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Abstract

The Quorum Percolation model (QP) has been designed in the context of neuro-

biology to describe the initiation of activity bursts occurring in neuronal cultures

from the point of view of statistical physics rather than from a dynamical syn-

chronization approach. This paper aims at investigating an extension of the

original QP model by taking into account the presence of inhibitory neurons in

the cultures (IQP model). The first part of this paper is focused on an equiva-

lence between the presence of inhibitory neurons and a reduction of the network

connectivity. By relying on a simple topological argument, we show that the

mean activation behavior of networks containing a fraction η of inhibitory neu-

rons can be mapped onto purely excitatory networks with an appropriately

modified wiring, provided that η remains in the range usually observed in neu-

ronal cultures, namely η / 20%. As a striking result, we show that such a

mapping enables to predict the evolution of the critical point of the IQP model

with the fraction of inhibitory neurons. In a second part, we bridge the gap be-

tween the description of bursts in the framework of percolation and the temporal

description of neural networks activity by showing how dynamical simulations

of bursts with an adaptive exponential integrate-and-fire model lead to a mean

description of bursts activation which is captured by Quorum Percolation.
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1. Introduction

Neuronal rhythms are widespread oscillating phenomena, both in vivo

and in vitro, which were observed over many temporal scales [1]. Hitherto, the

fundamental mechanisms underlying their occurrence is far from being fully un-

derstood and is the subject of a significant research activity; it involves several5

scientific fields, from fundamental biology, information theory [2], physics of dy-

namical systems and critical phenomena [3] to graph topology [4] and massive

parallel computation [5, 6]. The human brain is a very complex network, with

about 1011 neurons [7], each of them connected to 1000–15000 others. More-

over, it is organized in localized computational units connected according to a10

well defined hierarchical structure. Thus, although investigation and imaging

techniques enabling to record the cerebral activity in vivo are making significant

progress [8, 9], the mere size and complexity of the brain makes its whole de-

scription and understanding a far-sighted goal. Complementary to observations

and experiments on real brains, in vitro experiments on dissociated neuronal15

cultures are an invaluable tool in investigating the fundamental questions on

neuronal dynamics set above. Such cultures are usually obtained by seeding

dissociated neurons extracted from rodent embryos, or alternatively neuronal

stem cells, on a suitable substrate. Though similar monitoring can be performed

on brain slices, we will focus on the activity of dissociated cultures, where axons20

and dendrites grow in such a way that neurons self-organize after a few days

into a two-dimensional network exhibiting a high level of randomness [10]. As

a matter of fact the connectivity between neurons is described by probability

distributions. These neuronal cultures hold between 103 and 105 neurons with

typical densities between 500 and 5 000 neurons per mm2, each of them con-25

nected via a number of synapses falling between 20 and 200 [11]. These changes

in connectivity and scale compared to a brain could, at first glance, appear as
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a loss from a neurobiologic point of view; yet, they are a key feature for the

complementary approach of in vitro experimentation to study neuronal activity

and growth. Quantitative measurements of the neural activity inaccessible in30

vivo can be carried out with the help of micro-electrode arrays (MEA) [12],

optogenetics, and calcium imaging [13].

Synchronized periodic bursts of spiking activity have been regularly observed

in dissociated neuronal cultures [14, 15] and appear as a fundamental emergent

spatio-temporal property of neuronal populations. Bursts of activity can also be35

artificially triggered by externally activating a fraction of neurons. The Quorum

Percolation model (QP) has been elaborated to describe the initiation of bursts

observed in such cultures as a collective phenomenon, from the point of view of

statistical physics rather than dynamical systems [16]. Under its original form

the QP model does not take into account the presence of inhibitory neurons.40

However, a general description of collective behaviors in neural networks re-

quires the integration of inhibitory neurons in the QP model, since it has been

pointed out that they can play a role in the structure of bursts [17, 18]. We

devoted recently several studies to extend the original QP model by including

additional biological relevant properties and modulation of the neuronal activ-45

ity: the decay of the neuronal voltage accounting for ions leakage through the

neuron membrane [19], variability in the quorum accounting for a modulation

of the neuronal excitability threshold [20], finite size scaling and the derivation

of a normal form around the critical point together with a preliminary study

of the incorporation of inhibitory neurons [21]. In this last paper, we suggested50

that under specific conditions, the mean characteristics of the burst activation

of networks with inhibitory neurons are the same as the ones of purely excita-

tory networks with different effective connectivity. The first goal of this paper

is to provide a deeper investigation of the mapping between the presence of in-

hibitory neurons and an equivalent purely excitatory reduced connectivity. We55

point out what should be learned from the mean field approach, we character-

ize the connectivity features of the purely excitatory network accounting for a

fraction of inhibitory neurons, we quantify its equivalence domain and derive a
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relation between the critical point and the fraction of inhibitory neurons. As

inhibitory neurons are commonly assumed to play a modulating role of neu-60

ronal activity and spatio-temporal coordination, we investigate the validity of

our previous conclusions in a dynamical setting. Thus, the second goal of this

paper is to show that the key features of Quorum Percolation captured by the

simple, discrete model with inhibition are preserved in a fully dynamical model

based on biologically more refined description of neurons and synapses, namely65

the adaptive Exponential Integrate-and-Fire model [22]. However, it should be

noticed that the dynamics of the activity cannot be captured by IQP and QP

models, since they deal with equilibrium properties of the short time onset of

bursts.

2. The original Quorum Percolation model70

The original Quorum Percolation (QP) model is a discrete-time cellu-

lar automaton describing the propagation of information on a graph through a

minimal set of rules for activation cascades in neuronal populations. Since neu-

ronal communication through synapses is directional, the neuronal population

is represented by a directed graph connecting neurons located on the vertices.75

Specifically introduced to describe the onset of activity bursts observed in small,

in vitro cultures [16], the model is based on a non spatial graph considering only

the node connectivities and constructed by randomly choosing, for each neuron

i, k incoming links among the N−1 other neurons according to an in-degree

probability distribution pk. It is worth noticing that such a random description80

of the incoming links probability relevant in the case of cultures of dissociated

neurons grown in an in vitro environment does not work anymore in the case

of neuronal cultures that have grown in vivo like brain slices or animal visual

cortex [23].

In the QP model, each neuron i is represented by a discrete variable Vi(t)85

which accounts for the membrane potential, and by a neuronal state – at rest

or active – with activation governed by a threshold rule. A neuron is activated
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between t−∆t and t if its potential becomes greater or equal to some activation

threshold m; once activated, it sends signals to its outgoing neighbors. As the

models represents only one activation wave, an activated neuron remains so and90

sends no further signals in the following steps. After a time step ∆t, each neuron

i integrates the signals it received by incrementing its potential Vi(t − ∆t) by

the sum of the inputs from its incoming neighbors activated during the elapsed

time interval. All the signals are taken identical and associated to an integer

increment equal to +1, which sets the scale for the threshold value m. The95

network is stimulated at time t = 0 by an initial excitation of the network,

performed by activating a given fraction f of randomly chosen neurons.

The activity of the network at time t is given by the fraction of active neurons

φ(t), increasing with t, and converging towards a stationary value Φ(f,m) after

a few time steps, dependent on the initial active fraction f and the threshold

m. As first reported by Cohen et al. [16] the surface Φ(f,m) (noted simply

Φ in the following) defines a phase diagram as shown on Fig. 1, where two

regimes can be distinguished depending on m. Below some critical value mc, Φ

presents a discontinuity at some value f∗(m) when the control parameter f is

varied, whereas it remains continuous above mc. The sudden jump occurring

at f∗(m) is associated with a percolation phenomenon on the network, where

a very small variation of f results in the appearance of a giant cluster, whose

normalized size is given by the difference between the lower and upper values

of Φ at the discontinuity. Despite its simplicity the phase diagram of QP model

captures the key behavior observed in experiments in the group of E. Moses

[11, 16] on induction of activity in neuronal cultures which exhibits the same

emergence of a giant cluster depending on neuronal excitability. Following the

usual concepts of percolation on lattices [24] for the second order transition

between the presence and absence of a percolation phenomenon, the amplitude

of the jump 〈g〉 is considered as the standard order parameter, whose behavior

in the vicinity of mc follows a power law:

〈g〉 ∼
(
mc −m
mc

)β
. (1)
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Figure 1: Phase diagram of the Quorum Percolation model, for a Gaussian in-degree distribu-

tion with a mean k̄ = 50 and a standard deviation σk = 10. When the quorum m is smaller

than mc, a jump in the fraction of active neurons Φ occurs when increasing the fraction f of

initially activated neurons from zero. The height 〈g〉 of the jump at the discontinuity is the

normalized size of the giant percolation cluster.

Since m is discrete, it is difficult to extract a precise critical value of β from

the behavior of 〈g〉, mainly because the uncertainty over the value of mc is at

least of 1 unit. We overcame such an hurdle by carrying out an extension of100

the quorum percolation mean-field theory to non integer values of m and we

showed [25] that a Gaussian distribution pk of incoming links leads to mc =

k

(
1− a

(
σ
k

)
+ b

(
σ
k

)2
)

where k is the mean value of the number of incoming

links and σ the width of pk; for values of k lying in the range of experiments on

mature cultures, we found that a ∈ [1.27, 1.30] and b ∈ [1.56, 1.59]. Moreover we105

showed that the value of β for such incoming links distributions is compatible
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with β = 1/2.

Defined as above the model is only related to the topological relationships

between nodes and does not take into account spatial properties from local-

ization of neurons is space. Hence, no metric is involved and the percolation110

cannot be described with respect to a given dimensionality as in the usual case

of lattices [24]. As showed by Tlusty and Eckmann [26] for small dense neu-

ronal cultures as those used for the global activation experiments, the spatial

embedded neuronal network is in practice a fully randomly connected one. For

large cultures, as for instance those investigated by Orlandi et al. [27] activity115

propagation fronts are observed and a spatial metric has to be considered for

the study of the neuronal culture dynamics. Furthermore, it has recently been

shown on the basis of another statistical physics model of neuronal cultures,

the random field Ising model, that metric correlations induce strong deviations

from the mean field [28].120

3. A quorum percolation model with inhibitory neurons: IQP

3.1. Main features of the IQP model and comparison with experiments

Let us now assume that a fraction η of neurons, drawn at random, is

inhibitory. As in the original model, the network is wired in such a way that, for

each neuron, the number of incoming links follows a probability distribution pk;125

however, we now set every outgoing link of an inhibitory neuron to “inhibitory”.

We account for these neurons in the following way: when an inhibitory neuron

fires, its sends a signal equal to −1 instead of +1 through its outgoing links, thus

decrementing the potential of each target. Hence, a neuron becomes active if

the number of its active excitatory incoming neighbors e minus the number i of130

its active inhibitory ones is greater than the quorum: (e− i) ≥ m. A sketch ex-

plaining the progress of the Quorum Percolation with inhibitory neurons (IQP)

is provided in Fig. 2. It should be noticed that, unlike the QP model, the

potential of a neuron is no more a monotonous increasing function of the time

t associated with the discrete time kinetics, but the fraction of active neurons135
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(inhibitory and excitatory) necessarily increases with t because of the threshold

rule. Running Monte-Carlo simulations to compute the stationary activity Φ

involves (i) constructing a random network G of N neurons according to the

incoming links probability distribution pk, (ii) declaring a fraction η of neurons

inhibitory according to an uniform random distribution, (iii) activating a frac-140

tion f of the neurons regardless of their excitatory or inhibitory nature and (iv)

processing the quorum activation rule until the number of active neurons stops

increasing.

Figure 2: Arrows represent the directed axonal links between neurons. The neurons associated

with the light grey (yellow) color are active (i.e. they already fired) while the white ones are at

rest and the red ones are just firing at the indicated time. One inhibitory neuron is represented

as a dented circle. Upper figure: at time t, the inhibitory neuron fires (because of external

inputs which are not represented here); thus the potential of its outgoing neighbor, in the

center, shifts from 2 to 1. Let us suppose that, at time t + ∆t the upper right neuron fires

(also because of external inputs not represented here); the potential of its outgoing neighbor

is incremented by one, leading to the state represented at t+ 2∆t. The bottom figures show

that the order in which the neurons fire matters in the presence of inhibitory neurons. If we

assume that the right upper corner excitatory neuron fires before the left down inhibitory one

(because of another history of external inputs than on the first row) the central neuron now

activates, while it will never fire before the end of the process in the example above.

We carried out explicit Monte Carlo simulations of the IQP model for Gaus-

sian incoming links distributions involving 100 000 neurons, four values of145

k ∈ {25, 50, 75, 100}, ten values of η ranging from 0.05 to 0.2, and three dif-

ferent values of σ in each case; these ranges were chosen to be consistent with
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the experimental estimations [11, 16]; in each case, the value of Φ as a function

of f was averaged over 29 different network configurations. A selection of some

of these explicit IQP simulations are shown as solid red lines in Fig. 3 to Fig.150

4 for networks with different mean connectivity as a function of η.

Our main result is that, for η under 25 percent (i.e. less than a quarter of the

whole population is inhibitory), the presence of the inhibitory neurons does not

change the qualitative behavior of the quorum percolation phase diagram: for

a given value of η, jumps in the activity will occur, provided that m is smaller155

than a critical value mc, which depends on η.

Furthermore, Fig. 5 shows the influence of η for a fixed value of the threshold m

and fixed values of the connectivity parameters {k, σ}. Indeed, when the ratio

η of inhibitory neurons in increased, the position f∗ of the jump in Φ is shifted

towards greater values of the initial activity, while its size g is decreased (until160

it possibly vanishes). Hence, when inhibition increases for a given firing thresh-

old and a given connectivity, a more important fraction of initially activated

neurons is necessary to trigger the percolation.

Communication between neurons involves chemical signaling at the synap-

tic level: neurotransmitters present in the pre-synaptic domain are released by165

vesicle exocytosis and bind to receptors located in the post-synaptic domain.

This release is triggered by electrical signaling conveyed by action potentials,

and is the biological equivalent of the update of a node’s potential by its active

neighbours. In neuronal networks, both excitatory and inhibitory synapses are

present, the latter being associated to GABAA (Gamma-aminobutyric acid) re-170

ceptors. These receptors can be hindered, and even blocked by adding specific

drugs. Using bicuculline in the culture medium to block GABAA receptors

Soriano et al. [14] compared the activations of fully excitatory networks and

of untreated mixed excitatory and inhibitory cultures and observed that the

presence of inhibitory neurons decreases the threshold for the percolation phe-175

nomenon compared to the purely excitatory case. Such an experimental result

is very well described in the framework of the IQP model and predicted by our

simulations.
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Figure 3: Comparison between explicit IQP Monte Carlo simulations (solid red lines), solutions

of the mean-field equation around the jumps (open black symbols), and QP simulations of the

equivalent purely excitatory network obtained trough keq = k(1− 2η) (blue dotted lines).

k = 25, σ = 2.5 and η = 0.06 (left) k = 50, σ = 5 and η = 0.10 (right).

Figure 4: Comparison between explicit IQP Monte Carlo simulations (solid red lines), solutions

of the mean-field equation around the jumps (open black symbols), and QP simulations of the

equivalent purely excitatory network obtained trough keq = k(1− 2η) (blue dotted lines).

k = 75, σ = 7.5 and η = 0.14 (left) k = 100, σ = 10 and η = 0.18 (right).

3.2. Mean-field theory

An alternative approach for calculating the stationary fraction of active neu-

rons Φ can be deduced from a mean-field leading to a self-consistency equation

[21]. Indeed Φ is also the probability for a neuron to be active at equilibrium

and it corresponds to the probability to be either active through initial stim-

ulation or to be activated during the IQP discrete signal propagation process.

This activation probability of a neuron in the cascade depends itself upon Φ and

can be approximated by binomial processes given m and pk. In order to obtain
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f

Φ

Figure 5: Evolution of the jump in the activity when the ratio η of inhibitory neurons increases

from 0.06 (leftmost jump) to 0.34 (rightmost jump) in steps of 0.04. These values are obtained

via the mean-field equation, for a fixed threshold m = 10 and fixed parameters {k = 50, σ =

0.05} for the network connectivity.

this self-consistency equation, we first partition the set of neurons according to

their number k of incoming links and consider a neuron of the network with ke

excitatory and ki inhibitory incoming links (k is fixed). The probabilities that

Y = e excitatory neurons among ke and Z = i inhibitory ones among ki are

active read respectively Pex(Y = e) =
(
ke
e

)
Φe(1 − Φ)ke−e and Pin(Z = i) =(

ki
i

)
Φi(1−Φ)ki−i. The probability for the target neuron to exceed the quorum

( to have e− i ≥ m ) can be calculated by noticing that an activation occurs if

Z = i only if Y ≥ m + i. Hence the activation probability of this neuron can

be written as the double sum: P(e− i ≥ m) =
ki∑
i=0

Pin(Z = i)
ke∑

e=m+i

Pex(Y = e).

Now, the probability that a neuron with k incoming links has ki inhibitory

ones reads P (ki|k) =
(
k
ki

)
ηki(1 − η)k−ki , assuming that η is also the fraction

of inhibitory incoming links, as we will discuss further. In the end, the self
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consistency equation can be written:

Φ = f + (1− f)

∞∑
k=m

pk

k−m∑
ki=0

(
k

ki

)
ηki(1− η)k−ki

ki∑
i=0

(
ki
i

)
Φi(1− Φ)ki−i

k−ki∑
e=m+i

(
k − ki
e

)
Φe(1− Φ)k−ki−e. (2)

We compared the results of our Monte-Carlo simulations for 100 000 neurons180

with the values of Φ provided by the resolution of equation (2) focused on the

vicinity of the jumps, in some cases showed in Fig. 3 and Fig. 4. This extension

of the range of our investigation with respect to [21] where only 10 000 neurons

populations were simulated shows in a robust way a very good agreement be-

tween the two approaches; we checked that this agreement increases with the185

size of the network because of finite size effects, since the mean-field approach

is expected to hold in the infinite limit. The agreement is remarkable as the

mean field approach is not designed to take into account temporal correlations

while strictly speaking, the actual IQP process is sensitive to them. Indeed, Fig.

2 shows that the order in which a neuron receives signals can come into play190

whereas it does not matter in the absence of inhibitory neurons. Nevertheless, a

reason why the mean field actually works is that the order of activation hardly

comes into play in the information propagation process but when the state of

the neurons are close to firing, that is just below the quorum.

3.3. Mapping of the IQP model on purely excitatory networks195

A close look at the IQP rules suggests that a neuron with k incoming links,

ki of them being inhibitory, could in average behave as a neuron with k − 2ki

purely excitatory incoming links: each inhibitory neuron can be viewed as can-

celing one of the excitatory. This can be for example observed for the central

neuron in the sketch of the upper row of Fig. 2: starting from a value of its200

potential equal to 2, it ends with the same value since the inhibitory and exci-

tatory inputs compensate each other: it is as if the links with the left down and

the upper right neurons had been erased. The robustness of the agreement of
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the IQP mean-field theory with Monte-Carlo simulations suggests that such an

observation may be averaged over the whole network. We therefore expect that205

a mixed excitatory and inhibitory network with a mean number ki of inhibitory

incoming links and k − ki excitatory ones should lead to the same stationary

state as a purely excitatory network with k−2ki mean incoming links. In order

to check this hypothesis, we ran additional Monte-Carlo simulations: Assum-

ing that ki = ηk, we simulated for each set {k, σ, η,m} already investigated in210

the framework of the IQP model, an associated QP set {keq = k(1− 2η), σ,m}

without inhibitory neurons. Some typical results are reported in Fig. 3 and Fig.

4, where comparisons of the activity computed by the two processes are shown.

As shown on these figures, the stationary response of the mixed excitatory and

inhibitory networks to a given external excitation f is indeed remarkably close215

to the one of the associated purely excitatory network with the equivalent re-

duced number of incoming links. From these figures, we can notice that the

differences between the two approaches depend on m and f : They are more

pronounced when m increases and in the vicinity of the jump, where the perco-

lation process makes the fraction Φ of active neurons undergo a steep variation,220

from a value just above f to a value close to 1. However a quantitative analysis

of these differences can be achieved from a global point of view by computing

a (renormalized) Minkowski distance between the IQP and the associated QP

response over the whole excitation range as:

∆ =
1

N

√√√√i=N∑
i=1

(Φ(fi)− Φeq(fi))
2
, (3)

where a subscript i must be added to the initial value of the excitation225

parametrized by f to define properly ∆; fi runs from 0 to 1, and i from 1 to N =

200. Φ(fi) and Φeq(fi) denote respectively the original IQP activity and the QP

activity on equivalent excitatory networks averaged over 29 configurations, as

responses to an excitation parametrized by fi; since Φ(fi) ∈ [0, 1], ∆ lies between

zero for identical global responses and one for maximal disagreeing responses.230

Fig.6 and Fig. 7 show the evolution of ∆ in the η−m plane. These results call
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for the following comments: obviously, if m is greater than keq the differences

between IQP and QP are negligible because the activation probability are very

low, since Φ and Φeq are very close to f all over the range [0, 1]. For a given

value of η the differences between the two approaches exhibit a maximum at an235

intermediate value of the quorum, while for a given value of m, the difference

increases with η, excepted if m is too low. Lastly the meaningful scale of the

discrepancies decreases as the mean connectivity k of the network increases.
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Figure 6: Minkovski distances ∆ between the IQP model and the equivalent QP model without

inhibitory neurons as a function of m and η for k = 25 and k = 50. The solid white lines

represent keq and the dotted ones mc as a function of η.
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Figure 7: Minkovski distances ∆ between the IQP model and the equivalent QP model without

inhibitory neurons as a function of m and η for k = 75, σ = 7.5 and k = 100, σ = 10. The

solid white lines represent keq and the dotted ones mc as a function of η.

Besides the global comparison of the QP and IQP model, we carried out a

local analysis by investigating a physical quantity describing the critical behav-240

ior: the order parameter. Typical results are shown in Fig. 8 where values of
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the order parameter (averaged over 29 configurations in each case) calculated

from simulations of the IQP model are compared with values extracted from the

equivalent QP model. As long as η is below 10%, the mean relative differences

in the two approaches
〈
δg
g

〉
remain below 7%. We can retrieve a slight increase245

in the differences and in the relative differences
〈
δg
g

〉
as η is increased and an

increasing agreement as k increases. It should be noticed that these results take

into account uncertainties on the calculation of 〈g〉; these uncertainties grow

very quickly when getting close to the critical point and the comparisons are no

more meaningful. As a matter of fact, when linking these results with the ones250

set out in the last subsection, we can conclude that an important part of the

differences in Minkowski distances (Fig. 6 and Fig. 7) stems from the shift in

the position of the jump rather than its height.
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Figure 8: Evolution of the order parameter 〈g〉 calculated from the IQP model (red circles)

and the equivalent QP one (blue circles) as a function of η in the cases where k = 50 (left)

and k = 100 (right) for 8 different values of m ranging from 0.9k to 0.2k from bottom to top.

The shaded area accounts for the differences between the two approaches and the dotted line

follows the mean relative deviations between them for different values of η.
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3.4. Critical point of the IQP model

We carried out an additional set of simulations of the IQP model by steps255

of 1 unit in m in order to estimate the critical values mc(η) of the quorum as a

function of η for the four different values of the mean incoming links numbers

already investigated. We were able to estimate mc(η) within an uncertainty of 1

unit for k equal to 25 and 50 and an uncertainty of 2 units for k equal to 75 and

100. The results are shown in Fig. 9 where a linear decrease of the values of the260

critical point mc(η) with η can be seen. Such a result can be nicely interpreted

in the framework of the mapping set out in the last subsection. When going

back to the analytical expression of the critical point obtained in the framework

of a continuous extension of the QP model [25], mc = k

(
1− a

(
σ
k

)
+ b

(
σ
k

)2
)

and pluging the value of the equivalent network mean number of incoming links,265

we obtain to leading order in σ/keq :

mc(η) = mc(η = 0)− 2kη, (4)

where mc(η = 0) = (k − aσ). Results of the fits of the lines observed on

Fig. 9 are set out in Table I; as a main result, the evolution of the critical point

mc(η) with the fraction of inhibitory neurons extracted from IQP simulations is

predicted by the QP theory applied to the equivalent network with a remarkable270

agreement. mc(η) gives a relation between the two parameters characterizing

the the total distribution of incoming links (excitatory and inhibitory) {k, σ}

and the fraction of inhibitory neurons. Let us notice that it is a little bit

different from the results obtained by Soriano et al. [14] in a situation where pk

is Poissonian: they showed that that the critical values mcE for a mixed network275

made fully excitatory by addition of bicuculline in the culture and mcEI for the

mixed network are linked by the approximated relation mcEI

mcE
= 1 − kI

kE
where

kE and kI designate the mean numbers of excitatory and inhibitory incoming

links of the mixed network.
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Figure 9: Evolution of the critical point mc as a function of η for the four different values of

k investigated with σ = 0.1k

k mc(η = 0) mc(η) (fits)

25 21.7 23− 50η

50 44.3 44− 106η

75 64.4 66− 150η

100 88.8 90− 194η

Table 1: Results of the fits of the four straight lines represented on Fig. 9; values of the

critical points calculated from the continous extension of the QP model are recalled in the

middle column of the table

4. Validity of the quorum percolation paradigm in a dynamical frame-280

work

As percolation is sufficient to describe the initiation of bursts, it should be

investigated if properties of the basic theoretical percolation models remain valid

in more realistic situations. As mentioned previously, percolation phenomena,

with and without inhibition, have been experimentally validated by the match285

of the original minimal model to the experimental observations on neuronal

cultures by the group of E. Moses [11, 14, 16]. This significant evidence of
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quorum percolation phenomenon in living neuronal networks concerned how-

ever only the single response of a neuronal population to an external activation

signal of increasing strength. Although it would be surprising for a percolation290

process to happen only in this circumstance, its occurrence during the long-

term activity of a neuronal culture remains to be characterized. This question

is specifically relevant when focusing on networks with inhibitory neurons, as

inhibition plays a role on the temporal correlations of neuronal activity in a

population. Thus, this last section is devoted to the investigation of quorum295

percolation in the framework of a dynamical model of neuronal networks. We

show on a generic example that the percolation description remains relevant to

describe the initiation of a burst of activity inside a population of dynamical

neurons, then discuss how this phenomenon can also be observed in simulations

of spontaneous neuronal activity.300

Similarly as for the IQP model, we use and generate a random network G

with Gaussian distribution pk of incoming links characterized by k and σ. Each

node is now described by a differential equation model that realistically describes

the membrane potential variation in time and spikes. The input links are rep-

resented by terms in the neuronal state differential equation that describe the

positive (for excitation) or negative (for inhibition) time varying post-synaptic

potential of synpases. We chose here the adaptive Exponential Integrate-and-

Fire (aEIF) model [22] because of its compromise between simplicity and biolog-

ical relevance. In this model, the dynamical evolution of a neuron is described

by two variables – its membrane potential V and a slow adaptation current w

– which are governed by the following equations: Cm
dV
dt = −gL(V − EL) + gL∆T exp

(
V−Vth

∆T

)
− w + I

τw
dw
dt = a(V − EL)− w

(5)

if V > Vpeak

 V ← Vr

w ← w + b
(6)

all neuronal parameters are defined in [22]. Hence we will only mention the two

most relevant in this study, which are EL, the resting potential of an isolated
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neuron, and Vth, the “threshold” potential, which marks the beginning of a

spike initiation, generated by the diverging exponential. The difference Vth −

EL is therefore closely related to the quorum defined in the IQP model. The305

connection from any neuron A to a second neuron B is implemented using alpha-

shaped post-synaptic currents (PSCs) in the input term I which leads, if a spike

occurs at t = 0, to a subsequent current of the form

Is(t) = sAB
I0
τs
te−t/τs , (7)

where sAB is the dimensionless synaptic strength and I0 = e · 1pA is a nor-

malization constant which sets the peak value of the PSC to sAB pA. Inhibitory310

inputs correspond to negative sAB and we declare a fraction η of the neurons as

inhibitory (all outgoing synapses have negative strengths) according to a uni-

form random distribution. The numerical simulations were carried out using

the NEST neuronal simulator [6].

We aim first at reproducing the quorum percolation with this dynamical315

model. In order to perform the same numerical experiment as in the quorum

percolation Monte-Carlo runs, we adapted an equivalent protocol to the dy-

namical model : (i) a random fraction f of all neurons is activated via a large

post-synaptic current that brings them above their “threshold” and induces

their simultaneous firing; (ii) the simulation is pursued until the number of ac-320

tive neurons stops increasing (in practice, because of the relaxation from the

leak conductance, simulations are performed on a 100-ms time window, which

is long enough for all activity to occur given our sets of neuronal parameters). In

order to be as close as possible to the original experiment, the neurons are set so

that their refractory period after a spike is equal to the simulation time (ensure325

they fire only once), and the axon transmission delay is set to one simulation

timestep, i.e. 0.1 ms. For this first part, the units are all implemented with

parameters for adaptive spiking neurons, though this has no significant impact

on the involved timescale.
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Parameters f∗ (IQP) f∗ (Sim.)

k = 25, m = 5 0.05 [0.06; 0.08]

k = 25, m = 10 0.18 [0.19; 0.21]

k = 25, m = 15 0.45 ∼ 0.45

k = 75, m = 9 0.04 [0.045; 0.05]

k = 75, m = 15 0.11 [0.11; 0.115]

k = 75, m = 30 0.29 [0.31; 0.32]

k = 75, m = 45 0.52 ∼ 0.54

Table 2: Comparison between the values of the critical fraction of initially active neurons f∗

obtained by the IQP or the dynamical simulations for η = 0.05. Interval for the dynamical

simulation is given by the “jump” values for the 5th and 95th percentiles. For the last row in

each k set, the dynamical simulation displayed a smooth transition, so the value given is the

position of the inflexion point.

Figure 10: Simulated phase transition for inhibitory fractions of 5% (left) and 25% (right)

– averaged over 50 runs for each curve to quantify the fluctuations. For the simulations,

10 000 neuron networks were generated with Gaussian in-degree distributions (k = 25 and

σk = 5). The average transition curve is represented by the solid lines (with increasing

quorums {5, 10, 15, 20} from dark purple to light green) and the filled area is delimited by

the 5th and 95th percentiles, i.e. it contains 90% of the simulated datapoints. The dashed

line marks the Φ = f curve. As in the mean-field model, increasing the inhibitory fraction

leads to a sharp decrease in the critical quorum value: 10 < mc < 15 for η = 0.05 whereas

5 < mc < 10 for η = 0.25.

20



In the dynamical simulations, the quorum m was evaluated as the number330

of simultaneous spikes necessary to make a neuron fire (see Appendix for a more

detailed explanation on how its precise value is obtained). The resulting activity

of the total population can be seen on Fig. 10. Comparison with Fig. 3 and Fig.

4 shows significant resemblance in the qualitative, as well as in the quantitative

behavior of the phase transition. As for the mean-field model, an increase in the335

fraction η of inhibitory neurons leads to a decrease of both the size g of the jump

and the final fraction of active neurons Φ. The tendency for the critical value

of the quorum to be lower in the dynamical simulations can be easily explained

by the combination of the leak conductance and the PSC decrease over time,

as detailed in a previous percolation model including decay [19]. Beside this340

small offset, the excellent agreement of the positions where the jump occurs,

detailed in Table 2, confirms that the simple IQP percolation model captures

the behavior of a more sophisticated dynamical model and is thus relevant to

describe the ignition of a burst of activity in a network of coupled neurons.

Figure 11: A. Spike raster of a 1000-neuron network with Gaussian in-degree N (100, 5) dis-

playing a spontaneous and periodic bursting behavior. B. shows the inset of the left raster

with the detailed dynamics of the successive SBSs. Neurons ordered by increasing in-degree.

Eventually, as can be seen on Fig. 11, the percolation paradigm is perfectly345

relevant to describe some of the successive network events that occur inside a

network burst, for spontaneously active neural networks. Spontaneous bursting

activity is a common phenomenon in neuronal networks [27, 15] and the IQP
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can therefore be a useful tool to investigate the properties of this spontaneous

behavior.350

On Fig. 11 A, the simulated activity is composed of periodic bursts which

themselves present a precise substructure as a succession of synchronous burst

slices (SBS), shown on 11 B. These are the basic activity blocks that can be

described through the percolation formalism. Indeed, after the first sponta-

neous slice, each subsequent SBS is triggered be the previous one. Because the355

excitability of the neurons decreases as the burst progresses, this corresponds

to a succession of percolation events with increasing values of the quorum. Af-

ter the last SBS, the value of the quorum becomes greater than mc so no new

percolation can occur and the burst terminates.

5. CONCLUSION360

In this paper, we set out an extension of the Quorum Percolation model

with a Gaussian distribution of incoming links (QP) including a fraction η of

inhibitory neurons (the IQP model). Furthermore, we showed how the mean

stationary activation of bursts in a network with inhibitory neurons can be

mapped onto an equivalent purely excitatory network endowing an appropriate365

and different wiring. We provided a quantification of the agreement between

the QP and IQP approaches and showed that the agreement is good in usual

neuronal cultures, where η . 20%. Thus, on the issue of large scale response

of quorum percolation, mixed inhibitory and excitatory Gaussian random net-

works with mean input connectivity k and fraction η of inhibitory neurons, have370

a purely excitatory Gaussian random network equivalent with a mean incoming

links connectivity (1 − 2η)k. This enabled us to calculate the critical point of

the IQP model as a function of η. Lastly, we gathered together the approaches

coming from the fields of percolation theory and dynamical systems in order to

check how the percolation paradigm remains meaningful for the interpretation375

of a network response to excitation in a biologically more realistic model taking

time explicitely into account. We built indeed a dynamical version of the IQP
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model using Brette-Gestner adaptative exponential neurons and alpha-shaped

synapses. We showed that Quorum Percolation occurs also in the more sophis-

ticated dynamical framework so that, despite their apparent simplicity, QP and380

IQP models are an appropriate approach for bursts onset in neuronal cultures.

6. Appendix

All dynamical simulations were performed using the NEST simulator [6]

with the aeif psc alpha model (present on the master branch of the GitHub

repository or in release versions strictly higher than 2.11.0) and static synapses.385

The neurons were set to adaptive spiking using the neuronal and synaptic

parameters detailed in Table 3.

Neuronal parameter Cm gL EL Vth Ie ∆T a τw tref

Value 200 9 -60 -50 0 2 2 600 100

Synaptic parameter τs,exc τs,inh d

Value 0.2 0.2 0.1

Table 3: Neuronal and synaptic parameters used in the simulations. The units are as follow:

capacitance in pF , conductance in nS, voltage in mV , current in pA and time in ms. d is the

spike transmission delay.

In order to obtain a desired quorum m, the synaptic strength between neu-

rons was tuned according to the following procedure:

• Send m spikes, each with strength s, on a neuron, and increase s until the390

post-synaptic neuron fires, which occurs for a synaptic strength s∗m.

• Repeat the process for m− 1 spikes; this results in a second value s∗m−1.

• use the synaptic strength sm =
s∗m+s∗m−1

2 for all connections in the network.

This value of the synaptic strength is important if we want to compare quantita-

tively the predictions of the mean-field model to the simulations. Indeed, in the395

simulations, the evolution of the state Vi of neuron i is progressive, and a spike

23

https://github.com/nest/nest-simulator/
https://github.com/nest/nest-simulator/
https://github.com/nest/nest-simulator/


is not necessarily triggered immediately after the excitation. More precisely,

at the critical value s∗m for which the neuron starts spiking when it receives m

spikes, the emission of this spike can take an infinite amount of time (critical

slowing down). The choice of sm as the average value between s∗m and s∗m−1 is400

therefore important to ensures that the neuron will fire rapidly enough (with

a characteristic timescale τs) after the reception of m spikes, and thus be in a

situation which is comparable to that of the mean-field model.

The networks were generated using the nngt library using the igraph back-

end.405
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