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Abstract

The least squares estimator of a discrete distribution under the constraint
of convexity is introduced. Its existence and uniqueness are shown and con-
sistency and rate of convergence are established. Moreover it is shown that
it always outperforms the classical empirical estimator in terms of the Eu-
clidean distance. Results are given both in the well- and the mis-specified
cases. The performance of the estimator is checked throughout a simulation
study. An algorithm, based on the support reduction algorithm, is provided.
Application to the estimation of species abundance distribution is discussed.

Keywords:
convex discrete distribution, nonparametric estimation, least squares,
support reduction algorithm, abundance distribution

1. Introduction

Recently, the problem of estimating a discrete probability mass function
under a shape constraint has attracted attention: Jankowski and Wellner
(2009) considered the non-parametric estimation of a monotone distribution
and Balabdaoui et al. (2012) considered the case of a log-concave distribution.
Although the discrete case is in some ways very different from the contin-
uous case (for example, the convergence rates are typically different in the
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two cases), the construction of shape constrained estimators in the discrete
case is largely inspired by the construction of shape constrained estimators
of a probability density function. The nonparametric estimation, based on
i.i.d. observations, of the distribution of a continuous random variable under
a shape constraint, has received a great deal of attention in the past decades,
see Balabdaoui and Wellner (2007) for a review. The most studied constraint
is the monotonicity of the density function. It is well-known that the non-
parametric maximum likelihood estimator of a decreasing density function
over [0,∞) is the Grenander estimator defined as the left-continuous slope of
the least concave majorant of the empirical distribution function of the ob-
servations. This estimator can be easily implemented using the PAVA (pool
adjacent violators algorithm) or a similar device, see Barlow et al. (1972).
The nonparametric maximum likelihood of a log-concave density function
(i.e., a density function f such that log(f) is a concave function) was intro-
duced in Walther (2002) and algorithmic aspects were treated in Dümbgen
et al. (2007), see also the R package in Dümbgen and Rufibach (2011). An-
other well studied constraint is the convexity (or concavity) of the density
function over a given interval. It was shown by Groeneboom et al. (2001) that
both the least squares estimator and the nonparametric maximum likelihood
estimator under the convexity constraint exist and are unique. However, al-
though a precise characterization of these estimators is given in that paper,
their practical implementation is a non-trivial issue: it requires sophisticated
iterative algorithms that use a mixture representation, such as the support
reduction algorithm described in Groeneboom et al. (2008).

In this paper, we consider the nonparametric estimation of a discrete dis-
tribution on N under the convexity constraint (note that a convex distribution
on N is necessarily non-increasing, so in our setting, convex is equivalent to
non-increasing convex). This problem has not yet been considered in the lit-
erature, although it has several applications, such as the estimation of species
abundance distribution in ecology. In this field, the terms “nonparametric
methods” often refer to finite mixtures of parametric distributions where only
the mixing distribution is inferred in a nonparametric way, see e.g. (Böhning
and Kuhnert (2006), Böhning et al. (2005), Chao and Shen (2004)).

We study the least squares estimator of a discrete distribution on N under
the convexity constraint. First, we prove that the constrained least squares
estimator exists and is unique, and we consider computational issues. Similar
to the continuous case, we prove that a representation of convex discrete dis-
tributions can be given in terms of a – possibly infinite – mixture of triangular
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functions on N, and, based on this characterization, we derive an algorithm
that provides the least squares estimate, although both the number of com-
ponents in the mixture and the support of the estimator are unknown. This
algorithm is an adaptation to our problem of the support reduction algo-
rithm in Groeneboom et al. (2008). Then, we adress theoretical performance
of the estimator: we prove that it always outperforms the classical empirical
estimator in terms of the `2-error and that it is consistent with

√
n-rate of

convergence (where as usual, n denotes the sample size), and we consider
also the case of a misspecified model. All these results are new. Finally, we
assess the performance of the least squares estimator under the convexity
constraint through a simulation study. Starting from the mixture represen-
tation, we finally give a definition of a convex abundance distribution and
illustrate how it applies to data sets analyzed in the literature.

The paper is organized as follows. The characterization of the constrained
least squares estimator is given in Section 2 and Section 2.3 is devoted to
computational issues. In Section 3 the theoretical properties of the estimator
are established and a simulation study allowing to assess its performances is
reported in Section 4. The application to abundance distribution is intro-
duced in Section 5. Finally the proofs are postponed to Section 6.

Notation. Below is a list of notation and definitions that will be used through-
out the paper.

The same notation is used to denote a discrete function f : N→ R and
the corresponding sequence of real numbers (f(j))j∈N. The `r-norm of a real
sequence f is

‖f‖r =

(∑
j>0

|f(j)|r
)1/r

for all r ∈ N\{0} and
‖f‖r = sup

j>0
|f(j)|

for r =∞. For all r, `r(N) is the set of real sequences with a finite `r- norm.
For all functions f : N→ R and all positive integers j, denote by

∆f(j) = f(j + 1)− 2f(j) + f(j − 1)

the discrete Laplacian. Let C be the set of convex discrete functions f ∈
`2(N), that is, the set of all f ∈ `2(N) having ∆f(j) > 0 for all integers
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j > 1, and let C1 be the set of all convex probability mass functions on N,
that is the set of functions f ∈ C satisfying

∑
i>0 f(i) = 1 (see e.g. Murota

(2009) for more on convex discrete functions). An integer j > 1 is a knot of
f ∈ C if ∆f(j) > 0.

It should be noticed that any f ∈ C has limj→∞ f(j) = 0 so by convexity,
any f ∈ C is non-negative, non-increasing and strictly decreasing on its
support.

We say that a function f : N → R is linear over a set of consecutive
integers {k, . . . , l}, where l > k+1, if ∆f(j) = 0 for all j ∈ {k+1, . . . , l−1}.

2. The constrained LSE of a convex discrete distribution

Suppose that we observe n i.i.d. random variables X1, . . . , Xn that take
values in N, and that the common probability mass function p0 of these
variables is convex on N with an unknown support. We aim to build an
estimator of p0 that satisfies the convexity constraint. For this task, we
consider the constrained least-squares estimator (LSE) p̂n of p0, defined as
the minimizer of ‖f − p̃n‖2 over f ∈ C, where p̃n is the empirical estimator:

p̃n(j) =
1

n

n∑
i=1

I(Xi=j) (1)

for all j ∈ N. Recall that from the Hilbert projection theorem, it follows that
the minimizer is uniquely defined, see Section 2.1 below. Moreover, we will
prove that p̂n is a probability mass function on N.

It is a common challenge in statistics to postulate an appropriate model-
ing. In many applications, one may face the difficulties of misspecification,
which means for instance that, although we think that the underlying prob-
ability mass function is convex, this probability mass function is in fact non-
convex. Therefore, an interesting issue is on how behaves a given estimator
even in situations where some of the modeling assumptions are violated. For
this reason, we will study our estimator even in situations where the true
probability mass function p0 is non-convex.

The rest of the section is organized as follows. From now on, unless
otherwise stated, we do not assume convexity of p0 anymore. We collect in
Subsection 2.1 a few theoretical results about `2(N) and convex analysis. A
more precise description of the estimator p̂n is given in Subsection 2.2, and
the practical implementation of the estimator is discussed in Subsection 2.3.
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2.1. Preliminaries

In this subsection, we collect a few theoretical results on `2(N) and convex
analysis that will be used in the paper. Let us recall that the space `2(N),
equipped with the `2-norm and the corresponding scalar product

〈f, g〉 =
∑
j∈N

f(j)g(j), (2)

is a Hilbert space. Thus, it follows from the Hilbert projection theorem that
for any closed convex S ⊂ `2(N), and any f ∈ `2(N), there exists a unique
sequence in S, that we denote here by fS , such that

‖f − fS‖2 6 ‖f − g‖2 for all g ∈ S.

For any closed convex S ⊂ `2(N), the projection operator f 7→ fS , defined
from `2(N) to S, is known to have

‖fS − gS‖2 6 ‖f − g‖2 (3)

for all f, g ∈ `2(N) and
〈f − fS , g − fS〉 6 0 (4)

for all f ∈ `2(N) and g ∈ S.
Note that both C and C1 are convex closed subsets of `2(N), so the pro-

jections fC and fC1 are well defined for every f ∈ `2(N). But any probability
mass function p on N belongs to `2(N) since, from usual inequalities between
`r-norms, ‖p‖2 6 ‖p‖1 = 1. So the projections pC and pC1 are well defined
for every probability mass function p on N.

2.2. Characterizing the constrained LSE

The aim of the subsection is to provide more insight of the estimator p̂n.
Recall that p̂n is defined as the unique minimizer of ‖f − p̃n‖2 over f ∈ C,

with p̃n given in (1). In the following theorem, it is proved that p̂n is a
probability mass function. It minimizes ‖f − p̃n‖2 over f ∈ C1, and has
a finite support that contains the support of p̃n. We will denote by ŝn,
respectively s̃n, the maximum of the support of p̂n, respectively p̃n.

Theorem 1. We have p̂n ∈ C1 and

‖p̂n − p̃n‖2 = inf
f∈C1
‖f − p̃n‖2 = inf

f∈C
‖f − p̃n‖2.

Moreover, the support of p̂n is non-empty and finite, and ŝn > s̃n.

5



The following proposition gathers together a number of properties of p̂n
that compare to those of the constrained least squares estimator of a convex
density function over [0,∞), see Groeneboom et al. (2001): in the continu-
ous case the constrained LSE has a bounded support, is piecewise linear, has
no changes of slopes at the observation points, and has at most one change
of slope between two consecutive observation points. In the discrete case,
the constrained LSE is also piecewise linear with a bounded support. How-
ever, due to the fact that N is a discrete set, p̂n can have two knots (in the
discrete case, changes of slopes correspond to knots) between consecutive ob-
servations. In the following proposition, Nn denotes the number of distinct
values of the Xi’s and X(1) < · · · < X(Nn) denote these values rearranged in
increasing order.

Proposition 1. The constrained LSE p̂n is linear over {0, . . . , X(1) +1} and
also over {s̃n − 1, . . . , ŝn}; in the case where Nn > 2, it has at most two
knots on {X(j) + 1, . . . , X(j+1)− 1} for any given j = 1, . . . , Nn− 1 such that
X(j+1)−X(j) > 1. In the case where it has two knots on this set, these knots
are consecutive points in N.

Such a description of p̂n does not suffice to implement the estimator on
concrete examples. The difficulty in implementing the estimator comes from
the fact that it is defined as a projection on a non-linear space (rather, it is
a projection on a convex set). Thus, the estimator is not a linear function
of the observations X1, . . . , Xn, and no closed form is available for p̂n. The
practical implementation of p̂n thus requires the use of a specific algorithm
that will be investigated in the following subsection.

2.3. Implementing the constrained LSE

The algorithm we use to compute π̂n is based on the support reduction
algorithm that was proposed by Groeneboom et al. (2008). It relies on the
decomposition of convex discrete functions into a combination of triangular
functions, as defined below. Other choices are conceivable (one could con-
sider for instance algorithms designed for convex optimization, or algorithms
designed for nonparametric mixtures) but the merit of our algorithm is that
we are able to prove that it provides the target p̂n in a finite number of steps.
Moreover, the support reduction algorithm shows good performance as com-
pared to competitors in the context of convex regression, see Groeneboom
et al. (2008).
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Let us describe the combination mentioned above. For every integer j >
1, let Tj be the j-th triangular function on N:

Tj(i) =


2(j − i)
j(j + 1)

for all i ∈ {0, . . . , j − 1}

0 for all integers i > j.
(5)

Note that Tj is a probability mass function, i.e., Tj(i) > 0 for all i and∑
i>0 Tj(i) = 1. Moreover, Tj is non-increasing and convex on N. It can be

shown (see Appendix A for a more precise statement) that any f ∈ C is a
combination of the Tj’s, and that the combination is unique: for any f ∈ C,
there exists a unique non-negative measure π on N\{0} such that

f(i) =
∑
j>1

πjTj(i) =
∑
j>i+1

πjTj(i) for all i > 0, (6)

where the πj’s denote the components of π. Moreover, π has a finite support
if, and only if, the support of f is finite. The decomposition compares with
Propositions 2.1 and 2.2 in Balabdaoui and Wellner (2007), which deals with
the case of convex (and more generally, k-monotone) functions on [0,∞).

Hereafter, we denote byM the convex cone of non-negative measures on
N\{0}. Note that for π ∈ M with a finite support, the function f defined
by (6) belongs to C. We consider the criterion function

Ψn(π) =
1

2

∑
i>0

(∑
j>i+1

πjTj(i)

)2

−
∑
i>0

p̃n(i)
∑
j>i+1

πjTj(i)

for all π ∈M, where the πj’s denote the components of π. Since

2Ψn(π) +
∑
i>0

p̃n(i)2 = ‖f − p̃n‖2

for all f ∈ C and π ∈M satisfying (6), and p̂n has a finite support, we have

p̂n(i) =
∑
j>i+1

π̂njTj(i) for all i > 0, (7)

where π̂n is the unique minimizer of Ψn(π) over the set of measures π ∈ M
with a finite support. Therefore, computing p̂n amounts to computing π̂n.
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We describe now the algorithm for computing π̂n. We distinguish two
parts: the first part consists in computing, for a given integer L > s̃n + 1,
the minimizer of Ψn(π) over π ∈ ML, where ML is the set of measures
π ∈M with support included in {1, . . . , L}. It can easily be shown that the
minimizer, that we denote by π̂L, exists and is unique. Since its support is
included in the known finite set {1, . . . , L}, it can be computed using the
support reduction algorithm of Groeneboom et al. (2008), as follows.

Algorithm for computing π̂L for a fixed L. In the sequel, for all j > 1 and
µ ∈M we set

[dj(Ψn)] (µ) =

j−1∑
l=0

Tj(l)

( ∑
j′>l+1

µj′Tj′(l)− p̃n(l)

)
. (8)

1. Initialisation
Let S = {L} and choose πL ∈ ML such that πLj = 0 for all j =

1, . . . , L− 1 and πLL minimizes
∑L−1

i=0 (p̃n(i)− πTL(i))2 over π ∈ R.

2. Optimisation over ML

Step 1: For 1 6 j 6 L compute the quantities [dj(Ψn)] (πL). If all are
non negative, then set π̂L = πL, and the optimisation over ML

is achieved. If not, choose j such that [dj(Ψn)] (πL) < 0, and set
S ′ = S + {j}. For example, one can take j as the minimizer of
[dj(Ψn)] (πL). Go to step 2.

Step 2: Let π?S′ be the minimizer of Ψn(π) over all functions π with
support included in S ′. The components of π?S′ are denoted π?S′,l

for l ∈ S ′. Two cases must be considered:

(a) If for all l ∈ S ′, π?S′,l > 0, then set πL = π?S′ , S = S ′ and
return to Step 1.

(b) If not, let l be defined as follows:

l = arg min
j′

{
εj′ =

πLj′

πLj′ − π?S,j′
for j′ such that π?S,j′ < πLj′

}
.

Set S ′ = S ′ − {l} and return to Step 2.

Theorem 2. The above algorithm gives π̂L.
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The second part in computing π̂n consists in choosing L such that π̂L =
π̂n. The following theorem provides a characterization of such a L.

Theorem 3. Let L > s̃n + 1. If π̂L is a probability measure, then π̂L = π̂n.

Thus, to compute π̂n, we carry out the optimisation overML for increas-
ing values of L > s̃n + 1 until the condition

∑
j>1 π̂

L
j = 1 is satisfied. The

support of π̂n is finite, so the condition is fulfilled in a finite number of steps.

3. Theoretical properties of the constrained LSE

The aim of this section is to compare the constrained LSE with the uncon-
strained estimator p̃n and to investigate its consistency and rate of conver-
gence. In Subsection 3.1, it is proved that p̂n is a probability mass function
that outperforms the empirical estimator p̃n in the `2-sense in the case p0 is
convex. Moreover, we provide a comparison between the absolute moments
of the constrained and unconstrained estimated distributions. Consistency
and rate of convergence of p̂n are investigated in Subsection 3.2, in the mis-
specified setting.

3.1. Comparing the constrained and the unconstrained estimators

In this subsection we investigate the benefits of using the constrained LSE
rather than the (unconstrained) empirical estimator p̃n. It is proved in the
following theorem that the constrained LSE is closer, in the `2-sense, to any
convex f ∈ `2(N) than is p̃n.

Theorem 4. Let p0, p̃n and p̂n be defined as in Section 2.2. Then,

‖p̂n − f‖2 6 ‖p̃n − f‖2 (9)

for all f ∈ C, with a strict inequality if p̃n is non-convex. Moreover, if
∆p0(i) = 0 for at least an integer i > 1, then, for all f ∈ C, we have

lim inf
n→∞

P
(
‖f − p̂n‖2 < ‖f − p̃n‖2

)
> 1/2. (10)

It immediatly follows that if p0 is convex on N, then both (9) and (10)
hold true with f = p0 since p0 ∈ `2(N), see Section 2.1. This shows that
the probability for p̂n to be strictly closer to p0 than is p̃n, is strictly positive
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(and even, it is at least 1/2) whenever p0 is convex with a linear part on its
support.

In what follows, we consider the estimation of some characteristics of the
distribution p0, namely the expectation, the centered absolute moments and
the probability at 0. As estimators for these characteristics, we naturally
consider similar characteristics of the constrained and the unconstrained es-
timators. Theorem 5 states that the distributions p̃n and p̂n have the same
expectation, but the centered absolute moments of the distribution p̃n are
lower than those of the distribution p̂n. In particular, the variance of the
distribution p̂n is greater than the variance of p̃n. Moreover, the constrained
estimator p̂n(0) is greater than or equal to the unconstrained estimator p̃n(0).
The performance of p̂n is compared with that of p̃n through simulation studies
in Section 4.

Theorem 5. Let p̃n and p̂n be defined as in Section 2.2. We have for all
u > 1, and 0 6 a 6 ŝn∑

i>0

|i− a|up̃n(i) 6
∑
i>0

|i− a|up̂n(i). (11)

Moreover,
∑

i>0 ip̃n(i) =
∑

i>0 ip̂n(i) and p̂n(0) > p̃n(0).

In the case of discrete log-concave distribution, Equations (3.6) and (3.5)
in Balabdaoui et al. (2012) show that in contrast to our case, the absolute
moments of the constrained maximum likelihood estimator distribution are
smaller than those of the empirical distribution whereas similar to our case,
the empirical distribution and the constraint estimated distribution have the
same expectation.

3.2. Consistency and rate of convergence

An important issue is on how the estimator behaves asymptotically, as
the sample size n goes to infinity. It is expected that, at least in the case
of a well specified model, the estimator converges to the true p0 as fast as
possible. The two following theorems give the asymptotic behaviour of p̂n,
both in the case of a well specified model and in the case of a misspecified
model.

We begin with the case of a well specified model, that is the case where
p0 is convex. We prove that p̂n is a consistent estimator of p0 in the `r-sense
with the rate of convergence

√
n, for all r ∈ [2,∞]. Note that the

√
n-rate
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is expected in the discrete setting. See for instance Jankowski and Wellner
(2009) for the constrained least-squares estimator of a monotone probability
mass function, and Balabdaoui et al. (2012) for the constrained maximum
likelihood estimator of a log-concave probability mass function.

Theorem 6. Let p0, p̃n and p̂n be defined as in Section 2.2. If p0 is convex,
then

√
n‖p0 − p̂n‖r = OP (1) for all r ∈ [2,∞].

Let us proceed with the misspecified setting, where p0 is possibly non con-
vex. Since p̂n is convex, the limit of the sequence (p̂n)n (if it exists in some
sense) is typically convex. This means that p̂n cannot converge to p0 if p0 is
non convex. Instead, it is expected that p̂n converges to a convex approxi-
mation of p0. Such convergence results for shape-constrained estimators in a
misspecified model were already obtained, for instance in Balabdaoui et al.
(2012) and Cule et al. (2010) in the case of the log-concave constraint. See
also Patilea (2001) for the case of the constrained MLE in the general case
of convex dominated models.

The following theorem proves
√
n-convergence of p̂n to p0C, the convex

discrete function which is closest, in the `2-sense, to the true p0. Specifically,
p0C is the unique minimizer (see Subsection 2.1) of ‖f − p0‖2 over f ∈ C. It
can be proved that p0C is a probability mass function, but as this property is
not used in the sequel, the proof is omitted for brevity. Note that p0C is well
defined whether p0 is convex or not: it reduces to p0C = p0 in the case where
p0 is convex whereas p0C 6= p0 in the case where p0 is non convex.

Theorem 7. Let p0, p̃n and p̂n be defined as in Section 2.2. We have√
n‖p0C − p̂n‖r = OP (1) for all r ∈ [2,∞].

Thus, even if the convex hypothesis is violated, p̂n converges in the `r-sense
at the

√
n-rate to the probability mass function that is closest in the `2-sense

to p0. In particular, if p0 is not too far from being convex, then p̂n is still
sensible. This is illustrated on simulations in Section 4 below.

4. Simulation study

4.1. Simulation design

We designed a simulation study to assess the quality of the constrained
estimator p̂n as compared to the unconstrained estimator p̃n.
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We considered two shapes for the distribution p0: the geometric G(γ)
with γ = .9, .5, .1, the support of which is infinite, and the pure triangular
distribution Tj with j = 20, 5, 2. For each distribution, we considered 9
sample sizes: n = 10α with α ∈ {1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}. We
also considered the Poisson distribution with mean λ, which is convex as
long as λ is smaller than λ∗ = 2 −

√
2 ' .59. We considered λ = .59,

.8 and 1. For each simulation configuration, 1000 random samples were
generated. The simulations were carried out with R (www.r-project.org),
using functions available at the following web-site http://www.jouy.inra.

fr/mia/sylviehuet_en.

4.2. Global fit
We first compared the fit of the estimated distributions p̂n and p̃n to the

entire distribution p0. To this aim, for each simulated sample, we computed
the `2-error for p̂n

`2(p̂n, p0) =
∑
i

[p̂n(i)− p0(i)]2,

and likewise for p̃n. The `2-loss is estimated by the mean of 1000 independent
replications of the `2-error calculated on the basis of 1000 simulations and
the results are displayed in Figure 1.

As expected from Theorem 4, the constrained estimator p̂n outperforms
the empirical estimator in all configurations in the `2-sense. The difference
is more sensitive in the triangular case because of the existence of a region
where p0 is linear. The empirical estimator p̃n gets better and closer to p̂n
as the true distribution p0 becomes more convex, i.e., for γ = .9 or j = 2.
Note that the fit of the unconstrained estimator improves when the true
distribution gets more convex.

Although it is not investigated in Theorem 4, we also considered the Kol-
mogorov loss: K(p̂, p0) = supi |P̂n(i)−P0(i)|, where P0 is the true cumulative

distribution function (cdf) and P̂n is the constrained cdf, the Hellinger loss:∑
i

(√
p̂n(i)−

√
p0(i)

)2
/2 and the total variation loss:

∑
i |p̂n(i)− p0(i)|/2.

The same behavior was observed for these loss functions than for the `2-loss
(results not shown). We thus observed that the constrained estimator p̂n
outperforms the empirical estimator for all considered losses.

4.3. Some characteristics of interest
In this section, we consider the estimation of some characteristics of the

distribution, namely the variance, the entropy and the probability at 0. For
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Figure 1: `2-loss. Empirical risk as a function of the sample size n. Black: p̃n, red: p̂n.
Solid (–): γ = 1 or j = 20, dashed (- -): γ = .5 or j = 5, dotted (· · · ): γ = .9 or j = 2.

each of these characteristics, denoted by θ(p), we measured the performance
in terms of relative standard error:√

E (θ(p̂n)− θ(p0))2 /θ(p0) .

The expectation was estimated by the mean over 1000 simulations.
As shown in Section 2, the means of the empirical and constrained dis-

tributions are equal, whereas the variance of the constrained distribution is
larger than the variance of the empirical one. Denoting by µk the centered
moment of order k of p0, the mean and variance of the empirical variance are
respectively

n− 1

n
µ2 and

n− 1

n3

(
(n− 1)µ4 − (n− 3)µ2

2

)
.

Figure 2 shows that the relative standard error of the empirical estimator is
smaller than that of the constrained one.

We also investigated the estimation of the entropy

H(p) = −
∑
i>0

p(i) log p(i),

which is often used in ecology as a diversity index as it is maximal when
all species have the same abundancies (p is the uniform distribution) and
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Figure 2: Variance. Relative standard error of the variance as a function of the sample
size n. Same legend as Figure 1.

is zero when only one species is present. As shown in Figure 3, H(p̂n) is
a better estimate of the true entropy than H(p̃n), in most situations; the
difference between the two estimators vanishes when the true distribution
becomes more convex. The worst performance of H(p̂n) are obtained when
the true distribution is T2. Note that this distribution is a special case since
more than half of the estimation errors consist in adding a component Tj
(j > 2) in the mixture (6), which result in an increase of the entropy.

We then considered the estimation of the probability mass p(0). Theo-
rem 5 showed that the constrained estimator p̂n(0) is greater than or equal to
the empirical estimator p̃n(0), which is known to be unbiased. However, Fig-
ure 4 shows that the constrained estimator p̂n still provides a more accurate
estimate of p0(0) than p̃n.

4.4. Robustness to non-convexity

To investigate the robustness of the constrained estimator to non-convexity,
we consider the Poisson distribution with mean λ, which is convex as long
as λ is smaller that λ∗ = 2 −

√
2 ' .59. We studied how p̃n and p̂n behave,

in terms of `2-loss, when λ exceeds λ∗.
The left panel of Figure 5 displays the Poisson distributions with respec-

tive means λ∗ equal to .8 and 1. Figure 5 (right) shows that the `2-loss of the
constrained estimator increases with λ. However for small sample sizes, p̂n
still provides a better fit than p̃n, at least for λ 6 1. The performance of p̂n is

14
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Figure 3: Entropy. Relative standard error of the estimated entropy estimators as a
function of the sample size n. Same legend as Figure 1.
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Figure 4: Probability mass in 0. Relative standard error of the estimated probability
mass in zero as a function of the sample size n. Same legend as Figure 1.
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Figure 5: Left: Three different Poisson distributions. Solid (–):λ = λ∗, dashed (- -):λ = .8,
dotted (· · · ):λ = 1. Right: empirical `2-loss as a function of n. Black: p̃n, red: p̂n.

dramatically altered when the sample size becomes large and the convexity
assumption is strongly violated.

5. Estimation of abundance distribution

As recalled in Section 1, estimating the abundance distribution of species
in a community is an old and classical problem in ecology. Similar problems
also arise in other fields such as insurance, as shown in the examples below.
Yet, we outline here the problem in ecological terms.

Suppose that n different species have been observed and for s = 1, . . . n
denote by Xs the number of sampled individuals belonging to species s. The
Xs’s are supposed to be i.i.d.. Some species may be present in the area
whereas they have not been observed, so the Xs’s are distributed according
to the truncated version p+ of the true abundance distribution p:

p+(i) = p(i)/(1− p(0)), i > 1.

The goal is to estimate the proportion of unobserved species, which is equiv-
alent to estimate p(0) based on an i.i.d. sample from p+.

5.1. A convexity-based estimate of abundance

We propose here an estimator of p(0) based on the hypothesis that p is a
discrete convex distribution. More precisely, we assume that p is a discrete
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convex abundance distribution as defined below. Our hypothesis relies on
the representation of a discrete convex distribution as a mixture of triangular
distributions, see Appendix A. Our interpretation of the mixture is that the
set of species is separated into groups, each species having probability πj to
belong to group j of species whose abundance distribution is the triangular
distribution Tj. As the first component T1 is a Dirac mass in 0, it refers to
species for which the only abundance that could be observed is 0. This group
simply defines absent species, and therefore π1 has to be zero.

Definition 1. A distribution p over N is a convex abundance distribution if
there exist positive πj, j > 2 such that p(i) =

∑
j>2 πjTj(i).

Note that the Poisson distribution with parameter λ is a convex abun-
dance distribution if, and only if, λ = 2−

√
2.

Our estimator of p(0) is based on the fact that π1 = 0 implies that
∆p(1) = 0. This means that p(0) = 2p(1) − p(2). Denoting by p̂+n the
constraint convex LSE of p+, we define

p̂n(0) = (2p̂+n (1)− p̂+n (2))/(1 + 2p̂+n (1)− p̂+n (2)).

The denominator is here to ensure that the p̂n(i)’s sum to one.

5.2. Examples

Datasets. To illustrate the convex estimator we propose for estimating p(0),
we considered three datasets available in the SPECIES R package developed
by Wang (2011): Butterfly, Traffic and Microbial. We also considered the
Bird dataset analysed in Norris and Pollock (1998), as it displays a more
complex distribution.

Fit of the convex estimate. Figure 6 shows that the fit of the convex esti-
mate p̂+ is quite good for all the datasets. This suggests that the convexity
assumption is quite reasonable. We also considered other examples from the
literature that all display similar fits (not shown). Note that the prolongation
at i = 0 corresponds to an estimate of p(0)/(1− p(0)), and not to p(0).

Comparison with truncated Poisson mixtures. A penalized non-parametric
maximum likelihood method was proposed by Wang and Lindsay (2005) for
estimating a mixture of truncated Poisson distributions where

p(i) =
∑
k>1

ωkP(i, λk) with P(i, λk) =
λik exp(−λk)

i!
.
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Figure 6: Fit of the convex abundance distribution. Dots (•) = empirical distribution p̃+,
solid red (−) = convex estimates p̂+, solid blue (−) = Poisson mixture estimates p+.
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Dataset d K L+
p(0) L̂+ p̂(0)

Butterfly 501 4 -1371.9 0.138 -1366.3 0.244
Bird 72 5 -215.3 0.062 -216.4 0.173
Traffic 1621 2 -1007.6 0.705 -1006.7 0.596
Microbial 514 5 -540.2 0.759 -540.2 0.576

Table 1: Comparison of the truncated Poisson mixture (with K components) and of the

convex estimates. Log-likelihood of the truncated distribution (L+
and L̂+, resp.) and

estimates of p(0) (p(0) and p̂(0), resp.).

Its estimator will be denoted by p+(i) =
∑

k>1 ωkP(i, λk).
To compare the quality of the two approaches, we computed the log-

likelihood of the truncated convex estimate:

L̂+ = n
∑
i>1

p̃n(i) log p̂+n (i), L+
= n

∑
i>1

p̃n(i) log pn(i).

Figure 6 and Table 1 show that the fit of p̂+n and p+n are similar, according
to both the graphical representation and the likelihood. Note that the value
at i = 0 can not be compared between the two methods, as the normalizing
constants are different. However, due to very different underlying assump-
tions on the abundance distribution p (Poisson mixture versus convex), the
estimates of p(0) strongly differ, the ratio between them reaching almost 3
for the smallest dataset (Bird).

The results display different behaviors and more can be said when con-
sidering the components of the fitted Poisson mixture. For the Butterfly and
Bird datasets, none of the Poisson components is convex (λk > 2 −

√
2) so

the mixture is not convex, which results in p(0) < p(1). In each of the two
other datasets (Traffic and Microbial), the first Poisson component is convex
(λ1 = .336 and .225, resp.), but does not satisfy Definition 1 so the corre-
sponding π1 is not 0. This distribution is not a convex abundance distribution
which explains the differences in the estimations of p(0).

As the true distribution p is unknown, it is not possible to decide which
approach provides the most accurate estimate. Still, we emphasize that the
estimate we propose relies on very mild assumption (convexity) about the
true distribution.
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6. Proofs

In the case s̃n = 0 i.e., p̃n is the dirac distribution with mass 1 at point
0, we have p̂n = p̃n ∈ C1 and we face a trivial case. Thus, in the sequel, we
restrict ourselves to the case s̃n > 1.

Notation. For notational convenience, unless otherwise stated we denote by
‖ . ‖ the `2-norm on `2(N).

We denote by Nn the number of distinct values of the Xi’s and by
X(1), . . . , X(Nn) these distinct values rearranged in increasing order, i.e., such
that X(1) < · · · < X(Nn). We set r̃n = X(1) and s̃n = X(Nn). We define

Qn(f) =
1

2
‖f‖2 − 〈f, p̃n〉

and

f̄(i) =

{
f(i) for all i ∈ {0, . . . , s̃n}
max{f(s̃n) + (f(s̃n)− f(s̃n − 1))(i− s̃n) , 0} for all i > s̃n

(12)

for all f ∈ `2(N). It should be noticed that minimizing ‖f−p̃n‖2 is equivalent
to minimizing Qn(f) since ‖f − p̃n‖2 = 2Qn(f) + ‖p̃n‖2. Thus by definition,
p̂n is the unique minimizer of Qn(f) over f ∈ C.

6.1. Proof of Theorem 1

In order to prove Theorem 1, we first prove in Lemma 1 that p̂n has a
non-empty finite support. Then, after some intermediate results, we prove in
Lemma 3 below that ŝn ≥ s̃n and p̂n ∈ C1. Since C1 ⊂ C, Theorem 1 follows.

Lemma 1. The constrained LSE p̂n is the unique minimizer of Qn(f) over
the set of all f ∈ C satisfying f = f̄ . Moreover, p̂n has a non-empty finite
support.

Proof. Note that for all f ∈ C, setting f+(i) = max{f(i), 0} for all i > 0
yields f+ ∈ C and

‖f+ − p̃n‖ 6 ‖f − p̃n‖
with a strict inequality if f 6= f+ since p̃n(i) > 0 for all i. Therefore, any
candidate f ∈ C to be a minimizer of Qn takes non-negative values. By
convexity, any canditate f satisfies f̄(i) 6 f(i) for all i > s̃n and therefore,

Qn(f)−Qn(f̄) =
∑
i>s̃n

(f 2(i)− f̄ 2(i))/2 > 0
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with a strict inequality in the case f 6= f̄ . Since f̄ ∈ C, any candidate f to
be a minimizer of Qn over C has f = f̄ . This proves the first assertion.

If p̂n(s̃n) = 0, then p̂n clearly has a finite support included in {0, . . . , s̃n− 1}.
On the other hand, if p̂n(s̃n) > 0, then we must have p̂n(s̃n−1) > p̂n(s̃n), since
otherwise, we would have p̂n(i) = p̂n(s̃n) for all i > s̃n so that Qn(p̂n) = ∞.
Therefore, p̂n = p̂n, which has a finite support. To conclude the proof of the
lemma, let us prove by contradiction that this support is non-empty. Let
k = 1 + minj {p̃n(j) 6= 0}. It is easy to check that there exists a strictly
positive a such that Qn(aTk) < 0. As Qn(0) = 0, p̂n cannot be identically
zero, so the support of p̂n is not empty. �

The following lemma provides a precise characterization of p̂n. It is the
counterpart, in the discrete case, of Lemma 2.2 in Groeneboom et al. (2001)
for the continuous case. For every f ∈ C, we define

Ff (j) =

j∑
i=0

f(i) and Hf (j) =

j∑
i=0

Ff (i) (13)

for all integers j > 0, and Ff (j) = Hf (j) = 0 for all integers j < 0. Thus, Ff
is a distribution function in the case f ∈ C1.

Lemma 2. For all l > 1 we have

Hp̂n(l − 1) > Hp̃n(l − 1) (14)

with an equality if l is a knot of p̂n.
Conversely, if p ∈ C satisfies Hp(l− 1) > Hp̃n(l− 1) for all l > 1 with an

equality if l is a knot of p̂n, then p = p̂n.

Proof. For every ε > 0 and l > 1, define qεl by qεl(i) = p̂n(i) for all i > l and

qεl(i) = p̂n(i) + ε(l − i)

for all i ∈ {0, . . . , l}. Thus, qεl is the sum of convex functions, which implies
that qεl ∈ C for all ε, l. Since p̂n minimizes Qn over C, we have Qn(qεl) >
Qn(p̂n) for all ε, l and therefore,

lim inf
ε↓0

1

ε

(
Qn(qεl)−Qn(p̂n)

)
> 0
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for all l > 1. This simplifies to

l−1∑
i=0

p̂n(i)(l − i) >
l−1∑
i=0

p̃n(i)(l − i)

for all l > 1 and can be rewritten as

l−1∑
j=0

j∑
i=0

p̂n(i) >
l−1∑
j=0

j∑
i=1

p̃n(i)

for all l > 1, which is precisely (14). To prove the equality case, note that
(1 + ε)p̂n ∈ C for all ε > −1. Therefore, for all ε > −1 we have

Qn

(
(1 + ε)p̂n

)
> Qn(p̂n).

Distinguishing the cases ε > 0 and ε < 0 we obtain

lim inf
ε↓0

1

ε

(
Qn((1 + ε)p̂n)−Qn(p̂n)

)
> 0

and

lim sup
ε↑0

1

ε

(
Qn((1 + ε)p̂n)−Qn(p̂n)

)
6 0.

Both limits are equal, so their common value is equal to zero, which can be
written as ∑

i>0

p̂n(i)
(
p̂n(i)− p̃n(i)

)
= 0.

Since f(i) = Ff (i)− Ff (i− 1) for all f ∈ C and i ∈ N, we arrive at

0 =
∑
i>0

p̂n(i)
(
Fp̂n(i)− Fp̂n(i− 1)− Fp̃n(i) + Fp̃n(i− 1)

)
=
∑
i>0

p̂n(i)
(
Fp̂n(i)− Fp̃n(i)

)
−
∑
i>1

p̂n(i)
(
Fp̂n(i− 1)− Fp̃n(i− 1)

)
.

=
∑
i>0

(
p̂n(i)− p̂n(i+ 1)

)(
Fp̂n(i)− Fp̃n(i)

)
.

Since Ff (i) = Hf (i)−Hf (i− 1) for all f ∈ C and i ∈ N, a similar change of
indices as above then yields

0 =
∑
i>0

(
(p̂n(i)− p̂n(i+ 1))− (p̂n(i+ 1)− p̂n(i+ 2))

)(
Hp̂n(i)−Hp̃n(i)

)
=

∑
i>0

∆p̂n(i+ 1)
(
Hp̂n(i)−Hp̃n(i)

)
.
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It follows from (14) that Hp̂n(i) > Hp̃n(i) for all i > 0, and we have ∆p̂n(i+
1) > 0 by convexity of p̂n. A sum of non-negative numbers is equal to zero
if and only if all of these numbers are equal to zero, so we conclude that

∆p̂n(i+ 1)
(
Hp̂n(i)−Hp̃n(i)

)
= 0

for all i > 0. Hence, Hp̂n(i) = Hp̃n(i) for all i > 0 with ∆p̂n(i + 1) > 0.
Setting l = i+ 1, this means that we have an equality in (14) if l is a knot of
p̂n.

Conversely, consider p ∈ C such that Hp(i) > Hp̃n(i) for all i > 0 with an
equality if ∆p(i+ 1) > 0. Then we have

0 =
∑
i>0

∆p(i+ 1)
(
Hp(i)−Hp̃n(i)

)
. (15)

On the other hand, for all f ∈ C we have

Qn(f)−Qn(p) =
1

2
‖f − p‖2 + 〈p− p̃n, f − p〉

> 〈p− p̃n, f − p〉. (16)

Rearranging the indices as above yields

〈p− p̃n, f − p〉 =
∑
i>0

(
∆
(
f − p

)
(i+ 1)

)(
Hp(i)−Hp̃n(i)

)
.

Combining this with (15) and (16) yields

Qn(f)−Qn(p) >
∑
i>0

∆f(i+ 1)
(
Hp(i)−Hp̃n(i)

)
.

The right-hand side is non-negative since Hp(i) > Hp̃n(i) for all i > 0 and
f is convex on N, so we conclude that Qn(f) > Qn(p) for all f ∈ C, whence
p = p̂n. �

Lemma 3. We have ŝn > s̃n, and p̂n ∈ C1.
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Proof. We first prove that

Fp̃n(ŝn + 1) = Fp̂n(ŝn + 1). (17)

By definition of ŝn, ŝn + 1 is a knot of p̂n, so it follows from Lemma 2
that

ŝn∑
j=0

Fp̂n(j) =
ŝn∑
j=0

Fp̃n(j). (18)

Using Lemma 2 again we obtain

ŝn+1∑
j=0

Fp̂n(j) >
ŝn+1∑
j=0

Fp̃n(j),

which, combined with (18) shows that Fp̂n(ŝn + 1) > Fp̃n(ŝn + 1).
Let us consider first the case where ŝn > 1. We have

ŝn−1∑
j=0

Fp̂n(j) >
ŝn−1∑
j=0

Fp̃n(j)

which, combined with (18) shows that Fp̂n(ŝn) 6 Fp̃n(ŝn). But p̂n(ŝn+1) = 0
by definition of ŝn, so we also have Fp̂n(ŝn + 1) = Fp̂n(ŝn) and therefore,

Fp̃n(ŝn) > Fp̂n(ŝn + 1) > Fp̃n(ŝn + 1).

By definition, Fp̃n is non-decreasing, so we conclude that (17) holds.
Consider now the case ŝn = 0. Then, p̃n(1) = 0, since otherwise we could

find q ∈ C such that Qn(q) < Qn(p̂n): take q(0) = p̂n(0), 0 < q(1) 6 p̃n(1)
and q(i) = 0 for all i > 1. Similarly, we have p̂n(0) = p̃n(0), since otherwise,
we could find q ∈ C such that Qn(q) < Qn(p̂n): take q(0) = p̃n(0) and
q(i) = 0 for all i > 0. Hence,

Fp̂n(1) = p̂n(0) = p̃n(0) = Fp̃n(1),

which completes the proof of (17).
To prove that ŝn > s̃n, we argue by contradiction. Assume for a while

that ŝn = s̃n−1. This means that p̂n(i) = 0 for all i > s̃n and p̂n(s̃n−1) > 0.
In this case, we can modify p̂n to a q ∈ C such that q(i) = p̂n(i) for all i < s̃n,
0 < q(s̃n) 6 p̃n(s̃n), and q(i) = 0 for all i > s̃n. Then we have

2
(
Qn(q)−Qn(p̂n)

)
=
(
q(s̃n)− p̃n(s̃n)

)2 − (p̃n(s̃n)
)2
< 0.

24



This is a contradiction since p̂n minimizes Qn and therefore, ŝn 6= s̃n − 1.
Assume now that ŝn < s̃n − 1. Then, Fp̃n(ŝn + 1) < 1, so (17) yields

Fp̂n(j) = Fp̂n(ŝn + 1) < 1

for all j > ŝn + 1. Therefore, for all l > s̃n we have

l−1∑
j=0

(
Fp̂n(j)− Fp̃n(j)

)
=

s̃n−1∑
j=0

(
Fp̂n(j)− Fp̃n(j)

)
+ (l − s̃n)

(
Fp̂n(ŝn + 1)− 1

)
,

which tends to −∞ as l →∞. This is a contradiction since from Lemma 2,
this has to remain non-negative for all l. We conclude that ŝn > s̃n. Com-
bining this with (17) yields Fp̂n(ŝn+1) = 1, which means that p̂n is a genuine
probability mass function. This completes the proof of the lemma. �

6.2. Proof of Proposition 1

From Lemma 1, p̂n belongs to the set of functions f ∈ C with f = f̄ ,
so p̂n is linear on {s̃n − 1, . . . , ŝn}. Consider p ∈ C, fix j ∈ {1, . . . , Nn − 1},
and define pl, pr ∈ C by pl(i) = p(i) for all i 6 X(j) + 1 and all i > X(j+1)

and pl is linear on {X(j), ..., X(j+1) − 1}, whereas pr(i) = p(i) for all i 6 X(j)

and all i > X(j+1) − 1 and pr is linear on {X(j) + 1, ..., X(j+1)}. Setting
q(i) = max{pl(i), pr(i)} for all i ∈ N, we obtain that q ∈ C has at most two
knots on {X(j) + 1, ..., X(j+1) − 1} and in case it has two knots, they occur
at consecutive points. We have q(X(j)) = p(X(j)) for all j, and q 6 p by
convexity of p. Since p̃n(i) > 0 if and only if i = X(j) for some j, this implies
that Qn(q) 6 Qn(p) with a strict inequality if p 6= q. Therefore, p could be
a minimizer of Qn only if p = q. This implies that p̂n has at most two knots
on {X(j) + 1, . . . , X(j+1) − 1}. A similar argument shows that p̂n is linear on
{0, . . . , X(1) + 1}. �

6.3. Proof of Theorem 2

The theorem follows from Lemmas 4 and 5 given below.
Let us define the following notation. Let ν, µ be two measures inM. The

derivative of Ψn in the direction ν calculated in µ is defined as follows:

[Dν(Ψn)] (µ) = lim
ε↓0

1

ε
(Ψn(µ+ εν)−Ψn(µ)) ,
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for all µ and ν such that Ψn(µ) and Ψn(ν) are finite. It can be written as

[Dν(Ψn)] (µ) =
∑
j>1

νj [dj(Ψn)] (µ) (19)

where [dj(Ψn)] (µ), which can be computed thanks to (8), is defined by

[dj(Ψn)] (µ) = lim
ε↓0

1

ε
(Ψn(µ+ εδj)−Ψn(µ)) ,

where δj is the dirac measure at point j.

Lemma 4. Let s̃n be the maximum of the support of p̃n and L > s̃n + 1.
Then we have the following result: π̂L = arg minµ∈ML Ψn(µ) is equivalent to

[dj(Ψn)] (π̂L) > 0 ∀1 6 j 6 L, and [dj(Ψn)] (π̂L) = 0 ∀j ∈ Supp(π̂L) (20)

This lemma is the same as Lemma 1 in Groeneboom et al. (2008) and its
proof is omitted.

Lemma 5. Let us define the following quantities: let π =
∑L−1

i=1 aiδji be the
minimizer of Ψn over the set of positive measures spanned by {δji , 1 6 i 6 L− 1},
let jL be an integer such that jL 6= ji for all 1 6 i 6 L−1, and [djL(Ψn)] (π) <

0 and let π? =
∑L

i=1 biδji be the minimizer of Ψn over the set spanned by
{δji , 1 6 i 6 L}. We have the two following results.

1. The coefficient bL is strictly positive, and there exists ε > 0 such that
π+ε(π?−π) is non negative, and such that Ψn(π+ε(π?−π)) < Ψn(π).

2. Assume that some coefficients bi, 1 6 i 6 L− 1 are negative and let

` = arg min
16i6L−1

{
ai

ai − bi
for i such that bi < ai

}
.

Let π?? =
∑L

i=1,i 6=` ciδji be the minimizer of Ψn over the set spanned by
{δji , 1 6 i 6 L, i 6= `}. Then cL is positive.
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Proof. The first part of the Lemma corresponds to Lemma 2 in Groeneboom
et al. (2008) and its proof is omitted.

The second part of the lemma follows by noting that removing ` from the
support remains to take ε = a`/(a` − b`). Therefore

Ψn(π??) 6 Ψn

(
π +

a`
a` − b`

(π? − π)

)
< Ψn(π).

Just as above, we have

lim
ε↓0

1

ε
(Ψn((1− ε)π + επ??)−Ψn(π)) = cL [djL(Ψn)] (π).

It follows that cL > 0. �

6.4. Proof of Theorem 3

Let us begin with the following lemma.

Lemma 6. If π̂L = arg minµ∈ML Ψn(µ), then for all j > 1,

[dL+j(Ψn)] (π̂L) = b

(
L∑
i=1

π̂Li − 1

)
,

for some positive constant b depending on j and on the maximum of the
support of π̂L.

Proof. Let us consider two cases according to wether π̂LL equals 0 or not.
Suppose that π̂LL > 0, and write

[dL+j(Ψn)] (π̂L) =
L−1∑
l=1

TL+j(l)

(
L∑

j′=l+1

π̂Lj′Tj′(l)− p̃n(l)

)
.

Because for 0 6 l 6 L − 1, TL+j(l) = aTL(l) + b, for constants a and b
depending on L and j, we get

[dL+j(Ψn)] (π̂L) = a [dL(Ψn)] (π̂L) + b

[
L−1∑
l=1

L∑
j′=l+1

π̂Lj′Tj′(l)− 1

]
.

Following Lemma 4, [dL(Ψn)] (π̂L) = 0, and we get

[dL+j(Ψn)] (π̂L) = b

(
L∑
i=1

π̂Li

j−1∑
l=0

Tj(l)− 1

)
= b

(
L∑
i=1

π̂Li − 1

)
.
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If π̂LL = 0, then π̂L ∈ ML1 for some L1 < L. Thanks to Lemma 4, we
know that π̂L is the minimizer of Ψn over ML1 . Then we can show that
[dL1+j(Ψn)] (π̂L) = 0 for all j > 1 exactly as we have done in the case π̂LL > 0.

To conclude the proof of Theorem 3, note first that for all L′ 6 L, we
have ML′ ⊂ML, which implies

Ψn(π̂L) 6 Ψn(π̂L
′
). (21)

Second, it follows from Lemmas 4 and 6 that if
∑L

i=1 π̂
L
i = 1, then for all

L′ > L, π̂L
′
= π̂L. Therefore Equation (21) holds for all positive integers L′,

which implies that Ψn(π̂L) 6 Ψn(π) for all measures π ∈ M with a finite
support. Therefore π̂L = π̂n. �

6.5. Proof of Theorem 4

Inequality (9) follows from (3) when applied with S = C and g = p̃n. To
investigate the strict inequality case, note that for all f ∈ C, we have

‖f − p̃n‖2 = ‖f − p̂n‖2 + ‖p̂n − p̃n‖2 + 2〈f − p̂n, p̂n − p̃n〉
> ‖f − p̂n‖2 + 2〈p̂n − p̃n, f − p̂n〉

with a strict inequality in the case where p̃n is non-convex since in that case,
p̃n 6= p̂n. But from (4), where we replace f by p̃n and g by f , it follows that
〈p̂n − p̃n, f − p̂n〉 > 0. Hence the strict inequality case in (9).

In order to prove (10), it now suffices to prove that

lim inf
n→∞

P(p̃n is non-convex) > 1/2. (22)

For this task, note that

P(p̃n is non-convex) > P (∆p̃n(i) < 0)

> P
(√

n∆(p̃n − p0)(i) < 0
)
,

since ∆p0(i) = 0. From the central limit theorem, the random variable√
n∆(p̃n − p0)(i) converges, as n → ∞, to a centered Gaussian variable X

with a non-degenerate variance and therefore,

lim inf
n→∞

P (p̃n is non-convex) > P(X 6 0).

Inequality (22) follows since P(X 6 0) = 1/2. �
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6.6. Proof of Theorem 5

Since p̂n minimizes Qn(f) over f ∈ C, for all q : N → ∞ such that
p̂n − εq ∈ C for all ε > 0 sufficiently close to zero, we have

0 6 lim
ε↘0

Qn(p̂n − εq)−Qn(p̂n)

ε
,

that is
0 6 〈p̃n − p̂n, q〉. (23)

For u > 1 and 0 6 a 6 ŝn, let us consider

q(i) = 1−
(
|i− a|

ŝn + 1− a

)u
, for 1 6 i 6 ŝn,

and q(i) = 0 for i > ŝn. Then p̂n − εq ∈ C for all ε ∈ (0, p̂n(ŝn)/q(ŝn)], so we
have (23). Recall that ŝn > s̃n, see Theorem 1, so that p̂n(i) = p̃n(i) = 0 for
all i > ŝn. Since

∑
i>0 p̂n(i) =

∑
i>0 p̃n(i) = 1, (23) implies (11).

Similarly, for all q : N → ∞ such that p̂n + εq ∈ C for all ε sufficiently
close to zero, we have

0 6 lim
ε↘0

Qn(p̂n + εq)−Qn(p̂n)

ε
and 0 > lim

ε↗0

Qn(p̂n + εq)−Qn(p̂n)

ε
,

which implies 0 = 〈p̃n − p̂n, q〉. Setting

q(i) =

(
1− i

ŝn + 1

)
for 1 6 i 6 ŝn, and q(i) = 0, for i > ŝn,

we have p̂n+εq ∈ C for all ε > −p̂n(ŝn)/q(ŝn), hence
∑

i>0 ip̃n(i) =
∑

i>0 ip̂n(i).
It remains to prove that p̂n(0) > p̃n(0). Argue by contradiction and

assume that p̂n(0) < p̃n(0). Define q(0) = p̃n(0) and q(i) = p̂n(i) for all
i > 1. Then, q ∈ C and we have Qn(q) < Qn(p̂n). This is a contradiction
since p̂n minimizes Qn over C. This completes the proof of the theorem. �

6.7. Proof of Theorems 6 and 7

Invoking (3) with S = C, f = p0 and g = p̃n yields

√
n‖p0C − p̂n‖2 6

√
n‖p0 − p̃n‖2 = OP (1),
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see for instance Theorem 3.1 in Jankowski and Wellner (2009) for the right
equality. Moreover, we have ‖f‖r 6 ‖f‖2 for all r ∈ [2,∞] and all f ∈ `2(N)
so with f = p0 − p̂n we obtain:

√
n‖p0C − p̂n‖r 6

√
n‖p0 − p̂n‖2 = OP (1),

which completes the proof of Theorem 7. In the particular case where p0 is
convex, we have p0C = p0, which yields Theorem 6. �

Appendix A. More about discrete convex functions

The aim of this appendix is to prove that any discrete convex function in
`2(N) is a combination of the triangular probabilities defined in (5).

Theorem 8. Let f ∈ `2(N).

1. We have f ∈ C if and only if there exists π ∈M satisfying (6).

2. Assume f ∈ C. Then, π in (6) is uniquely defined by

πj =
j(j + 1)

2
∆f(j) for all j > 1. (A.1)

Moreover, π is a probability measure on N\{0} if and only if f ∈ C1.

Note that according to (A.1), the support of π is included in the set of
knots of f . In the case where f has a non-empty finite support with maximal
point denoted by s, the greatest knot of f is s+1, since ∆f(s+1) = f(s) > 0,
so the support of π is included in the finite set {1, . . . , s+ 1}.

Proof of Theorem 8. Assume f ∈ C and define π by (A.1). As f is convex,
π takes non-negative values, so π ∈M. Moreover, for all i ∈ N we have

∑
j>i+1

πjTj(i) =
∑
j>i+1

∆f(j)(j − i) =
∑
j>i+1

j−i∑
k=1

∆f(j)

and therefore,∑
j>i+1

πjTj(i) =
∑
k>1

∑
j>i+k

∆f(j) =
∑
k>1

(
f(i+ k − 1)− f(i+ k)

)
.
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This reduces to (6), which proves that π exists. Conversely, every f ∈ `2(N)
satisfying (6) for some π ∈ M is convex, hence the first assertion of the
theorem. To prove the second assertion, we consider f ∈ C. In view of what
precedes, f satisfies (6) for some π ∈M, so we have

f(i− 1)− f(i) =
∑
j>i

πj
(
Tj(i− 1)− Tj(i)

)
=
∑
j>i

2πj
j(j + 1)

for all i > 1. By convexity of f we conclude that

0 6
(
f(i− 1)− f(i)

)
−
(
f(i)− f(i+ 1)

)
=

2πi
i(i+ 1)

for all i > 1, which implies that π is uniquely defined by (A.1). Moreover,∑
i>0

f(i) =
∑
i>0

∑
j>i+1

πjTj(i) =
∑
i>0

∑
j>1

πjTj(i)

since Tj(i) = 0 for all j 6 i. This implies that∑
i>0

f(i) =
∑
j>1

πj
(∑
i>0

Tj(i)
)

where
∑

i>0 Tj(i) = 1. This completes the proof of the theorem. �
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