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We propose an adiabatic method for the robust transfer of light between the two outer waveguides in a
three-waveguide directional coupler. Unlike the established technique inherited from stimulated Raman adiabatic
passage (STIRAP), the method proposed here is symmetric with respect to an exchange of the left and right
waveguides in the structure and permits the transfer in both directions. The technique uses the adiabatic elimination
of the middle waveguide together with level crossing and adiabatic passage in an effective two-state system
involving only the external waveguides. It requires a strong detuning between the outer and the middle waveguide
and does not rely on the adiabatic transfer state (dark state) underlying the STIRAP process. The suggested
technique is generalized to an array of N waveguides and verified by numerical beam propagation calculations.

DOI: 10.1103/PhysRevA.97.023811

I. INTRODUCTION

Among the many useful analogies existing between quan-
tum mechanics and classical optics [1–6], the one relating
the quantum process of stimulated Raman adiabatic passage
(STIRAP) [7–10] and systems of coupled optical waveguides
has been widely investigated and applied in recent years
[11–18]. Examples includes analogies of STIRAP in a three-
waveguide directional coupler [11–13], fractional STIRAP
[14], and extensions of STIRAP to multiple states [15–18].
Shortcuts to optical adiabatic passage were also proposed, e.g.,
in multimode waveguide devices in order to reduce the required
length for mode conversion with respect to conventional
STIRAP-like schemes [19,20]. An important feature of the
above adiabatic light transfer processes is their robustness with
respect to the waveguide design parameters, which is related
to the fact that the light waves are associated with the same
spatially evolving eigenstate of the system. This robustness
leads, for instance, to an increased spectral bandwidth.

In the three-waveguide case of STIRAP, the light is trans-
ferred adiabatically from an input waveguide 1 to a target
waveguide 3, which are coupled via an intermediate waveguide
2 by two sequential evanescent coupling processes, named
pump and Stokes in analogy to the corresponding coupling
pulses in atomic physics. A unique and very useful feature
of STIRAP is that for a counterintuitive order of couplings,
meaning that the Stokes coupling between waveguides 2 and 3
is preceding the pump coupling, the intermediate waveguide 2
does not get any light, even transiently. Therefore, the pro-
perties of the intermediate waveguide, including possible
losses, are largely irrelevant. The reason for this unique feature
is that the evolution of STIRAP proceeds via an adiabatic dark
state, which does not involve waveguide 2. The dark state is
associated with waveguide 1 initially and waveguide 3 in the
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end, thereby providing a direct adiabatic route from 1 to 3. It
is important to note that this conventional STIRAP works well
only for the counterintuitive order of couplings because the
dark adiabatic state cannot be used for the intuitive order. This
means that the symmetry for left to right is broken.

In this paper, we suggest robust waveguide structures
inspired by adiabatic elimination in quantum physics [21–25]
that lead to full light transfer independently of the intuitive or
counterintuitive order of couplings. Importantly, the proposed
technique conserves the symmetry between the left and right
waveguides. It involves a detuning between the propagation
constants of the outer waveguides and the central waveguide(s)
that is constant over propagation. Moreover, in contrast to
multiple STIRAP, which can be used successfully to transfer
light between the outer waveguides only if the total number of
waveguides in the array is odd [15–18], the present approach
works equally well for odd and even numbers of waveguides in
the array. While most earlier studies on adiabatic elimination
in waveguide optics considered only parallel waveguides
[26–28], here we take advantage of the simple control param-
eter of a varying coupling strength to the outer waveguides,
which can be realized by varying the distance between these
outer waveguides and the central ones [29]. It is shown that
these spatially varying coupling constants lead to a space-
dependent pseudodetuning of the propagation constants in an
effective two-waveguide system. For our specific waveguide
design this effective system is fully analogous to the rapid adia-
batic passage process (RAP) in two-level quantum systems [9].
Therefore, the behavior of our proposed structures is formally
equivalent to the one of a two-waveguide structure with an
explicit longitudinal variation and zero crossing of the waveg-
uide detuning parameter. Such a system implements the optical
analog to the RAP process and was studied experimentally in
a recent work [30]. Section II describes the theory underlying
adiabatic elimination in a system of three waveguides, while
Sec. III describes how the effect is generalized to a total number
N of waveguides. Finally, in Sec. IV, we numerically verify
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FIG. 1. Waveguide structure for adiabatic elimination in an array
of (a) three and (b) six waveguides. The color code visualizes
the normalized refractive index contrast α. α = 1 is the maximum
refractive index change of the outer waveguides and α = 6 the one
for the central one(s), leading to a mismatch �β of the propagation
constants. Injection into the left waveguide 1 at z = 0 corresponds to
an intuitive order of coupling while injection into the right waveguide
(waveguide 3, respectively 6) corresponds to a counterintuitive order
of coupling.

the expectations by means of the beam propagation method
(BPM) and the coupled-mode theory. We analyze the expected
spectral and length dependences. The example calculations
are performed for fused silica waveguides with propagation
around the telecommunication wavelengths and for structures
composed of three or six waveguides. It is shown that the
combination of adiabatic elimination and of the slow adiabatic
spatial evolution of the Stokes and pump coupling constants
leads to a robust bidirectional light exchange between the outer
waveguides over a broad spectral range.

II. ADIABATIC ELIMINATION FOR ARRAY
OF THREE WAVEGUIDES

We consider a system of three evanescently coupled dielec-
tric waveguides, such as the one shown in Fig. 1(a), for which
the outer waveguides 1 and 3 have an identical refractive index
profile which differs from the one of the central one. Let the
light propagation constant in the outer waveguides be β0 and
the one of the central waveguide be β0 + �β. In the framework
of coupled-wave theory, the propagation of the electric field
amplitudes a1(z), a2(z), and a3(z) of the waves traveling in
the above three waveguides is described by a system of three
coupled differential equations written in matrix form as [31]

i
d

dz

⎡
⎣a1

a2

a3

⎤
⎦ =

⎡
⎣ 0 C12e

−i�βz 0
C21e

i�βz 0 C23e
i�βz

0 C32e
−i�βz 0

⎤
⎦

⎡
⎣a1

a2

a3

⎤
⎦,

(1)

where the Cij are the z-dependent coupling coefficients from
waveguide j to waveguide i and in general Cij �= Cji . The
longitudinal z variation of the coupling constants is associated
with the changing distance between the waveguides seen in
Fig. 1(a). The direct coupling between waveguides 1 and 3 is
neglected because the structure is assumed to be planar and
their distance is supposed to be sufficiently large.

Similarly to the approach given in Ref. [32], the above
Eq. (1) can be brought in a more symmetric form by

performing the simple transformation a′
1 = √

C21/C12 a1,
a′

2 = exp(−i�βz)a2, a′
3 = √

C23/C32 a3. This leads to the
form [11]

i
d

dz

⎡
⎣a′

1
a′

2
a′

3

⎤
⎦ =

⎡
⎣ 0 CP 0

CP �β CS

0 CS 0

⎤
⎦

⎡
⎣a′

1
a′

2
a′

3

⎤
⎦, (2)

where the pump (CP ) and the Stokes (CS) coupling constants
are geometrical averages of the above coefficients Cij , i.e.,
CP ≡ √

C12C21 and CS ≡ √
C23C32.

When the propagation constant mismatch �β is very large,
meaning

|�β|√
C2

P + C2
S

� 1, (3)

as we shall assume for our case, then the derivative of a′
2(z)

varies rapidly and the average value of a′
2(z) and a2(z) over

many cycles will be zero, thus the average of the derivative
vanishes. If no light is initially input in the middle waveguide,
this extreme limit leads to a strong suppression of the wave
amplitude in this waveguide—this effect is known in quantum
physics as adiabatic elimination [21–25]. The easiest mathe-
matical way to perform the adiabatic elimination of the middle
waveguide is to set da′

2(z)/dz = 0,

i
d

dz
a′

2 = 0 = CP a′
1 + �βa′

2 + CSa
′
3

⇒ a′
2 = − CP

�β
a1′ − CS

�β
a′

3, (4)

and to replace the resulting expression for a′
2(z) in the

other two equations of (2). After an unimportant phase
shift of the electric field amplitudes such that ãi(z) ≡
exp [−i(C2

P + C2
S)z/(2�β)]a′

i(z), this leads to an equation
characterizing an effective two-state system given by

i
d

dz

[
ã1

ã3

]
=

[−�eff Ceff

Ceff �eff

][
ã1

ã3

]
, (5)

where

�eff = C2
P − C2

S

2�β
(6)

is an effective detuning and

Ceff = −CP CS

�β
(7)

is an effective coupling coefficient. We will now write Eq. (5)
in the so-called adiabatic basis [9,10,25] (for the two-state
atom, this is the basis of the instantaneous eigenstates of the
Hamiltonian),

i
d

dz

[
b1

b3

]
=

⎡
⎣−

√
C2

eff + �2
eff −i dϑ

dz

i dϑ
dz

√
C2

eff + �eff
2

⎤
⎦[

b1

b3

]
, (8)

where

tan 2ϑ = Ceff

�eff
. (9)

The connection between the amplitudes ã1 and ã3 and the
adiabatic ones b1 and b3 is given by

b1 = ã1 cos ϑ − ã3 sin ϑ, (10a)

b3 = ã1 sin ϑ + ã3 cos ϑ. (10b)
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When the evolution of the system is adiabatic, |b1|2 and |b3|2
remain constant [9,10,25]. Mathematically, adiabatic evolution
means that the nondiagonal terms in Eq. (8) are small compared
to the diagonal terms and can be neglected. This restriction
amounts to the following adiabatic condition on the process
parameters [9,10,25],∣∣∣∣ d

dz
ϑ

∣∣∣∣ � (
C2

eff + �2
eff

)1/2
, (11)

which, using Eq. (9), takes the explicit form

2
(
C2

eff + �2
eff

)3/2

∣∣�eff
d
dz

Ceff − Ceff
d
dz

�eff

∣∣ � 1. (12)

Hence adiabatic evolution requires a smooth enough z

dependence of the effective phase mismatch �eff and of the
effective coupling coefficient Ceff, a long enough waveguide
length, and a large enough coupling. In the adiabatic regime
|b1,3|2 = const, but the light intensity contained in waveguides
1 and 3 (∝|ã1,3|2) will vary if the mixing angle ϑ varies,
thus adiabatic evolution can produce energy transfer between
the outer waveguides. Note that C2

eff + �2
eff decreases by

increasing �β, therefore a sort of compromise must be found
to optimize both criteria (3) and (12).

For the case of our structures shown in Fig. 1(a) and the
examples that will be discussed in Sec. IV, the effective phase
mismatch �eff sweeps from some negative to some positive
value. In this process the mixing angle ϑ changes from π/2
to 0. With the light initially in waveguide 1, the system will
stay adiabatically in state b3, so that the light will switch to
waveguide 3 when ϑ approaches zero. Therefore the effective
phase mismatch sweep will produce complete light switching.
This is exactly the mechanism that is at work also in the
RAP-like two-waveguide system with explicit detuning that
was reported recently [30]. It is worth noting that adiabatic
transfer does not bring about any specific restriction to the
shape of the effective phase mismatch �eff(z) as far as the
condition (12) is fulfilled and the mixing angle ϑ changes from
π/2 to 0 (or vice versa).

The effective phase mismatch �eff can sweep from negative
values to some positive values (or vice versa) if the Stokes
coupling is stronger than the pump coupling at the beginning
of propagation and the reverse is true at the end of propagation
(or vice versa). The consequence is that the intuitive and the
counterintuitive order of coupling will lead both to the same
final outcome, a complete switching of the light between the
outer waveguides in the array, as will be verified in Sec. IV by
means of BPM simulations. This property is not found in the
case of the conventional STIRAP process.

III. ADIABATIC ELIMINATION FOR ARRAY
OF N WAVEGUIDES

The above adiabatic elimination effectively keeps only the
two outer waveguides and eliminates the effect of the central
one. This effect can be extended to the case of an array
of N waveguides, where the N − 2 internal waveguides are
adiabatically eliminated, keeping again only the two outer
ones. Below, we limit ourselves to the explicit demonstration
of the case N = 4, but the conclusions remain valid in the

general case of N states, as was shown in the case of quantum
physics [33].

Similar to the case of Eq. (2), the equation describing the
evolution of the normalized wave amplitudes a′

i(z) in an array
of four waveguides can be brought in the form

i
d

dz

⎡
⎢⎣

a′
1

a′
2

a′
3

a′
4

⎤
⎥⎦ =

⎡
⎢⎣

0 CP 0 0
CP �β CI 0
0 CI �β CS

0 0 CS 0

⎤
⎥⎦

⎡
⎢⎣

a′
1

a′
2

a′
3

a′
4

⎤
⎥⎦, (13)

where CP ≡ √
C12C21, CS ≡ √

C34C43 are the pump and
Stokes couplings, respectively, and CI = C23 = C32 is the
coupling coefficient between the internal waveguides, which
are assumed to be identical and are detuned by �β with
respect to the outer ones. Here, the adiabatic elimination of
the intermediate waveguides is done by setting da′

2/dz = 0
and da′

3/dz = 0 in Eq. (13), determining the amplitudes a′
2

and a′
3 in terms of a′

1 and a′
4 from the resulting set of linear

algebraic equations, and replacing them in the equations for
da′

1/dz and da′
4/dz. This permits one to reduce the four-state

problem to an effective two-state system which takes a form
identical to Eq. (5),

i
d

dz

[
ã1

ã4

]
=

[−�eff Ceff

Ceff �eff

][
ã1

ã4

]
, (14)

where the relation between the amplitudes ãi and a′
i is again a

simple phase shift and

�eff = �β
(
C2

P − C2
S

)
2
(
�β2 − C2

I

) , (15)

Ceff = CP CICS

�β2 − C2
I

. (16)

The corresponding expressions for N = 6, a case that will be
illustrated below by BPM simulations, are

�eff = �β
(
�β2 − 2C2

I

)
2
[(

�β2 − C2
I

)2 − �β2C2
I

](
C2

P − C2
S

)
, (17)

Ceff = CP C3
I CS(

�β2 − C2
I

)2 − �β2C2
I

. (18)

Since Eqs. (14) and (5) are identical, as was the case for the
three-waveguide situation of Sec. II, in the adiabatic regime
the present situation is expected to lead to a RAP-like switch
of the wave amplitude between waveguides 1 and 4, both for
the counterintuitive and intuitive order of couplings.

IV. EXAMPLES

In this section we verify the above expectations by per-
forming numerical simulations of the wave propagation in
structures containing a total of three or six planar waveguides.
A BPM method using a split-step Fourier method is used
for the simulations [34,35]. The corresponding waveguide
structures are shown in Figs. 1(a) and 1(b) for N = 3 and
N = 6, respectively. The waveguides are assumed to be written
in fused silica for which the cladding refractive index is 1.4440
at 1550 nm [36]. In the transverse x dimension, the form of
the refractive index profile of each waveguide i is assumed
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to be �ni(x) = αi�n0 exp[−(x/d)8], where �ni(x) is the
amplitude of the refractive index contrast for waveguide i

and �n0 = 0.004. For the sake of simplicity, we consider
that all waveguides have the same 1/e half width d = 4 μm
but the internal waveguides have a larger refractive index
contrast (by a factor α = 6) with respect to the outer ones
(for which α = 1). This produces the mismatch �β in the
mode propagation constants. While waveguides 2 to N − 1
are straight, we assume that the two outer waveguides have a
parabolic geometrical form given by

δx1(z) = −72(z/L − 1/2 + 1/10)2, (19a)

δxN (z) = 72(z/L − 1/2 − 1/10)2. (19b)

δx1(z) gives the evolution of the center position of waveguide
1 and δxN (z) of waveguide N in micrometers. The total
propagation length is L = 30 mm. This gives a z-longitudinal
separation distance between the maximum of the coupling
constants CP and CS of 6 mm. In the x-transverse dimension,
the minimum separation between two adjacent waveguides is
9.6 μm (from the center to the center of the waveguides).

First, we consider the case N = 3 and the situation where
α = 1 for all waveguides, that is, all waveguides have an
identical index profile and thus �β = 0. Obviously, in this
case adiabatic elimination cannot take place since the condition
(3) is not satisfied. Despite that, when the light is injected in
the right outer waveguide (counterintuitive order), a complete
light transfer to the leftmost waveguide without excitation of
the middle one is obtained. This is seen in Fig. 2(a), simulated
for a light wavelength of 1550 nm and corresponding to the
standard STIRAP process in a three-waveguide directional
coupler discussed earlier [11–13]. In contrast, as can be seen
in Fig. 2(b), the reverse situation where the light is injected
in the left waveguide (intuitive order) is much more complex
and does not lead to a corresponding transfer to the opposite
outer waveguide. This is a manifestation of the mentioned
asymmetry of the STIRAP process with respect to waveguide
exchange.

Figures 2(c) and 2(d) show the situation as the one of
Figs. 2(a) and 2(b), but for the case of an increased index
contrast for the central waveguide (α = 6). In this case the
light transfer occurs both from left to right and from right
to left in a symmetric way with almost no excitation of the
middle waveguide, as expected from the theory in Sec. II.
In fact, for the situation of Figs. 2(c) and 2(d), the adiabatic
elimination condition (3) is satisfied. As seen in Fig. 3(a), the
minimum value of the ratio |�β|/(C2

P + C2
S)

1/2
is approxi-

mately 4 (obtained at the z locations where either CP or CS is
maximal). Note that, as discussed in more detail below, the
central waveguides are multimodes. This minimum (worst-
case) ratio corresponds to the coupling of the fundamental
mode of the outer waveguides (mode number m = 0) with
the second excited mode of the central waveguide (m = 2).
The minimum of the above ratio for the coupling between
the fundamental modes of all waveguides is roughly 20 times
larger [see Fig. 3(a)]. The corresponding evolution of the
adiabatic criterion (12) is shown in Fig. 3(d). If we consider
the coupling between the modes m = 0 and m = 2, the ratio
in (12) varies between 1.5 and 4 over the interacting distance
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FIG. 2. Wave propagation in a three-waveguide structure calcu-
lated by the BPM method at the wavelength λ = 1550 nm for light
injection into the right waveguide (left column) and into the left
waveguide (right column). (a) and (b) are for the case α = 1, for which
all waveguides have the same index contrast and therefore �β = 0. (c)
and (d) are for α = 6 [refractive index design corresponding to the one
of Fig. 1(a)]. This gives the RAP-like light switching between the outer
waveguides. (e) and (f) are for a fully symmetric waveguide structure
for which �eff = 0 in (5) and for which the RAP-like transfer cannot
take place (α = 6). The small top diagrams represent the intensity
profiles at the end of the 30-mm propagation. The intensity color
scale is the same for all the surface plots.

where the longitudinal shift between waveguides 1 and 3
leads to a variation of the effective z-dependent detuning �eff.
In contrast, the ratio of Eq. (12) would be less than one if
two fundamental modes are considered since the coupling is
weaker and the detuning larger. Therefore, for this coupling
among the modes m = 0, there is an increase of the ratio
of Eq. (3) that goes at the expense of the adiabatic criterion
(12). Figure 2(d) clearly shows that the mode with m = 2
appears weakly in the transient regime. Therefore, under the
above conditions, the system chooses the channel over the
intermediate mode m = 2 that leads to the optimum transfer
and fulfills satisfactorily both criteria. The above values for
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FIG. 3. Visualization of the adiabatic parameters for the three-
waveguide case (N = 3) for the structure of Fig. 1(a) at λ = 1550 nm,
corresponding to the symmetric light transfer of Figs. 2(c) and 2(d).
The different “0i” curves consider a possible coupling between the
fundamental mode (m = 0) of the outer waveguides (1 or 3) and
the ith mode (m = i, i = 0, 1, or 2) of the central waveguide 2.
The panels show (a) the z dependence of the adiabatic elimination
criterion of Eq. (3), (b) �eff(z) [Eq. (6)], (c) |Ceff(z)| [Eq. (7)], (d)
the adiabatic criterion of Eq. (12) [deduced from (b) and (c)], and
(e) the corresponding RAP-like two-waveguide structure underlying
Eq. (5). In (e), the color scale illustrates the variation of the waveguide
refractive index contrast with respect to the constant refractive index
contrast �n0 = 0.004 of the left waveguide.

criteria (3) and (12) have been approximated by calculating
the propagation and coupling constants of the different modes
of a planar step index waveguide with a refractive index
contrast of �n0 and a width equal to the full width at half
maximum of the waveguides used in the BPM simulations
(FWHM = 7.64 μm).

In the case of the symmetric transfer of Figs. 2(c) and
2(d), it is interesting to visualize the evolution of the effective
detuning �eff(z) [Fig. 3(b)] and of the effective coupling
Ceff(z) [Fig. 3(c)], as well as the corresponding effective
RAP-like waveguide structure associated with Eq. (5), which
is shown in Fig. 3(e). Clearly, as seen in Figs. 3(b) and 3(c),
only the combination of the fundamental modes in the outer
waveguides and the m = 2 mode in the central waveguide leads
to significant values for �eff and Ceff, which confirms again the
above reasoning. It is also worth noting that, as seen in Fig. 3(e),
the relative index contrast that would be needed to induce the
above effective detuning �eff is quite small. Nevertheless, this
is sufficient to induce a robust RAP-like light transfer similar
to the cases treated explicitly in Ref. [30].

Obviously, besides adiabatic elimination, also a large
enough effective detuning �eff in (6) is essential for the
symmetric transfer observed in Figs. 2(c) and 2(d). To show
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FIG. 4. Wave propagation in a three-waveguide structure as in
Figs. 2(c) and 2(d) (α = 6) but for different wavelengths. (a) and (b)
are at λ = 1300 nm, and (c) and (d) are at λ = 1137 nm.

this, we also consider as a counterexample the fully sym-
metric structure where the distances between the two outer
waveguides and the central one are identical for all z, i.e.,
δx1(z) = −δx2(z) = −72(z/L − 1/2)2 instead of Eqs. (19a)
and (19b). In this case, the pump and Stokes coupling constants
are the same and the pseudodetuning �eff in Eq. (5) vanishes
everywhere. Therefore, the system cannot behave as a RAP
process, even though adiabatic elimination of the middle
waveguide is still at work. This is seen in Figs. 2(e) and 2(f),
which shows how the light is getting distributed among the two
outer waveguides.

Figures 4(a) and 4(b) represent the same situations as
Figs. 2(c) and 2(d) but for a propagating wavelength of 1300
nm instead of 1550 nm. A symmetric transfer is also achieved
here. The results are even better for this set of parameters, with
less transient light in the central waveguide in the intuitive
case [Fig. 4(b)]. This is expected since the minimum value of
the adiabatic elimination ratio in Eq. (3) is now approximately
22, again for the coupling of the modes m = 0 and m = 2.
Note that transfer is efficient despite the fact that the ratio of
Eq. (12) is not so large in this case (�1). The behavior seen in
Figs. 2(c) and 2(d) and Figs. 4(a) and 4(b) proves the robustness
of the process resulting in a broadband behavior, which will be
discussed in more detail below. This robustness is associated
with the adiabatic evolution of the parameters in the RAP-like
light transfer between the outer waveguides.

Next, we consider a case where there are more than three
waveguides. It is worth remembering that a multistate STIRAP
permits one to achieve a robust transfer from the initial to
the target state via the so-called adiabatic dark state only if
the total number of states is odd and the Stokes coupling
precedes the pump coupling (counterintuitive order) [18,33].
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FIG. 5. Wave propagation in a six-waveguide structure calculated
by the BPM method for light injection into the right waveguide (left
column) and into the left waveguide (right column). The wavelength is
λ = 1550 nm. (a) and (b) are for the case α = 1. (c) and (d) are for α =
6 [refractive index design corresponding to the one of Fig. 1(b)]. This
gives the RAP-like light switching between the outer waveguides.

For our calculations we choose therefore an even total number
of waveguides (N = 6) [see Fig. 1(b)] in order to prove that
for the present approach there is no limitation on the parity
of the waveguide number. Figures 5(a) and 5(b) show again
the case where there is no adiabatic elimination because all
the waveguides have the same index contrast (α = 1) and thus
�β = 0. In this case, the propagation behavior is very sensitive
to the waveguide geometries and, in general, one obtains a quite
complex distribution of the light among the various outputs.
In contrast, by increasing the propagation constant mismatch
by means of the factor α = 6, the switch of the wave between
the outer waveguides expected from the RAP-like process is
observed. This is seen in Figs. 5(c) and 5(d) for λ = 1550 nm.

As already mentioned, an important point is that for our
simulated cases the outer waveguides are essentially single
mode, however, the internal waveguides are no longer single
mode as soon as α > 1. This can be seen, for instance, in
Fig. 2(d) where the transient light in the central waveguide
for the intuitive case (right column) propagates in the third-
order mode (with a propagation constant β2). This is the
higher supported mode of waveguide 2, and this mode has
therefore the smallest �β with the propagation constant β0 of
waveguides 1 and 3. As a matter of principle, the fundamental
mode in the input waveguide can couple to any of the modes
of the internal ones. The RAP-like switching behavior can
be obtained provided that criterion (3) is satisfied for any of
the modes, in other words, all of the propagation constant
must be sufficiently far from the propagation constant of the
fundamental mode in the outer waveguides. If this is not
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FIG. 6. Evolution of the transfer efficiencies with wavelength for
(a) N = 3 and (b) N = 6. The refractive index profiles correspond
to the ones of Fig. 1. ηCI (ηI ) is the transfer efficiency for the
counterintuitive case (the intuitive case). The efficiency spectrum is
compared to the one of a directional coupler (ηcoupler) composed of
two straight waveguides and tuned to a wavelength of 1.55 μm (see
text).

satisfied, the transfer between the outer waveguides is no longer
efficient. Therefore, the influence of the competition between
modes affects the robustness of the transfer efficiencies. They
are defined by ηCI = P1(z = L)/PN (z = 0) for the counter-
intuitive case and ηI = PN (z = L)/P1(z = 0) for the intuitive
case, where Pi(z) is the power in waveguide i at the propagation
distance z. This is illustrated in Fig. 6, representing the transfer
efficiencies ηCI and ηI for N = 3 and N = 6 as a function of
wavelength. The dispersion of the refractive index is given by
Ref. [36], but we neglect the wavelength variation of �n0,
�n0 = 0.004, for all wavelengths.

The robustness of the transfer by adiabatic elimination is
clearly seen for the three-waveguide case, where a rather flat
profile is obtained over more than 600 nm [Fig. 6(a)]. The
efficiency drop for short wavelengths (�1150 nm) is due to
a combination of two factors. The first is the decrease of
the coupling constants with decreasing wavelengths, and the
second is the appearance of the fourth mode in the central
waveguide, whose propagation constant β3 starts close to
the fundamental one β0 of the outer ones, so preventing the
adiabatic elimination. For the intuitive case, the efficiency
even drops to zero for a specific wavelength around 1.14 μm
due to the association of an extremely small detuning in
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the propagation constants β3 and β0 and a coupling effect
driving all the light in the central waveguide at the end of
the propagation [see Fig. 4(d)]. For the counterintuitive case,
the efficiency ηCI is still 1, as illustrated in Fig. 4(c), since
there is never any light in waveguide 2 in the counterintuitive
case (as for STIRAP). Therefore, for specific wavelengths
and/or specific values of α, the structure might act as a mode
converter or a mode filter rather than as a robust directional
coupler. For longer wavelengths, the efficiency drops again
since the wavelength approaches the cutoff frequency of the
third mode and β2 → β0. This is also due to a too strong
coupling. Indeed, for λ > 1.8 μm, for the counterintuitive
case (the intuitive case), the light is integrally transferred from
waveguide 1 (waveguide 3) to waveguide 3 (waveguide 1)
during the propagation, but comes back to waveguide 1, thus
decreasing η.

The case where all waveguides remain single mode has not
been considered since the large required detuning �β leads
naturally to a multimode structure of the stronger waveguides,
at least for realistic simple waveguide profiles as the one
considered in this work. Even though the spectral dependence
of our proposed coupler is influenced by the multimode
behavior and by the wavelength dependence of the coupling, its
bandwidth is much larger that the one of a coupler consisting
of only two waveguides, as shown with the curve of ηcoupler

in Fig. 6. The latter has been obtained by simulating the wave
propagation in two straight coupled waveguides separated by
19.2 μm (instead of 9.6 μm). All the others parameters remain
the same, especially the refractive index profile �n(x) is the
one of waveguides 1 and 3. The separation distance has been
adjusted to get one coupling length for the 30-mm propagation
length at λ = 1550 nm.

For the six-waveguide cases [Fig. 4(b)], the expected
bandwidth is much smaller than for N = 3. This is related
to the fact that, as for the case of a multi-STIRAP process
[18,33], the adiabatic condition is more difficult to fulfill with
an increased number of waveguides, leading to less robust
behavior. The adiabatic criterion (12) for N = 6 can reach
high values (�1) at the z locations of the maximum of CP

and CS , but drops to �1 at z = L/2. η is therefore much
more affected by the wavelength dependence of the coupling
constants than for N = 3. Nevertheless, as for N = 3, for
specific (pseudoperiodic) wavelength ranges, an almost flat
transfer efficiency close to 1 is observed also in this case.

All the above examples show that adiabatic elimination can
be used to realize a symmetric coupler, but no attempt was
made to optimize the dimensions of the related structures.
Generally, it is well known that robust adiabatic approaches
tend to require longer propagation lengths than nonadiabatic
ones. In this context, computational approaches such as those
based on shortcuts to adiabacity [19,20] can reduce the device
footprint. To judge the possibility of using shorter structures
in our specific case, we may consider first the evolution of
the effective parameters �eff and Ceff in Figs. 3(b) and 3(c).
One sees that these parameters vary significantly only in a
spatial region of the order of 15 mm around the center of the
30-mm-long structure. One may therefore expect that a certain
reduction of the structure length should be possible.

We investigate the tolerance of the coupler for N = 3 with
respect to a variation of the total length L with the help
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FIG. 7. Dependence of the transfer efficiencies ηCI and ηI on
the total length L of the structure for λ = 1.55 μm and N = 3. The
geometrical functions δx1(z) and δxN (z) are given by the parabolas
of Eqs. (19). The waveguide’s shape still correspond to the one of
Fig. 1(a) if z is replaced by a normalized propagation distance z/L

and the same x dimension in micrometers is kept.

of Fig. 7. The latter represents the variation of the transfer
efficiency η for the intuitive and counterintuitive cases as a
function of L and for λ = 1.55 μm. The curvatures of the two
outer waveguides are still expressed by Eqs. (19). Therefore,
a decrease (increase) of L corresponds to a compression
(expansion) of the structure of Fig. 1(a) in the z direction,
while keeping the x dimensions unchanged. In this way, the
distances between the waveguides at the entrance and output
of the structure, as well as their minimum separations near
z = L/2, remain the same. Importantly, the central waveguide
elimination criterion of Eq. (3) is not modified by a change
of the total length L since it is principally affected by the
difference in refractive index contrast between the central and
the outer waveguides. In contrast, the adiabatic condition of
Eq. (12) depends on the geometrical shape and is decreasing
by shortening L, thus the curves of Fig. 7 can be considered
as a test of adiabaticity. It is clearly seen that ηCI (L) and
ηI (L) overlap for all lengths L. This is related to the fact
that the criterion (3) remains valid and therefore the coupler
efficiency remains symmetric with only negligible transient
light in waveguide 2, as in Figs. 2(c) and 2(d). The transfer
efficiency in both directions remain high and exceeds 90%
down to a length of about 10 mm. Afterwards, the steep drop in
efficiency seen for L < 10 mm is due to the loss of the adiabatic
condition. Indeed, for L = 10 mm, the adiabatic criterion (12)
varies between 0.5 and 1.2 over the interacting (coupling)
distance. For the chosen set of waveguide parameters, this
limit value of 10 mm is consistent with the above discussion
in connection to Fig. 3(b) and 3(c) since the crucial part of
the 30-mm-long coupler is roughly 10–15 mm. We verified
also that the footprint of the three-waveguide coupler could
be reduced as well by zooming on the central part of the
coupler, effectively cutting away the initial and final parts
of propagation with respect to Fig. 1(a). In this case, the
waveguide curvatures are not changed. Also, in this situation,
we have found a drop below η < 90% for L < 10 mm. Note
that in this case, for such a 10-mm-long coupler, the two
outer waveguides are separated by 25 μm (center to center) at
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z = 0 or z = L instead of the ≈55 μm in Fig. 1(a). Note also
that, even though the parameters of our original structure are
optimized for a chosen length of 30 mm, for shorter lengths (but
L � 10 mm) the obtained efficiency may be further optimized
by modifying (for each L) the curvature parameters in Eqs. (19)
or by using a more complex geometrical function than the
simple parabola considered in this proof-of-principle study.

V. CONCLUSIONS

In conclusion, we have theoretically proposed a method
for light switching between the outer waveguides of a N -
waveguide array which provides the optical analog of the adi-
abatic elimination process used in quantum physics. Adiabatic
elimination reduces the problem from a true N -waveguide
system to an effective two-waveguide system with an effective
pseudodetuning of the propagation constants. It was shown
that, upon an appropriate choice of the longitudinal evolution
of the coupling constants involving the outer waveguides, the
above effective two-waveguide system behaves like a coupled
two-level quantum system subjected to the rapid adiabatic
passage process. In contrast to the case of the conventional

STIRAP process, for the present approach the photonic trans-
port is found to be symmetric with respect to an interchange
of the outer waveguides. The theoretical expectations have
been successfully verified by means of wave propagation
simulations by the beam propagation method applied to struc-
tures containing an odd (N = 3) or even (N = 6) number of
waveguides. We have shown that for N = 3 the system is very
broadband and the transfer efficiency can be kept close to 100%
over a wavelength range spanning more than 600 nm around the
telecommunication wavelengths. For an increased number of
waveguides N in the structure, the bandwidth diminishes, but
several wavelength regions with a nearly flat transfer efficiency
close to 100% are still observed. Moreover, since the system
behavior is influenced by higher-order modes in the central
waveguide(s), slight modifications of the present technique
might be useful also for novel approaches for mode conversion
and filtering applications.
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