. Covaci et al. [4]
displayed the ideal trajectory with ellipses representing the position
of the ball in a basketball free-throw simulator, in like manner as
Moreau’s guide spheres. However, these types of feedback are not
reactive and not adaptive to the users’ gestures.

2.2 Concurrent visual feedback for guidance

Due to its potential to enhance motor learning, concurrent feedback
is more and more displayed visually.

Tönnis and Klinker review in [22], 3D arrows as guidance feed-
back using AR in automotive environments. They differentiate three
types of arrow. The two first ones aim to reduce drivers’ inattention
without distracting them from the driving task. The first one is an
arrow displayed in front of the driver and pointing to the direction
of the nearest danger, whereas the second is a bird’s eye sketch of
a car with a 2D arrow, pointing into the direction of the nearest
danger aswell. Those two types of feedback are updated in real-time,
allowing users to correct their trajectory. Then, we have navigational
arrows displayed onto the road at intersections, that implicitly show
where to go. However, the occlusion with other vehicules is an issue,
specially if the driver is stuck in a dense traffic. The assistances
become less visible, even hard to identify and to understand.



Figure 1: The EBAGG metaphor and the experimental setup

A solution is to display an avatar performing gestures to reproduce.
Rovelo et al. [15] propose a mid-air gesture guidance system called
Gestu-Wan. The authors divided gestures in different parts, gathered
to form a tree. Gestu-Wan shows the previous posture the user
performed correctly and a set of different possible gestures from the
tree, depending on this previous posture. Each of these postures is
sketched with a black skeleton, whereas the user’s current posture
overlays them with a blue skeleton for comparison. This technique
can be interesting to understand easily the gesture to do next during
simple mid-air gesture learning, but relatively difficult to use with
complex gestures. YouMove [1] is a system for motor learning using
a skeleton displayed on an augmented ”mirror”. Learners perform
in front of a screen where they can see themselves overlayed by
a skeleton reproducing the requested gesture. However, like the
solutions presented in the last section, these avatars do not show
gesture error.

For hand movement guidance, Sodhi et al. [20] project AR guid-
ance hints on users’ body. A red dot shows the relative position
of the user’s hand while a blue segment show the path to follow
around this red dot. As it is a 3D visual hint, the segment projects
a shadow on the user’s body, helping him to identify the direction
to take. This last solution is close to what we propose, however it
does not provide any feedback on the errors committed, letting users
deduce whether their gesture is correct.

2.3 Error orientation feedback
For orientation feedback, you can either choose to display the ideal
path to follow or indicate trajectory errors. In this paper, we decided
to focus on error feedback.

It has been shown that error augmentation can enhance learning.
Wei et al. developed in [24] a system where users had to reproduce
specific movement with a robotic arm to reach a target. They per-
formed these movements with a visual distortion and some of them
had error augmentation. This experiment showed that increasing the
perceived error can raise the rate of learning.

Marchal-Crespo et al. conducted an experiment in [11] where
participants had to drive in a driving simulator, with forces applied
by steering wheel to their hands when errors were made. The aim of
these forces were to correct the steering wheel motion and to put the
users back on the right way. Also, the assistance is only provided
when needed. If users perform well and have only a few mistakes,
the guidance level is decreased and forces would be applied only if
large errors are made.

Vibrotactile feedback is also used to highlight error. Lieberman
et al. proposed in [10] a wearable suit including several vibrotactile
actuators to guide users’ arm motion. These actuators would vibrate

to indicate motion errors. For instance, if users have to bend their
wrist in the same way the teacher did, one actuator placed near
by would vibrate if they bent too far. Also, as the error increase,
vibrations would become stronger. This type of feedback informs
users the direction to take to correct their gesture. As those examples
which are error based, in our study, we propose another one but
employing a visual modality.

3 ERROR-BASED ASSISTANCE FOR GESTURE GUIDANCE

Figure 2: The EBAGG metaphor

The metaphor we propose is a visual guidance feedback for ges-
ture learning. The goal here is to set parameters depending on the
error value.

It can be designed with various shapes, with particles vibrating on
its surface. These particles represent users’ trajectory errors. In fact,
their gestures are compared to a reference gesture and the farthest
users are from this reference, the more particles appear on the sphere.
The goal of this agitation is to highlight to attract users’ attention on
their errors.

3.1 Concept
Our visual feedback can take different shapes. It can be primitives
such as a sphere, a cylinder, a cube or even a patch, but it can also
have no particular shape visible. Indeed, no matter which one is
chosen, there will be particles on its surface. So, for instance, it can
be designed as an invisible or visible sphere with particles moving



around its surface. Each shape can be specific to a certain error crite-
rion: the sphere may be better to represent a three-dimensional space,
whereas a cuboid would fit better for representing the orientation of
a tool.

The EBAGG metaphor determines trajectory errors committed
by users, it means that it shows the direction on which they have
deviated. The particles fulfill this role by appearing on the surface
while vibrating. In fact, when there is no error, they are invisible to
users. They are only visible when an error is made or is no longer
acceptable. In addition, the number of visible particles depends on
the importance of the error. The bigger the measured value is, the
higher the number of visible particles is. To determine the error
value, we use a dynamic time warping algorithm, presented in the
next section. The idea here is to indicate errors of direction to users
instead of showing the direction to take.

The concept of this metaphor is inspired by the work of Varela et
al. on enaction, defined as the adaptation of people’s behaviour in
reaction to the evolution of the environment in which they are located
[23]. Learners modify their gesture according to the metaphor’s
behaviour, which evolves in relation to their trajectory.

Also, a color variation can be applied to the metaphor according
to the error grade. As for the particles, it can change to a defined
color when errors are made, e.g. the sphere turns from blue to orange
when the error value exceeds a certain threshold, and to red when
the error value is too great.

3.2 Error calculation

To determine the performance of users, we compare their gesture
with a reference gesture recorded beforehand. We calculate a dis-
tance between two gestures, and according to the gap we obtain,
we indicate the error on the metaphor with the particles. To get the
distance measure, we use a dynamic time warping algorithm [3] [8]
which provides interpretable results as a gap between two time series.
Unlike learning methods (e.g. Hidden Markov Models), a DTW
algorithm directly deals with the labeled examples (and does not
model them) so the use of a DTW algorithm allows us to not have
a gap between the data modeling and the true data distribution. In
addition, gestures are generally multidimensional sequences, as they
are represented by several time series (e.g. signals provided by dif-
ferent motion capture) so we use a natural extension of the standard
DTW algorithm to multidimensional sequences, called a 1D-DTW
on various dimensions in [21]. Besides, we need our feedback to
be a real-time guidance. So, inspired by [14] we define an early
recognition scheme for this algorithm, i.e. to deal with incomplete
gestures. Finally, we parallelize calculations on different process to
reduce even more the global calculation. This version of the DTW
algorithm allows us to use its results early and to be close to realtime
with an offset of approximately 100ms.

The goal of a DTW algorithm is to find an optimal alignment
between two time series, and a distance is calculated between these
two series based on the optimal alignment. If x = (x1, ...,xN) and
q = (q1, ...,qM) are two time series, the DTW algorithm computes
a cumulative cost C(n,m). This cost is defined as:

C(n,1) =
n

∑
i=1

d(xi,q1) (1)

C(1,m) =
m

∑
i=1

d(x1,qi) (2)

For 1 < n 6 N and 1 < m 6 M the cost is computed using the
following equation:

C(n,m) = min{C(n−1,m),C(n−1,m−1),C(n,m−1)}
+d(xn,qm)

(3)

Here, d(xn,qm) is the distance between two points xn and qm (the
Euclidean distance). Initial and final conditions are defined in such
manner that the process begins and ends with the alignment of the
first and last elements of the two series.

3.3 Implementation of EBAGG
Concerning the first implementation of our visual metaphor, we
made several choices to make it relevant for gesture guidance with
position as the only error criterion. First of all, the shape of EBAGG
should represent a three dimensional space. A sphere or cylinder
would both fit to show directional errors, however we don’t need to
pay attention to orientation since position is our only error criterion.
A sphere can represent the three directions equally because of its
central symmetry, so every point of its surface is at equal distance of
the center. Thus, we assume that a sphere, paired with the particles,
is the simplest and best shape to differentiate every direction of
motion so that spatial information can be easily understood by users.

Figure 3: EBAGG metaphor’s behaviour according to the distance
between a user’s performance and the reference performance. The
reference trajectory is represented in black, the user’s trajectory in
blue and the distance between the two sequences is in red.

Ideally, the sphere would be positioned near the body part required
to be in motion for the gesture and would cleverly follow its moves.
However, since we don’t know yet if it can disturb users from doing
the task, we have decided to place it in the users’ field of view at a
fixed position, apart for the body part motion. The goal of this first
implementation is to determine if this technique improves gesture
training.

Figure 3 illustrates this implementation. (a) The user is too
far from the reference trajectory so the distance between the two
performances is important. Thus, the EBAGG metaphor displays
many particles on the side of the error. (b) The user’s trajectory is
now close to the reference one, hence there is less particles on the
sphere. (c) Finally, the user’s trajectory is similar to the reference,
so the feedback does not need to display any particle.

4 EVALUATION OF ERROR REDUCTION

4.1 Participants
Twenty-two healthy participants, including five women and seven-
teen men, aged from 21 to 42 years old (mean: 25.3; std dev: 4.6)
took part in this experiment. Three of them were left-handed. They
were people working in the laboratory or students at the university.
None of them had ever used the EBAGG metaphor, nor any other



error-based feedback modules before this experiment. Participants
had normal or corrected-to-normal vision.

4.2 Setup and Stimuli
The experiment took place in a room equipped with motion capture
cameras. There were five OptiTrack Prime 13W cameras, with an
adjustable frequency between 30 fps (frames per second) and 240
fps. For this experiment, they were sampling at 120Hz, for a latency
of 8ms. These cameras have ten LEDs emitting infrared beams
reflecting on mocap makers placed on the tracked tool. Thus, they
are tracked by the cameras that send their positions to the virtual
environment through Motive, the OptiTrack software. As we can see
on figure 1, the stereoscopic display of a factory containing a mold
was done on a wall by using the ultra short throw projector Optoma
EH319USTi, paired with active 3D glasses Volfoni EDGE RF. Sub-
jects were standing still equipped with the 3D glasses approximately
150 cm. in front of the display. The stimuli used to modulate partici-
pants gesture in this experiment was the sphere aforementioned as
the EBAGG metaphor.

4.3 Experimental design and Task
Participants had to perform two technical gestures with a
compressed-air blower in front of a virtual mold displayed on the
wall. Users had to pass through a specific trajectory and not to be
too close or too far from the mold to have an efficient blowing.

Gesture 1 The first gesture was a straight line in three dimen-
sions. The difficulty here was to go from one point to another by
moving on a single dimension in the three dimensional space.

Gesture 2 The second gesture was a bit more complex. It was
square-shaped with an arc instead of a straight line for the right side.
This time, participants had to move on two different directions and
had to stay in the same plane all along the gesture. In both cases, the
main difficulty was to position the air blower properly at the right
depth.

The experiment began with a phase of familiarization of the vir-
tual environment, mostly an adaptation to the stereoscopy, and of the
EBAGG metaphor. The concept was detailed to the participants and
then, they had the possibility to test the metaphor’s reaction to their
movements. Then the two exercises could begin once the gesture to
reproduce was shown twice and explained by the supervisor.

The experiment was divided in three phases for both gestures:
firstly a pre-formation phase of three iterations with no feedback,
then a feedback formation phase of seven iterations where the
EBAGG metaphor indicates trajectory errors to trainees, and finally
a post-formation phase of three iterations with no feedback. Both
exercises requested participants to reproduce the gesture thirteen
times.

Here are our principal and secondary hypothesis:

• Principal Hypothesis: There will be a significant improve-
ment of performances between the pre-formation phase and
the post-formation phase;

• Secondary Hypothesis: There will be a significant difference
between the first iterations and the last iterations of the feed-
back phase according to the complexity of the task.

4.4 Results and discussion
To evaluate participants’ performances, their gestures were com-
pared by the DTW algorithm to a reference gesture (one for each
gesture to reproduce) recorded prior to the experiment. The DTW
returned two pieces of information: on one hand the matching of the
last position of the tool with the reference one and the distance com-
puted between the two, and on the other hand the cumulative cost
computed on the partial gesture. As mentioned before, the matching
is used as an input for our metaphor to represent trajectory errors

according to the vector between the two positions and the distance
value. The cumulative cost acts like a score used to evaluate the
global performance of users for each iteration. The more this cost is
close to zero, the more users are close to the reference performance.

As the raw data obtained revealed to be not normally distributed
(tested by the Kolmogorov-Smirnov test for normality), we con-
ducted a Wilcoxon Test for our evaluation. This is not surpris-
ing given the fact that DTW provides a cumulative cost. The
Wilcoxon test is a nonparametric test designed to evaluate the dif-
ference between two conditions as before-after treatments for the
data which is not normally distributed. Thus, we conducted two
tailed Wilcoxon test between the average values of pre-formation
phase, post-formation phase and the first and last three iterations of
feedback formation phase.

To complete this quantitative evaluation, we have submitted
a questionnaire to the participants, which included 12 questions
adapted from the Witmer presence questionnaire [25]. The rating
score ranged from 0 (worst rating) to 10 (best rating). It provided us
a subjective evaluation of this experiment and might explain certain
results. The questions were about users’ adaptation to virtual reality
and the environment itself, the use of the metaphor and about the
training.

Figure 4: Average values of cumulative cost per user over the training
iterations for the first gesture across 3 phases (”form.” stands for
formation)

Results of First Gesture Figure 4 shows the box plots we
obtain for the pre-formation phase, the feedback formation phase
and the post-formation phase for the first gesture. When we compare
the pre and post phase’s iterations, the statistical analysis reveals
that the average value improves from pre-formation (0.046) to post-
formation (0.026) (p<0.05). As this is an overall improvement of
users’ performances before and after the feedback, we deduce that
Principal Hypothesis is confirmed for the first gesture.

Regarding our secondary hypothesis, the Wilcoxon analysis re-
vealed that there is a significant difference between the first three
iterations (0.032) and the last three iterations (0.023) of the feedback
formation phase (p<0.005). This means that feedback metaphor
was rapidly sufficient to correct participants gesture, shown by better
performance for the last iterations. As proposed by the second hy-
pothesis, this result can be explained by the fact that the first gesture
is not a complex one. Thus, only few iterations were enough to
increase the performance.

Results of Second Gesture Figure 5 shows the box plots we
obtain for the pre-formation, the feedback formation and the post-
formation phase for the the second gesture. Regarding our Principal
Hypothesis for the second gesture, the Wilcoxon analysis revealed



a significant effect between pre-formation phase and post-formation
phase (p<0.05). According to these results, subjects increased their
performance in the post-formation phase (0.101) compared to the
pre-formation phase (0.114).

Figure 5: Average values of cumulative cost per user over the training
iterations for the second gesture across 3 phases (”form.” stands for
formation)

Again, we conducted another Wilcoxon analysis between the first
iterations and the last iterations of the feedback formation phase.
Although there is an improvement for the descriptive statistics be-
tween the first iterations (0.119) and the second iterations (0.116)
of the feedback phase, the difference is not significant (p>0.05).
According to our secondary hypothesis, these results show that more
complex gestures necessitate more iterations. This is why, post-
formation phase reveals only an increase of performance (0.101)
after the integration of the whole formation iterations by the partic-
ipants. Compared to the first gesture, our results confirm the idea
that the number of formation iterations are strongly dependent on
the complexity of the gesture.

Qualitative Results Overall, participants felt that their interac-
tion with the environment were natural and that they were in control
of their movements (with an average rating of 7.2 out of 10, std.
dev: 1.8). However, they needed some time to fully understand the
metaphor’s behaviour (with an average rating of 5.5 out of 10, std.
dev: 2.2). Lastly, they managed to concentrate on assigned task
rather than on the visual feedback (6.3 out of 10, std. dev: 2.2).

5 CONCLUSION

In this paper, we presented a new visual feedback for gesture guid-
ance based on error display. To do so, we compared user’s gesture
in real-time to a reference and measured the gap between the two
performances. Depending on the value of this gap, we used a parti-
cle system located on a sphere to represent the errors. If this value
exceeded a certain threshold, particles became visible and vibrated
to attract users’ attention. The greater the value was, the bigger the
number of visible particles was.

An experiment was conducted to evaluate whether our feedback
is able to improve users’ performance when performing technical
gestures. Results showed that in the case of the two gestures to
reproduce, participants performed better after a few iterations with
our metaphor. Moreover, this study revealed that the use of this
feedback presented a cognitive load which could modify the num-
ber of iterations necessary for the training, depending on gesture
complexity.

In our future works, we will conduct an experiment to compare
our error-based feedback with other types, such as trajectory visu-
alization, to determine whether EBAGG has better performances.

Moreover, the guidance hypothesis [16, 17] stipulates that provid-
ing too much augmented feedback during acquisition may lead to
a dependency of the feedback. We will hence study the effect of
our feedback on this dependency in comparison to the other studied
types of feedback.
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