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Abstract

This paper deals with the navigation in formation of a group of mobile robots. A set of virtual targets (points) forms a
virtual structure of the same shape as the desired formation. Hence, to join and to remain in this formation, each robot
has only to track one of these targets. In order to track the chosen target, it has to be attainable by the robot despite
its kinematic constraints. This paper studies then the maximum allowed dynamic of the virtual structure according to
the kinematic constraints of the robots. Both linear and angular velocities of the targets are constrained. Moreover,
depending on these velocities, some relative positions (targets) in the formation become unattainable. These positions
are also defined. A stable control law allows to attain the generated set-points. Simulation and experimental results
validate the proposed contributions.

Keywords: Cooperative multi-robot system, Navigation in formation, Virtual structure, Kinematic constraints,
Lyapunov-based stability.

1. Introduction

Controlling and coordinating a Multi-Robot System
(MRS) is still an attractive research subject thanks to its
large number of applications. Compared to one robot, a
MRS offers many advantages: improvement of execution
task time, execution efficiency, redundancy of sensors and
actuators providing better failure tolerance, etc.

Navigation in formation is one of the most important
studied issues of these systems. In fact, many tasks re-
quire the MRS to move while maintaining a desired pattern
(space exploration [1], platooning [2], rescue operations [3],
etc.)

In the literature, the control problem in mobile robot
navigation is tackled through two methods: delibera-
tive and reactive control (cf. Figure 1). The first ap-
proach, based on motion planning and paths, requires a
prior knowledge of the environment to plan the robots’
movements [4]. This approach uses formalisms like
Voronoi diagrams [5] or artificial potential functions [6],
[7], while considering the overall environment knowledge
[8]. Motion planning generally trade-off optimality for ef-
ficiency/reactivity. In fact, they do not scale well to a very
large number of robots due to their computation complex-
ity [9]. However, thanks to the prior knowledge of the en-
vironment, robots generally succeed in their mission with
a good performance. In the second approach, the reactive
method, robots act only according to their local sensor in-
formation without any other overall knowledge. Behavior-
based methods [10] are the perfect illustration of reactive
control. In fact, the global task of the robot is divided into

a set of sub-tasks (behavior patterns). According to sen-
sor information, the control strategy applied to the robot
derives from one selected behavior pattern [10], or is a
merging of several weighted patterns [11]. When the ap-
plication requires that robots operate in real time (e.g. in
hazardous environments), it is clear that reactive methods
become much more interesting than motion planning. In
these cases, many research problems have not yet been re-
solved. To keep only the advantages of the two methods
(deliberative and reactive), some hybrid control (deliber-
ative/reactive) has been explored in the literature. The
idea is to enable the suitable control according to the sit-
uation. For example, in [12] or [13], a feasible trajectory
is planned before to be tracked and if a new obstacle is
detected, a reactive obstacle avoidance control is locally
enabled.

The proposed paper is devoted to the navigation in for-
mation of a MRS in a fully reactive way without any mo-
tion path planning. For this kind of task, the literature
highlights three main approaches: hierarchical, behavior-
based, and the virtual structure strategy (cf. Figure 1)
[14], [15], [16]. In the first approach, one or more robots
are considered as leaders, while the other robots are the fol-
lowers. Generally, the leader tracks a predefined trajectory
while the followers track its transformed coordinates [17],
[18]. This approach is simple to perform. However, it is no-
ticed that a leader failure causes the whole system to stop.
In a distributed behavior-based approach [19], [20], there is
no hierarchy between the robots. Each one has its percep-
tion and control, and a failure of a robot does not lead to
a group failure [21]. Behavior-based strategy implies that
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each robot has a set of behavior patterns (basic tasks) to
achieve. The resulting behavior of the group emerges from
the basic local interaction without any explicit model of
the overall cooperative behavior. However, this approach
is criticized for the way that it chooses the control for each
robot. In fact, according to perception information, the
control system switches between behavior patterns (e.g.,
competitive approach [10]), or merges several controllers
(e.g., motor schema [11]). This naturally makes it hard
to study the stability of the global control strategy. The
virtual structure (the third approach) considers the for-
mation as a single virtual body. The shape of the latter is
the desired formation shape, and its motion is translated
into the desired motion of each vehicle [22], [23]. The
virtual structure is implemented in several works through
potential field methods [24], [25]: thus, all the members of
the formation track assigned nodes which move into the
desired configuration. In these works, nodes applied an
attractive field to the corresponding robot, whereas ob-
stacles and neighbor robots apply repulsive fields. Unlike
motion planning, potential functions applied for the vir-
tual structure approach use only the instantaneous and
local robots perception. The weakness of using potential
functions for this last approach corresponds to the increas-
ing complexity for controlling the fleet shape in dynamic
environment. In fact, it means that the robot is submitted
to a frequently-changing number/amplitude of forces lead-
ing to more local minima, oscillations, etc. Therefore, in
this case, it is very difficult to demonstrate the robustness
and the stability of the MRS navigation.

To overcome the drawbacks of these strategies, it was
proposed to combine the virtual structure and behavior-
based approaches in [26] (cf. Figure 1). The achieved
task (reaching and maintaining a desired formation while
avoiding collision) is divided into two basic tasks (behav-
ior patterns): attraction to a dynamic target, and obstacle
avoidance. The first basic task allows each robot to reach
and follow a target from a virtual structure. The latter
is elaborated through multiple virtual nodes. The second
task focuses on avoiding obstacles and collisions between
robots. To facilitate a possible reconfiguration of the for-
mation with the proposed control architecture, potential
field methods are avoided.

Moreover, in [26], the linear velocity of the virtual struc-
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Figure 1: Navigation in formation control strategies.

ture was constrained according to the maximum linear ve-
locity of the robots, in order to remain attainable. How-
ever, all the nodes were considered with the same linear
velocity. Experiments were then made for a straight tra-
jectory of the virtual structure. In the proposed paper,
we define possible relative positions in the virtual struc-
ture and thus, different angular and linear velocities of
the targets. Moreover, the authorized angular velocity for
the structure is studied according to the maximum angu-
lar speed of the robots. Experiments will be implemented
using a circular formation trajectory.

The remainder of the paper is organized as follows: in
section 2, the control architecture and the cooperative
strategy between the robots are given. Section 3 stud-
ies the control applied to each robot, its stability and its
limitations. Simulation and experimental results validate
the proposed contributions in section 4. A conclusion and
some prospects are given in section 5.

2. The overall control architecture based on
behavior-based and virtual structure ap-
proaches

As discussed in section 1, the used control architecture
[26] includes two controllers: Attraction to a Dynamic Tar-
get and Obstacle Avoidance (behavior-based part). The
virtual structure is built through the Parameters of the
Formation to Achieve block (cf. Figure 2).

2.1. The proposed control architecture

According to environment information collected by the
Perceptions and Communication block (sensors) and the
robot’s current state, one controller is chosen thanks to
the Hierarchical Set-Point Selection block.

The corresponding set-points (PSi , θSi) (position and
orientation) are then sent to the Control Law block which
calculates the linear and angular velocities noted vi and
wi respectively (cf. Figure 2).

Let us recall the adopted virtual structure principle.
Consider N robots with the objective of achieving and
maintaining a given formation. The proposed virtual
structure that must be followed by the group of robots
is defined as follows:

• Define one point which is called the main dynamic
target (cf. Figure 3),

• Define the virtual structure to follow by defining NT
nodes (virtual targets) to obtain the desired geometry.
Each node i is called a secondary target and is defined
according to a specific distance Di and angle Φi with
respect to the main target. Secondary targets defined
in this way have then the same orientation θT . How-
ever, each target i will have its own linear velocity vTi .
The number of these targets NT must be NT ≥ N .

It is clear that to have a complete distribution of the
control, the main target can be generated by one of
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Figure 2: The proposed architecture of control embedded in each robot.

the robots. This case corresponds then to the leader-
follower approach.

An example to obtain a triangular formation is given in
figure 3.
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Figure 3: Maintaining a triangular formation by defining a virtual
geometrical structure.

2.2. Cooperative strategy between robots: dynamic target
allocation

Each mobile robot should follow one of the secondary
targets forming the geometric shape. It is interesting to
optimize the allocation of the targets between the robots
to rapidly join the formation. Information available for
each roboti are its configuration (xi, yi, θi), the one of
the main virtual target (xT , yT , θT ) and the Dj and Φj .
(x, y) refers to the position and θ to the orientation of
robots/targets. Dj and Φj are the relative positions and
orientations of the secondary targetsj (cf. Figure 3).

In [26], each robot chooses the closest target. If one
target is desired by -at least- two robots, it is allocated
to the one with the highest rank. In fact, each robot has
an identifier defining its hierarchic rank in the formation.
We improved this work in [27]. Hence, each robot calcu-
lates a relative cost coefficient RCC for each target. It
is a cost minimization function which helps each robot to
choose the closest target. If this target is needed by an-
other robot having more difficulties to find an other, it is

given up to this robot (a form of altruism, where the inter-
est of the group comes before the individual interest). The
objective is to reduce time to attain the global formation
while keeping a reactive and distributed control architec-
ture. The idea of the dynamic allocation of the targets has
been inspired by the auction sales activities which allow a
task allocation for the MRS (exploration [28], visiting dif-
ferent locations [29], box pushing [30], etc.). These auction
methods can be divided in three different strategies: Com-
binatorial methods treat all possible combinations to give
the optimal distribution to the MRS [31]; Repeated paral-
lel auctions occur every time interval to check that every
robot has the suitable task [32]; Sequential mechanisms
where the robot auctions each task taking into account
its previous state [33]. Even if it gives the best solution,
combinatorial method can not be adopted because it needs
generally a central unit. This means that the overall ar-
chitecture of control can not be completely distributed.
Moreover, the computation complexity rapidly increases
with the robot and target numbers. The proposed RCC
algorithm is derived from the two other strategies. The
robot wins or looses a target by computing and comparing
its own RCCs for these targets. Only a minimalist com-
munication is needed between the robots, and they decide
for their targets in fully distributed and reactive way. In
order to focus on the main contribution of this paper (at-
tainability of the virtual structure), the reader can find all
details about this algorithm in [27]. It is noted that ex-
perimentations made in this paper (cf. subsection 4.2) are
only based on RCC algorithm.

3. Applied Robot Control

Once every robot has chosen its target, its mission is to
reach this dynamic target and to track it to maintain the
formation. Attraction to a Dynamic Target Controller (cf.
Figure 2) gives set-points (position, angle) that, if they are
followed by the robot, it converges to its dynamic chosen
target (in position and orientation). In section 3.2, the
Obstacle Avoidance Controller will be very briefly sum-
marized in order to focus on the main contribution of this
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paper (constrains on the virtual structure). More details
can be found in [34]. Improvement of the controller to
address dynamic obstacles and collision avoidance will be
proposed in a future paper.

3.1. Attraction to a Dynamic Target Controller

Attraction to a Dynamic Target Controller allows the
formation to be maintained, since it leads each robot
to follow its target. To detail this controller, consider
a robot i (xi, yi, θi) and its secondary dynamic target
Ti(xTi

, yTi
, θT ). Note that to simplify notations in the

following, the same subscript as the robot is given to its
target(cf. Figure 4). The variation of the target position
can be described by{

ẋTi = vTi .cos(θT )

ẏTi = vTi .sin(θT )
(1)

Let us also introduce the robot used model (cf. Figure
4). The proposed study focuses on unicycle mobile robots
corresponding to the used robots for simulation and exper-
imental part (cf. Section. 4). Their kinematic model can
be described by the well-known equations (cf. Equation
2). 

ẋi = vi.cos(θi)

ẏi = vi.sin(θi)

θ̇i = ωi

(2)

where vT is the target linear velocity, vi and ωi are re-
spectively the robot linear and angular velocities. It is to
be noted also that ẋ corresponds to the derivative of x
with respect to time.

Figure (4) allows to define position errors as{
exi

= (xTi
− xi) = dSi

cos(γi)

eyi = (yTi
− yi) = dSi

sin(γi)
(3)

The current distance between robot i and its target Ti,
noted dSi

can then be expressed as

dSi =
√
e2xi

+ e2yi (4)

i 
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Yw 
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Figure 4: Attraction to a dynamic target.

Its derivative is

ḋSi =
exi ėxi + eyi ėyi

dSi

(5)

By using equations (1) and (2), ėx and ėy are then given
by {

ėxi
= (ẋTi

− ẋi) = vTi
.cos(θT )− vi.cos(θi)

ėyi = (ẏTi
− ẏi) = vTi

.sin(θT )− vi.sin(θi)
(6)

We then obtain

ḋSi
= vTi

. cos(γi − θT )− vi. cos(γi − θi) (7)

Similarly, the current angle of the robot according to its
dynamic target is noted γi (cf. Figure 4) and is calculated
as

γi = arctan(
eyi
exi

) (8)

Its derivative is

γ̇i =

_̇

(eyi/exi
)

1 + (eyi/exi
)2

(9)

To obtain the set-point angle θSat
applied to the robot

in order to reach its dynamic target, our idea is to keep
γi constant. In other words, we would like to have γ̇i = 0.
Under this constraint, we show that the defined set-point
angle leads the robot to its target. Developing equation
(9) thus enables us to write:

vTi .sin(θT − γi)
dSi

− vi.sin(θi − γi)
dSi

= 0 (10)

The set-point angle that the robot must follow to satisfy
the constraint expressed by equation (10) and to reach its
dynamic target is then given by

θSat = arcsin(
vTi

vi
sin(θT − γi)) + γi (11)

In the following, it is noted b =
vTi

vi
.

To prove that the robot always reaches its target, we
have to prove that dSi is continually decreasing. To do
this, it is sufficient to prove that ḋSi

< 0. Before giving
the proof, it is stipulated that the linear velocity of the
robot will be elaborated satisfying the constraint vi ≥ vTi

(the expression of vi is given later in equation (17a)). It
is natural that the robot moves faster than the target to
reach it, especially when the latter is escaping. Therefore,
we always have b =

vTi

vi
≤ 1.

By reaching the target, the robot velocity has then to
satisfy vi → vTi

to keep dSi
→ 0 (cf. Section 3.3). Hence,

we will obtain b = 1.

In addition, the trajectory of the target is assumed to
be smooth.
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To prove that while dSi 6= 0, ḋSi is always ḋSi < 0 if the
robot follows the set-point angle given by equation 11, the
following properties are recalled

arcsin(x) ∈ [−π
2
,
π

2
],∀x ∈ [−1, 1]

arcsin(sin(x)) =

{
x ∀x ∈ [−π2 ,

π
2 ]

π − x ∀x ∈]π2 ,
3π
2 [

Consider equation (7). The following transformation is
considered

cos(θT − γi) = ±
√

1− (sin(θT − γi))2

By replacing θi in (7) with the set-point angle that the
robot must follow (cf. Equation 11), we also obtain

cos(γi − θi) = ±
√

1− sin(arcsin(b sin(θT − γi)))2

two cases are then possible:

1. (θT −γi) ∈ [−π2 ,
π
2 ] (escaping target (cf. Figure 5(a)))

this leads to

ḋSi = vTi

√
1− (sin(θT − γi))2

−vi
√

1− (b sin((θT − γi))2 (12)

However, while the robot has not yet reached the tar-
get, we have b < 1 since vT < vi as discussed above.
This means that

vTi

√
1− (sin(θT − γi))2 < vi

√
1− (b sin(θT − γi))2

thus

ḋSi < 0

vTi 

θT 

Target  
γi θi 

(a) Escaping target

θT 

γi θi 

vTi 

(b) Approaching target

Figure 5: Escaping/Approaching target.

2. (θT − γi) ∈]π2 ,
3π
2 [ (approaching target (cf. Figure

5(b)))

ḋSi
= −vTi

√
1− (sin(θT − γi))2

−vi
√

1− (b sin((θT − γi))2
(13)

It can then immediately be deduced that ḋSi
< 0.

It is interesting to note that the proposed set-point en-
ables convergence to θT as dSi

→ 0. In fact, since b = 1
when dSi

→ 0 as discussed in the last proof, two cases are
again possible:

1. (θT −γi) ∈ [−π2 ,
π
2 ] (escaping target (cf. Figure 5(a)))

θSat = arcsin(sin(θT − γi)) + γi
θSat = θT − γi + γi
θSat

= θT

(14)

The set-point angle tends directly to the target direc-
tion.

2. (θT − γi) ∈]π2 ,
3π
2 ] (approaching target (cf. Figure

5(b)))

θSat
= π − (θT − γi) + γi

θSat
= π + 2γi − θT

(15)

However, the robot still reaches the target, but with this
set-point angle it goes past it once reached. The robot is
then behind the target and tries to join it again. Therefore,
γi is recalculated. Since the target trajectory is assumed to
be smooth (constrained in section 3.3), the new calculated
γi thus verifies case 1 (the robot is now behind the target,
which then becomes an escaping target).

The proposed set-point angle allows each robot to con-
verge to its target by decreasing the position and orienta-
tion error. The set-points (PSi

, θSi
) corresponding to this

controller (cf. Section 2.1) are then

(PSat , θSat) = ((xTi , yTi), θSat)

3.2. Obstacle avoidance controller

The aim of this controller is to allow the robot to avoid
obstacles that hinder its attraction to the target. It is
based on the limit cycle methods [34], [35], [36]. The dif-
ferential equations representing the desired trajectory of
the robot are given by the following system

ẋr = ayr + xr(R
2
c − x2r − y2r)

ẏr = −axr + xr(R
2
c − x2r − y2r)

(16)

With a = ±1 according to the optimal direction of
avoidance (clockwise or counterclockwise). (xr, yr) are
the relative robot coordinates with respect to the ob-
stacle. This latter is characterized by a circle of radius
Rcl = Ro +Rr + ε where: Ro is the obstacle radius, Rr is
the robot radius and ε is a safety margin (cf. Figure 6).

The obstacle avoidance algorithm [34] is summarized as
follows:
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Figure 6: Obstacle avoidance controller [34].

• The nearest hindering obstacle is detected.

• The direction of avoidance is chosen according to the
sensor information.

• The robot avoids the obstacle while following a limit
cycle which has a radius Rc = Rcl − ξ (attraction
phase).

• The robot avoids the obstacle while following a limit
cycle which has a radius Rc = Rcl+ξ (repulsive phase)
(cf. Figure 6). Where ξ is a small value and (ξ � ε).

This controller then generates the following set-points:

(PSoa , θSoa) = ((xi, yi), tan
−1(

ẏr
ẋr

))

To deal with dynamic obstacles, this controller has been
enriched. Hence, collision with dynamic obstacles and
robots of the same system can be avoided. Moreover, for
a higher safety, a penalty function adapts the robots ve-
locities if they are too close from each other. More details
are available in [37].

One advantage of the proposed control architecture is
that we have the same control law for Attraction to dy-
namic target and for Obstacle avoidance controllers (cf.
Figure 2). An accurate Lyapunov-based stability demon-
stration is given in [26]. This demonstration is briefly re-
minded in next section 3.3. According to it, the error
between the current robot’s configuration (xi, yi, θi) and
the desired static/dynamic configuration (PS , θS), is al-
ways steady and converge to 0.

3.3. Control law

The control law used, which was proposed in [26], allows
each robot i to converge to the set-point generated by the
chosen controller.

vi = vmax − (vmax − vTi
)e−(d

2
Si
/σ2) (17a)

ωi = ωSi
+ kθ̃i (17b)

where

• ωSi = θ̇Sati for the attraction to a dynamic target
controller, and ωSi

= θ̇Soa
for the obstacle avoidance

controller.

• vmax is the maximum linear speed of the robot. Nat-
urally, vTi

has to be such that vTi
≤ vmax

• σ, k are positive constants,

• θ̃i is the orientation error such that θ̃i = θSati − θi
(θ̃i = θSoa−θi for the obstacle avoidance) which gives
˙̃
θi = ωSi − ωi.

• dSi
is the distance between the current roboti position

and its attributed target. It is to be noted that for
obstacle avoidance controller, the set-point position is
equal to (xi, yi), thus dSi

= 0 in this case (cf. Section
3.2).

Lyapunov-based stability enabled the convergence of the
robot with its target to be proved [26]. Convergence of the
whole multi-robot system to the set-point virtual structure
can then be derived by studying the following Lyapunov
function

V =

N∑
k=1

Vk (18)

where Vk is the Lyapunov function associated with robot
k. This function was defined as

Vk =
1

2
θ̃2k (19)

It has been proved that V̇k < 0 (when θ̃k 6= 0) [26].
Therefore, it can be easily deduced that

V̇ =

N∑
k=1

V̇k < 0 (20)

The system is then asymptotically stable. Moreover, it
can be noticed that the applied angular velocity ωi enables
the exponential convergence of the orientation error to-
ward 0. The control law is common to the two controllers
(attraction to a dynamic target and obstacle avoidance)
and stability is then valid for the obstacle avoidance.

However, this theoretical convergence is applied to non-
holonomic mobile robots. This means that stability will
be ensured only if the angular set-point is attainable by
the robot, considering its kinematic constraints (maximum
velocities). In the next paragraph, we then propose to
define the permitted dynamic of the target, taking into
account the corresponding robot constraints.

3.4. Target attainability with respect to kinematic robot
constraints

3.4.1. Linear velocity constraints

In section 3.1 it was shown that the robot always con-
verges to its target if

vTi ≤ vi ⇔ b ≤ 1 (21)
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According to equation (17a), the linear velocity of the
robot verifies the condition given by inequation (21), and
takes into account its maximum linear velocity. However,
it is clear that the linear velocity of the secondary targets
depends on their relative positions in the virtual structure
(cf. Figure 7). This figure shows the different trajectories
of the targets according to their relative position in the vir-
tual structure. The choice of Di and angle Φi thus affects
vTi

. Each secondary target i has coordinates (xTi
, yTi

)
expressed as {

xTi
= xT +Di cos(Φi + θT )

yTi
= yT +Di sin(Φi + θT )

(22)

Their derivatives are then (only rigid virtual structures
are considered){

ẋTi = ẋT −Diθ̇T sin(Φi + θT )

ẋTi
= ẏT +Diθ̇T cos(Φi + θT )

(23)

and linear velocity of the virtual target i can be written
as

vTi
=
√
ẋ2Ti

+ ẏ2Ti
(24)

By replacing with (23)

vTi
=

√
v2T +D2

i θ̇
2
T + 2Diθ̇TF (25)

where

F = (ẏT cos(Φi + θT )− ẋT sin(Φi + θT ))

It is clear that

ẏT cos(Φi + θT )− ẋT sin(Φi + θT ) ≤
√
ẋ2T + ẏ2T (26)

then

Moment t1 

 

Dj 

Φj 

Φi 

Moment t2 

Xr 

Yr 

vT 

Di 

Figure 7: Virtual targets trajectories to keep the virtual structure
shape. Dashed curved lines represent the trajectories of the targets.
Straight dashed lines illustrate the virtual structure in the previous
moment.

ẏT cos(Φi + θT )− ẋT sin(Φi + θT ) ≤ vT (27)

Hence, according to equation (25)

vTi ≤
√

(vT +Diθ̇T )2 (28)

Robots must be able to move faster than their targets
(cf. Equation 21). This means∣∣∣vT +Diθ̇T

∣∣∣ < vmax (29)

The relative distance of each secondary target has then
to be

Di <
vmax − |vT |∣∣∣θ̇T ∣∣∣ (30)

Note that
∣∣∣θ̇T ∣∣∣ is bounded in the next paragraph.

3.4.2. Angular velocity constraints

For now, we are interested in the maximum angular ve-
locity of the robots, ωmax, such that the variation of the
angular set-point θ̇Sati remains attainable. Indeed, the an-
gular speed applied to the robot has to verify

|ωi| ≤ ωmax (31)

where ωmax > 0. By replacing (17b) in (31), we have∣∣∣ωSi
+ kθ̃i

∣∣∣ ≤ ωmax (32)

knowing that ∣∣∣ωSi + kθ̃i

∣∣∣ ≤ |ωSi |+
∣∣∣kθ̃i∣∣∣

To find the values of ωSi which verify (32), it is proposed
to use

|ωSi
|+ k

∣∣∣θ̃i∣∣∣ ≤ ωmax (33)

These values then verify

|ωSi | ≤ ωmax − k
∣∣∣θ̃i∣∣∣ (34)

It is clear that |ωSi | has to verify this condition (inequa-
tion 34) for every θ̃i. The latter relation then becomes

|ωSi
| ≤ min(ωmax − k

∣∣∣θ̃i∣∣∣) (35)

min(ωmax − k
∣∣∣θ̃i∣∣∣) is obtained when

∣∣∣θ̃i∣∣∣ is maximum.

The maximum orientation error is when the robot has an
opposite orientation compared with the set-point angle.

This means that max(
∣∣∣θ̃i∣∣∣) = π.

To remain attainable, the angular variation of the set-
point ωSi

= θ̇Sati
has thus to verify

|ωSi
| ≤ ωmax − kπ (36)
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Let us compute ωSi = θ̇Sati according to equation (11)

θ̇Sati =
d
dt [b sin(θT − γi)]√
1− (b sin(θT − γi))2

+ γ̇i (37)

As noted in section 3.1, the set-point was deduced by
keeping γi constant, which means that γ̇i = 0. It can also
be noted that θ̇Sati is not defined if we have simultaneously{

b = 1

sin(θT − γi) = ±1
(38)

b = 1 is true only if dSi
→ 0 (cf. Equation 17a), which

means that this singularity may occur only when the robot
is on its target. To avoid this in practice, we propose to
redefine θSati

according to equation (11), by considering a
virtual circle of radius ρ in the neighborhood of dSi ≈ 0.
Considering the cases of approaching and escaping targets,
θSati

then becomes

θSat =


arcsin(b sin(θT − γi)) + γi if dSi

≥ ρ
θT if dSi

< ρ and (θT − γi) ∈ [−π2 ,
π
2 ]

π + 2γi − θT if dSi
< ρ and (θT − γi) ∈]π2 ,

3π
2 [

(39)
As θSati is redefined, its derivative becomes (γi constant)

θ̇Sati
=


d
dt [b sin(θT−γi)]√
1−(b sin(θT−γi))2

if dSi ≥ ρ

θ̇T if dSi
< ρ and (θT − γi) ∈ [−π2 ,

π
2 ]

−θ̇T if dSi
< ρ and (θT − γi) ∈]π2 ,

3π
2 [

(40)
Robots which are in the neighborhood of their targets

then have ∣∣∣θ̇Sati

∣∣∣ =
∣∣∣θ̇T ∣∣∣

The permitted dynamic of these targets can then be
easily deduced as (cf. Equation 36)∣∣∣θ̇T ∣∣∣ ≤ ωmax − kπ (41)

Let us study now the case of robots which are not in the
neighborhood of their targets. Beforehand, we recall the
following properties:

1. γi is constant ⇒ γ̇i = 0,

2. b =
vTi

vi
⇒ ḃ = db

dt =
v̇Ti

vi−vTiv̇i
v2i

,

3. |a cos(α) + b sin(α)| ≤
√
a2 + b2 ∀a, b, α ∈ R,

4. ḋSi
is bounded (cf. Equation 7).

By replacing equation (40) when dSi
≥ ρ in (36), and

using points 1) and 2), we obtain

ḃ sin(θT − γi) + bθ̇T cos(θT − γi) ≤

(ωmax − kπ)
√

1− (b sin(θT − γi))2
(42)

To find the permitted variation of target θ̇T , we use the
upper bound of the left member of relation (42) according
to point 3). We then have

√
(ḃ)2 + (bθ̇T )2 ≤ (ωmax − kπ)

√
1− (b sin(θT − γi))2

(43)
In fact, the values of θ̇T , verifying the relation (43), ver-

ify also (42). θ̇T can then be expressed as

(θ̇T )2 ≤ [(ωmax−kπ)2(1−(b sin(θT−γi))2)−(ḃ)2]/b2 (44)

To remain attainable, the target must have an angular
velocity θ̇T verifying relation (44) for all the robots, in
other words for all possible linear velocities. Thus, it has
to be

(θ̇T )2 ≤ min([(ωmax−kπ)2(1−(b sin(θT −γi))2)−(ḃ)2]/b2)
(45)

A necessary condition to reach the minimum of the right
member, noted (R), of this relation is that 1

b → 1, since
b ≤ 1 (cf. Equation 21). However this condition occurs
only when dSi ≈ 0. The latter case dSi < ρ has already
been addressed in equation (41).

Since vi decreases as the robot approaches its target (cf.
Equation 17a), this condition occurs as dSi

≈ ρ.
First, let us calculate v̇i using relation (17a)

v̇i = v̇Ti
e−d

2
Si
/σ2

− (vmax − vTi
)
−2dSi ḋSi

σ2
e−d

2
Si
/σ2

(46)

If ρ is considered as being sufficiently small, and ḋSi
is

bounded (point 4)), relation (46) becomes

v̇i ≈ v̇Ti

In the neighborhood of ρ, relation (44) becomes

(θ̇T )2 ≤ [(ωmax − kπ)2(1− (
vTi

vi(ρ)
sin2(θT − γi)))]

vi(ρ)

vTi

(47)
Note that we can also have

(1− (
vTi

vi(ρ)
sin2(θT − γi))) = 0

Hence, min(R) = 0.
To remain attainable, the dynamic of the virtual struc-

ture has to follow two phases:

1. a transitional phase, where the robots have not yet
achieved the formation. In this phase, θ̇T is con-
strained such that θ̇T = 0,

2. once the formation is achieved, the virtual structure
can vary according to relation (41).
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4. Simulation and Experimental Results

First, the behavior of a robot with respect to its dynamic
target motion is observed through simulation. Next, ex-
perimentation is made with three robots to attain and to
maintain a triangular formation.

4.1. Variation of the virtual structure angular velocity

This section shows the importance of bounding the an-
gular velocity of the virtual structure θ̇T according to the
kinematic constraints of the robots. Hence, a mobile robot
reaching a virtual target is simulated. The maximum an-
gular velocity of the robot is ωmax = 3rd/s. We choose
k = 0.6s−1.
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Figure 8: Undesirable oscillations of the robot trajectory if the tran-
sitional phase is not imposed.

According to relation (41), and to simplify notation on
figures, we propose to note P = ωmax − kπ. Based on the
chosen values of ωmax and k, we find P = 1.1. First, it is
proposed to show the importance of the transitional phase
where the variation of θ̇T must be set to 0 (cf. Equation
47). Hence, in figure 8.(b), we can see that θ̇T increases
at the beginning of the simulation (from 0.1s) and the
target trajectory follows immediately a significant curve
(cf. Figure 8.(a)). Consequently, we observe oscillations in
the trajectory of the robot. The robot correctly attains the
target only when this one has a straight trajectory (θ̇T =
0). Figure 8.(b) confirms that. In fact, even if θ̇T satisfies
the condition described in equation 44, oscillations may
appear if the transitional phase is not imposed. Naturally,
the distance dSi

is oscillating in this case (cf. Figure 8.(c)).
The Lyapunov function is also oscillating and the control
law is not stable (cf. Figure 8.(d)).

Figure 9 shows the importance of satisfying the condi-
tion described in relation 41 after the transitional phase.
Once the target is attained (θ̇T = 0 until the moment
0.5s), the condition 41 is also satisfied. It can be seen that
the robot goes toward the target. Even if it increases, the
variation of P is such that θ̇T < P (cf. Figure 9.(b)). In
this interval, the robot correctly tracks its target (cf. Fig-
ure 9.(a)). The distance dSi

separating them is dSi
= 0

(cf. Figure 9.(c)). The Lyapunov function also decreases
and then remains equal to 0 (cf. Figure 9.(d)). After 9.5s,
we remove the constraint (41) such that θ̇T can be θ̇T > P .
It can be seen that the robot cannot track the target. The
oscillation of distance dSi and V confirms this (cf. Figures
9.(c) and (d)).

4.2. Experimental results: 3 robots with a attainable vir-
tual structure

Experiments were performed using Khepera III robots
(cf. Figure 10). For the first tests, only the perception of
the MRS was centralized. Hence, navigation was achieved
on a platform equipped with a camera giving positions
and orientations of the robots by detecting the bar code
associated with each one (cf. Figure 10). This information
was sent to the robots by a computer through a Wi-Fi
network.

In [26], the virtual structure has a straight trajectory.
Here, it is proposed to extend to circular motion such that
all the targets remain attainable by all the robots despite
their kinematic constraints. Knowing that the dynamic of
the virtual structure has to follow relation (41), the radius
Rvs of the circular motion formed by the main target T1
(cf. Figure 11(a)) verify

Rvs =
vT

θ̇T
>

vT
ωmax − kπ

(48)

with vT constant and vT � vmax.
First, a clockwise motion is considered (cf. Figure

11(a)). It is observed that the robots converge to the vir-
tual structure even without passing the transitional phase.
The reason is that Rvs is big enough and initial conditions
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Figure 9: Undesirable oscillations of the robot trajectory if the im-
posed constraints on the dynamic target are not met (if |θ̇T | > P ).

Figure 10: Khepera III mobile robot.
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(b) t2 → t4: switching to counter-clockwise motion

Figure 11: Real trajectory of the robots (top views from the cam-
era). Distributed allocation (a) and reallocation (b) of the targets.
Notation: Ti(tj) Target i at moment j, Ri(tj) Robot i at moment j.

of the robots are far from critical situations described in
section 3.4.2. In fact, equation 47 imposes constraints for
even the maximal orientation errors corresponding to π (cf.
Equation 36). Here, initial positions of the robots do not
correspond to this critical configuration and the highest
authorized bound is higher than the one given in equation
47. At time t2 + ∆t, a jump in the virtual structure state
was produced (cf. Figure 11(b)). The dynamic of the vir-
tual structure was also changed so that its motion became
counter-clockwise. Note that robots change dynamically
their targets at each set-points jump to rapidly reach the
new formation using RCC algorithm [27]. The distances
between the robots and their targets are given in figure
12. They decreased to 0, which confirms that the forma-
tion was reached and maintained. When the virtual struc-
ture dynamic was changed, the robots were far from their
targets, which explains the observed jumps. The same ob-
servations were noticed on the global Lyapunov function
(cf. Figure 13).
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Figure 13: Evolution of the global Lyapunov function V .

5. Conclusion and future work

In this paper, the navigation in formation of a mobile
multi-robot system was studied. Mainly based on the vir-
tual structure approach, the proposed attraction to a dy-
namic target controller allows to attain the virtual targets.
However, it is important to constrain the structure’s dy-
namic so that it always remains attainable. In fact, kine-
matic constraints of the robots (maximum velocities) im-
pose that they cannot follow all the dynamics. Hence, the
proposed control law is designed so that the robots always
move faster than their targets to attain them. Constraints
on the relative positions of the targets in the formation
are also defined such that their linear velocities stay less
than the maximum velocity of the robots (first constraint).
Moreover, the angular velocity of the virtual structure is
bounded such that the generated set-point angles remain
attainable despite the maximum angular velocities of the
robots (second constraint).

This paper treats constraints on attraction to a dynamic
target controller. Obstacle avoidance controller has also to
generate attainable set-points. Introducing a new param-
eter in the limit-cycle equation allows it [38]. Future work
will aim to demonstrate the safety and the stability of the
overall multi-controller architecture, even when switch oc-
cur between controllers.
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