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This paper deals with the navigation in formation of a group of mobile robots. A set of virtual targets (points) forms a virtual structure of the same shape as the desired formation. Hence, to join and to remain in this formation, each robot has only to track one of these targets. In order to track the chosen target, it has to be attainable by the robot despite its kinematic constraints. This paper studies then the maximum allowed dynamic of the virtual structure according to the kinematic constraints of the robots. Both linear and angular velocities of the targets are constrained. Moreover, depending on these velocities, some relative positions (targets) in the formation become unattainable. These positions are also defined. A stable control law allows to attain the generated set-points. Simulation and experimental results validate the proposed contributions.

Introduction

Controlling and coordinating a Multi-Robot System (MRS) is still an attractive research subject thanks to its large number of applications. Compared to one robot, a MRS offers many advantages: improvement of execution task time, execution efficiency, redundancy of sensors and actuators providing better failure tolerance, etc.

Navigation in formation is one of the most important studied issues of these systems. In fact, many tasks require the MRS to move while maintaining a desired pattern (space exploration [START_REF] Huntsberger | Campout: A control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration[END_REF], platooning [START_REF] Bom | Nonlinear control for urban vehicles platooning, relying upon a unique kinematic gps[END_REF], rescue operations [START_REF] Bahr | Cooperative localization for autonomous underwater vehicles[END_REF], etc.)

In the literature, the control problem in mobile robot navigation is tackled through two methods: deliberative and reactive control (cf. Figure 1). The first approach, based on motion planning and paths, requires a prior knowledge of the environment to plan the robots' movements [START_REF] Junior | Hybrid deliberative/reactive architecture for human-robot interaction[END_REF].

This approach uses formalisms like Voronoi diagrams [START_REF] Latombe | Robot Motion Planning[END_REF] or artificial potential functions [START_REF] Rimon | Exact robot navigation using artficial potential flelds[END_REF], [START_REF] Pamosoaji | A motion planning algorithm for a nonholonomic vehicle using vector potential functions in triangular regions[END_REF], while considering the overall environment knowledge [START_REF] Lavalle | Planning Algorithms[END_REF]. Motion planning generally trade-off optimality for efficiency/reactivity. In fact, they do not scale well to a very large number of robots due to their computation complexity [START_REF] Parker | Encyclopedia of Complexity and System Science[END_REF]. However, thanks to the prior knowledge of the environment, robots generally succeed in their mission with a good performance. In the second approach, the reactive method, robots act only according to their local sensor information without any other overall knowledge. Behaviorbased methods [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF] are the perfect illustration of reactive control. In fact, the global task of the robot is divided into a set of sub-tasks (behavior patterns). According to sensor information, the control strategy applied to the robot derives from one selected behavior pattern [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF], or is a merging of several weighted patterns [START_REF] Arkin | Motor schema-based mobile robot navigation[END_REF]. When the application requires that robots operate in real time (e.g. in hazardous environments), it is clear that reactive methods become much more interesting than motion planning. In these cases, many research problems have not yet been resolved. To keep only the advantages of the two methods (deliberative and reactive), some hybrid control (deliberative/reactive) has been explored in the literature. The idea is to enable the suitable control according to the situation. For example, in [START_REF] Pinto | Towards a control architecture for cooperative nonholonomic mobile robots[END_REF] or [START_REF] Mouad | Mobile robot navigation and obstacles avoidance based on planning and re-planning algorithm[END_REF], a feasible trajectory is planned before to be tracked and if a new obstacle is detected, a reactive obstacle avoidance control is locally enabled.

The proposed paper is devoted to the navigation in formation of a MRS in a fully reactive way without any motion path planning. For this kind of task, the literature highlights three main approaches: hierarchical, behaviorbased, and the virtual structure strategy (cf. Figure 1) [START_REF] Chen | Formation control: a review and a new consideration[END_REF], [START_REF] Mastellone | Formation control and collision avoidance for multiagent non-holonomic systems: Theory and experiments[END_REF], [START_REF] Ghommam | Formation path following control of unicycle-type mobile robots[END_REF]. In the first approach, one or more robots are considered as leaders, while the other robots are the followers. Generally, the leader tracks a predefined trajectory while the followers track its transformed coordinates [START_REF] Léchevin | Trajectory tracking of leader-follower formations characterized by constant line-ofsight angles[END_REF], [START_REF] Gustavi | Observer-based leader-following formation control using onboard sensor information[END_REF]. This approach is simple to perform. However, it is noticed that a leader failure causes the whole system to stop. In a distributed behavior-based approach [START_REF] Antonelli | The nsb control: a behavior-based approach for multi-robot systems[END_REF], [START_REF] Balch | Behavior-based formation control for multirobot teams[END_REF], there is no hierarchy between the robots. Each one has its perception and control, and a failure of a robot does not lead to a group failure [START_REF] Parker | On the design of behavior-based multi-robot teams[END_REF]. Behavior-based strategy implies that each robot has a set of behavior patterns (basic tasks) to achieve. The resulting behavior of the group emerges from the basic local interaction without any explicit model of the overall cooperative behavior. However, this approach is criticized for the way that it chooses the control for each robot. In fact, according to perception information, the control system switches between behavior patterns (e.g., competitive approach [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF]), or merges several controllers (e.g., motor schema [START_REF] Arkin | Motor schema-based mobile robot navigation[END_REF]). This naturally makes it hard to study the stability of the global control strategy. The virtual structure (the third approach) considers the formation as a single virtual body. The shape of the latter is the desired formation shape, and its motion is translated into the desired motion of each vehicle [START_REF] Do | Formation tracking control of unicycle-type mobile robots[END_REF], [START_REF] Li | Backstepping based multiple mobile robots formation control[END_REF]. The virtual structure is implemented in several works through potential field methods [START_REF] Ogren | Formations with a mission: Sta-ble coordination of vehicle group maneuvers[END_REF], [START_REF] Mastellone | Remote formation control and collision avoidance for multi-agent nonholonomic systems[END_REF]: thus, all the members of the formation track assigned nodes which move into the desired configuration. In these works, nodes applied an attractive field to the corresponding robot, whereas obstacles and neighbor robots apply repulsive fields. Unlike motion planning, potential functions applied for the virtual structure approach use only the instantaneous and local robots perception. The weakness of using potential functions for this last approach corresponds to the increasing complexity for controlling the fleet shape in dynamic environment. In fact, it means that the robot is submitted to a frequently-changing number/amplitude of forces leading to more local minima, oscillations, etc. Therefore, in this case, it is very difficult to demonstrate the robustness and the stability of the MRS navigation.

To overcome the drawbacks of these strategies, it was proposed to combine the virtual structure and behaviorbased approaches in [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF] (cf. Figure 1). The achieved task (reaching and maintaining a desired formation while avoiding collision) is divided into two basic tasks (behavior patterns): attraction to a dynamic target, and obstacle avoidance. The first basic task allows each robot to reach and follow a target from a virtual structure. The latter is elaborated through multiple virtual nodes. The second task focuses on avoiding obstacles and collisions between robots. To facilitate a possible reconfiguration of the formation with the proposed control architecture, potential field methods are avoided.

Moreover, in [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF], the linear velocity of the virtual struc- ture was constrained according to the maximum linear velocity of the robots, in order to remain attainable. However, all the nodes were considered with the same linear velocity. Experiments were then made for a straight trajectory of the virtual structure. In the proposed paper, we define possible relative positions in the virtual structure and thus, different angular and linear velocities of the targets. Moreover, the authorized angular velocity for the structure is studied according to the maximum angular speed of the robots. Experiments will be implemented using a circular formation trajectory. The remainder of the paper is organized as follows: in section 2, the control architecture and the cooperative strategy between the robots are given. Section 3 studies the control applied to each robot, its stability and its limitations. Simulation and experimental results validate the proposed contributions in section 4. A conclusion and some prospects are given in section 5.

The overall control architecture based on behavior-based and virtual structure approaches

As discussed in section 1, the used control architecture [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF] includes two controllers: Attraction to a Dynamic Target and Obstacle Avoidance (behavior-based part). The virtual structure is built through the Parameters of the Formation to Achieve block (cf. Figure 2).

The proposed control architecture

According to environment information collected by the Perceptions and Communication block (sensors) and the robot's current state, one controller is chosen thanks to the Hierarchical Set-Point Selection block.

The corresponding set-points (P Si , θ Si ) (position and orientation) are then sent to the Control Law block which calculates the linear and angular velocities noted v i and w i respectively (cf. Figure 2).

Let us recall the adopted virtual structure principle. Consider N robots with the objective of achieving and maintaining a given formation. The proposed virtual structure that must be followed by the group of robots is defined as follows:

• Define one point which is called the main dynamic target (cf. Figure 3),

• Define the virtual structure to follow by defining N T nodes (virtual targets) to obtain the desired geometry. Each node i is called a secondary target and is defined according to a specific distance D i and angle Φ i with respect to the main target. Secondary targets defined in this way have then the same orientation θ T . However, each target i will have its own linear velocity v Ti . The number of these targets N T must be N T ≥ N .

It is clear that to have a complete distribution of the control, the main target can be generated by one of 

Perceptions and Communication

Obstacle Avoidance

Parameters of the formation to achieve (PSat, θSat) the robots. This case corresponds then to the leaderfollower approach.

An example to obtain a triangular formation is given in figure 3. 
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Cooperative strategy between robots: dynamic target allocation

Each mobile robot should follow one of the secondary targets forming the geometric shape. It is interesting to optimize the allocation of the targets between the robots to rapidly join the formation. Information available for each robot i are its configuration (x i , y i , θ i ), the one of the main virtual target (x T , y T , θ T ) and the D j and Φ j . (x, y) refers to the position and θ to the orientation of robots/targets. D j and Φ j are the relative positions and orientations of the secondary targets j (cf. Figure 3).

In [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF], each robot chooses the closest target. If one target is desired by -at least-two robots, it is allocated to the one with the highest rank. In fact, each robot has an identifier defining its hierarchic rank in the formation. We improved this work in [START_REF] Benzerrouk | Altruistic distributed target allocation for stable navigation in formation of multirobot system[END_REF]. Hence, each robot calculates a relative cost coefficient RCC for each target. It is a cost minimization function which helps each robot to choose the closest target. If this target is needed by another robot having more difficulties to find an other, it is given up to this robot (a form of altruism, where the interest of the group comes before the individual interest). The objective is to reduce time to attain the global formation while keeping a reactive and distributed control architecture. The idea of the dynamic allocation of the targets has been inspired by the auction sales activities which allow a task allocation for the MRS (exploration [START_REF] Kalra | Hoplites: a market-based framework for planned tight coordination in multirobot teams[END_REF], visiting different locations [START_REF] Tovey | The generation of bidding rules for auction-based robot coordination[END_REF], box pushing [START_REF] Gerkey | Sold!: Auction methods for multirobot coordination[END_REF], etc.). These auction methods can be divided in three different strategies: Combinatorial methods treat all possible combinations to give the optimal distribution to the MRS [START_REF] Berhault | Robot exploration with combinatorial auctions[END_REF]; Repeated parallel auctions occur every time interval to check that every robot has the suitable task [START_REF] Lozenguez | Simultaneous auctions for "rendez-vous" coordination phases in multi-robot multi-task mission[END_REF]; Sequential mechanisms where the robot auctions each task taking into account its previous state [START_REF] Dias | Traderbots: a market-based approach for resource, role, and task allocation in multi-robot coordination[END_REF]. Even if it gives the best solution, combinatorial method can not be adopted because it needs generally a central unit. This means that the overall architecture of control can not be completely distributed. Moreover, the computation complexity rapidly increases with the robot and target numbers. The proposed RCC algorithm is derived from the two other strategies. The robot wins or looses a target by computing and comparing its own RCCs for these targets. Only a minimalist communication is needed between the robots, and they decide for their targets in fully distributed and reactive way. In order to focus on the main contribution of this paper (attainability of the virtual structure), the reader can find all details about this algorithm in [START_REF] Benzerrouk | Altruistic distributed target allocation for stable navigation in formation of multirobot system[END_REF]. It is noted that experimentations made in this paper (cf. subsection 4.2) are only based on RCC algorithm.

Applied Robot Control

Once every robot has chosen its target, its mission is to reach this dynamic target and to track it to maintain the formation. Attraction to a Dynamic Target Controller (cf. Figure 2) gives set-points (position, angle) that, if they are followed by the robot, it converges to its dynamic chosen target (in position and orientation). In section 3.2, the Obstacle Avoidance Controller will be very briefly summarized in order to focus on the main contribution of this paper (constrains on the virtual structure). More details can be found in [START_REF] Adouane | Orbital obstacle avoidance algorithm for reliable and on-line mobile robot navigation[END_REF]. Improvement of the controller to address dynamic obstacles and collision avoidance will be proposed in a future paper.

Attraction to a Dynamic Target Controller

Attraction to a Dynamic Target Controller allows the formation to be maintained, since it leads each robot to follow its target. To detail this controller, consider a robot i (x i , y i , θ i ) and its secondary dynamic target T i (x Ti , y Ti , θ T ). Note that to simplify notations in the following, the same subscript as the robot is given to its target(cf. Figure 4). The variation of the target position can be described by

ẋTi = v Ti .cos(θ T ) ẏTi = v Ti .sin(θ T ) (1) 
Let us also introduce the robot used model (cf. Figure 4). The proposed study focuses on unicycle mobile robots corresponding to the used robots for simulation and experimental part (cf. Section. 4). Their kinematic model can be described by the well-known equations (cf. Equation 2).

     ẋi = v i .cos(θ i ) ẏi = v i .sin(θ i ) θi = ω i (2)
where v T is the target linear velocity, v i and ω i are respectively the robot linear and angular velocities. It is to be noted also that ẋ corresponds to the derivative of x with respect to time.

Figure [START_REF] Junior | Hybrid deliberative/reactive architecture for human-robot interaction[END_REF] allows to define position errors as

e xi = (x Ti -x i ) = d Si cos(γ i ) e yi = (y Ti -y i ) = d Si sin(γ i ) (3) 
The current distance between robot i and its target T i , noted d Si can then be expressed as By using equations ( 1) and ( 2), ėx and ėy are then given by ėxi = ( ẋTi

d Si = e 2 xi + e 2 yi ( 4 
) i Y m X m O m (x i , y i ) d Si O w X w Y w i T v T i T i (x Ti , y Ti )
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-ẋi ) = v Ti .cos(θ T ) -v i .cos(θ i ) ėyi = ( ẏTi -ẏi ) = v Ti .sin(θ T ) -v i .sin(θ i ) (6) 
We then obtain

ḋSi = v Ti . cos(γ i -θ T ) -v i . cos(γ i -θ i ) (7) 
Similarly, the current angle of the robot according to its dynamic target is noted γ i (cf. Figure 4) and is calculated as

γ i = arctan( e yi e xi ) ( 8 
)
Its derivative is γi = ˙ (e yi /e xi ) 1 + (e yi /e xi ) 2 (9) 
To obtain the set-point angle θ Sat applied to the robot in order to reach its dynamic target, our idea is to keep γ i constant. In other words, we would like to have γi = 0. Under this constraint, we show that the defined set-point angle leads the robot to its target. Developing equation ( 9) thus enables us to write:

v Ti .sin(θ T -γ i ) d Si - v i .sin(θ i -γ i ) d Si = 0 (10) 
The set-point angle that the robot must follow to satisfy the constraint expressed by equation [START_REF] Brooks | A robust layered control system for a mobile robot[END_REF] and to reach its dynamic target is then given by

θ Sat = arcsin( v T i vi sin(θ T -γ i )) + γ i (11) 
In the following, it is noted b = v T i vi . To prove that the robot always reaches its target, we have to prove that d Si is continually decreasing. To do this, it is sufficient to prove that ḋSi < 0. Before giving the proof, it is stipulated that the linear velocity of the robot will be elaborated satisfying the constraint v i ≥ v Ti (the expression of v i is given later in equation (17a)). It is natural that the robot moves faster than the target to reach it, especially when the latter is escaping. Therefore, we always have b =

v T i vi ≤ 1.
By reaching the target, the robot velocity has then to satisfy v i → v Ti to keep d Si → 0 (cf. Section 3.3). Hence, we will obtain b = 1.

In addition, the trajectory of the target is assumed to be smooth.

To prove that while d Si = 0, ḋSi is always ḋSi < 0 if the robot follows the set-point angle given by equation 11, the following properties are recalled

arcsin(x) ∈ [- π 2 , π 2 ], ∀x ∈ [-1, 1] arcsin(sin(x)) = x ∀x ∈ [-π 2 , π 2 ] π -x ∀x ∈] π 2 , 3π 2 [
Consider equation [START_REF] Pamosoaji | A motion planning algorithm for a nonholonomic vehicle using vector potential functions in triangular regions[END_REF]. The following transformation is considered

cos(θ T -γ i ) = ± 1 -(sin(θ T -γ i )) 2
By replacing θ i in [START_REF] Pamosoaji | A motion planning algorithm for a nonholonomic vehicle using vector potential functions in triangular regions[END_REF] with the set-point angle that the robot must follow (cf. Equation 11), we also obtain

cos(γ i -θ i ) = ± 1 -sin(arcsin(b sin(θ T -γ i ))) 2
two cases are then possible:

1. (θ T -γ i ) ∈ [ -π 2 , π 2 
] (escaping target (cf. Figure 5(a))) this leads to

ḋSi = v Ti 1 -(sin(θ T -γ i )) 2 -v i 1 -(b sin((θ T -γ i )) 2 (12) 
However, while the robot has not yet reached the target, we have b < 1 since v T < v i as discussed above. This means that 

v Ti 1 -(sin(θ T -γ i )) 2 < v i 1 -(b sin(θ T -γ i )) 2 thus ḋSi < 0 v Ti θ T Target γ i θ i (a) Escaping target θ T γ i θ i v Ti (b) Approaching target

(θ

T -γ i ) ∈] π 2 , 3π 2 [ (approaching target (cf. Figure 5(b))) ḋSi = -v Ti 1 -(sin(θ T -γ i )) 2 -v i 1 -(b sin((θ T -γ i )) 2 (13) 
It can then immediately be deduced that ḋSi < 0.

It is interesting to note that the proposed set-point enables convergence to θ T as d Si → 0. In fact, since b = 1 when d Si → 0 as discussed in the last proof, two cases are again possible:

1. (θ T -γ i ) ∈ [ -π 2 , π 2 
] (escaping target (cf. Figure 5(a)))

θ Sat = arcsin(sin(θ T -γ i )) + γ i θ Sat = θ T -γ i + γ i θ Sat = θ T (14) 
The set-point angle tends directly to the target direction.

(θ

T -γ i ) ∈] π 2 , 3π 2 
] (approaching target (cf. Figure 5(b)))

θ Sat = π -(θ T -γ i ) + γ i θ Sat = π + 2γ i -θ T (15) 
However, the robot still reaches the target, but with this set-point angle it goes past it once reached. The robot is then behind the target and tries to join it again. Therefore, γ i is recalculated. Since the target trajectory is assumed to be smooth (constrained in section 3.3), the new calculated γ i thus verifies case 1 (the robot is now behind the target, which then becomes an escaping target).

The proposed set-point angle allows each robot to converge to its target by decreasing the position and orientation error. The set-points (P Si , θ Si ) corresponding to this controller (cf. Section 2.1) are then (P Sat , θ Sat ) = ((x Ti , y Ti ), θ Sat )

Obstacle avoidance controller

The aim of this controller is to allow the robot to avoid obstacles that hinder its attraction to the target. It is based on the limit cycle methods [START_REF] Adouane | Orbital obstacle avoidance algorithm for reliable and on-line mobile robot navigation[END_REF], [START_REF] Kim | A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer[END_REF], [START_REF] Jie | Real time obstacle avoidance for mobile robot using limit-cycle and vector field method[END_REF]. The differential equations representing the desired trajectory of the robot are given by the following system

ẋr = ay r + x r (R 2 c -x 2 r -y 2 r ) ẏr = -ax r + x r (R 2 c -x 2 r -y 2 r ) (16) 
With a = ±1 according to the optimal direction of avoidance (clockwise or counterclockwise). (x r , y r ) are the relative robot coordinates with respect to the obstacle. This latter is characterized by a circle of radius R cl = R o + R r + where: R o is the obstacle radius, R r is the robot radius and is a safety margin (cf. Figure 6).

The obstacle avoidance algorithm [START_REF] Adouane | Orbital obstacle avoidance algorithm for reliable and on-line mobile robot navigation[END_REF] is summarized as follows: • The nearest hindering obstacle is detected.

• The direction of avoidance is chosen according to the sensor information.

• The robot avoids the obstacle while following a limit cycle which has a radius R c = R cl -ξ (attraction phase).

• The robot avoids the obstacle while following a limit cycle which has a radius R c = R cl +ξ (repulsive phase) (cf. Figure 6). Where ξ is a small value and (ξ ).

This controller then generates the following set-points:

(P Soa , θ Soa ) = ((x i , y i ), tan -1 ( ẏr ẋr ))

To deal with dynamic obstacles, this controller has been enriched. Hence, collision with dynamic obstacles and robots of the same system can be avoided. Moreover, for a higher safety, a penalty function adapts the robots velocities if they are too close from each other. More details are available in [START_REF] Benzerrouk | Dynamic obstacle avoidance strategies using limit cycle for the navigation of multirobot system[END_REF].

One advantage of the proposed control architecture is that we have the same control law for Attraction to dynamic target and for Obstacle avoidance controllers (cf. Figure 2). An accurate Lyapunov-based stability demonstration is given in [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF]. This demonstration is briefly reminded in next section 3.3. According to it, the error between current robot's configuration (x i , y i , θ i ) and the desired static/dynamic configuration (P S , θ S ), is always steady and converge to 0.

Control law

The control law used, which was proposed in [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF], allows each robot i to converge to the set-point generated by the chosen controller.

v i = v max -(v max -v Ti )e -(d 2 S i /σ 2 ) (17a) ω i = ω Si + k θi (17b)
where

• ω Si = θSati for the attraction to a dynamic target controller, and ω Si = θSoa for the obstacle avoidance controller.

• v max is the maximum linear speed of the robot. Naturally, v Ti has to be such that v Ti ≤ v max

• σ, k are positive constants,

• θi is the orientation error such that θi = θ Sati -θ i ( θi = θ Soa -θ i for the obstacle avoidance) which gives θi = ω Si -ω i .

• d Si is the distance between the current robot i position and its attributed target. It is to be noted that for obstacle avoidance controller, the set-point position is equal to (x i , y i ), thus d Si = 0 in this case (cf. Section 3.2).

Lyapunov-based stability enabled the convergence of the robot with its target to be proved [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF]. Convergence of the whole multi-robot system to the set-point virtual structure can then be derived by studying the following Lyapunov function

V = N k=1 V k (18) 
where V k is the Lyapunov function associated with robot k. This function was defined as

V k = 1 2 θ2 k (19) 
It has been proved that Vk < 0 (when θk = 0) [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF]. Therefore, it can be easily deduced that

V = N k=1 Vk < 0 ( 20 
)
The system is then asymptotically stable. Moreover, it can be noticed that the applied angular velocity ω i enables the exponential convergence of the orientation error toward 0. The control law is common to the two controllers (attraction to a dynamic target and obstacle avoidance) and stability is then valid for the obstacle avoidance.

However, this theoretical convergence is applied to nonholonomic mobile robots. This means that stability will be ensured only if the angular set-point is attainable by the robot, considering its kinematic constraints (maximum velocities). In the next paragraph, we then propose to define the permitted dynamic of the target, taking into account the corresponding robot constraints.

Target attainability with respect to kinematic robot constraints 3.4.1. Linear velocity constraints

In section 3.1 it was shown that the robot always converges to its target if

v Ti ≤ v i ⇔ b ≤ 1 ( 21 
)
According to equation (17a), the linear velocity of the robot verifies the condition given by inequation [START_REF] Parker | On the design of behavior-based multi-robot teams[END_REF], and takes into account its maximum linear velocity. However, it is clear that the linear velocity of the secondary targets depends on their relative positions in the virtual structure (cf. Figure 7). This figure shows the different trajectories of the targets according to their relative position in the virtual structure. The choice of D i and angle Φ i thus affects v Ti . Each secondary target i has coordinates (x Ti , y Ti ) expressed as

x Ti = x T + D i cos(Φ i + θ T ) y Ti = y T + D i sin(Φ i + θ T ) (22) 
Their derivatives are then (only rigid virtual structures are considered)

ẋTi = ẋT -D i θT sin(Φ i + θ T ) ẋTi = ẏT + D i θT cos(Φ i + θ T ) (23)
and linear velocity of the virtual target i can be written as

v Ti = ẋ2 Ti + ẏ2 Ti (24) 
By replacing with ( 23)

v Ti = v 2 T + D 2 i θ2 T + 2D i θT F (25) 
where

F = ( ẏT cos(Φ i + θ T ) -ẋT sin(Φ i + θ T ))
It is clear that ẏT cos

ẏT cos(Φ i + θ T ) -ẋT sin(Φ i + θ T ) ≤ ẋ2 T + ẏ2 T ( 26 
) then Moment t 1 D j Φ j Φ i Moment t 2 X r Y r v T D i
(Φ i + θ T ) -ẋT sin(Φ i + θ T ) ≤ v T (27) 
Hence, according to equation ( 25)

v Ti ≤ (v T + D i θT ) 2 (28) 
Robots must be able to move faster than their targets (cf. Equation 21). This means

v T + D i θT < v max ( 29 
)
The relative distance of each secondary target has then to be

D i < v max -|v T | θT ( 30 
)
Note that θT is bounded in the next paragraph.

Angular velocity constraints

For now, we are interested in the maximum angular velocity of the robots, ω max , such that the variation of the angular set-point θSati remains attainable. Indeed, the angular speed applied to the robot has to verify

|ω i | ≤ ω max (31) 
where ω max > 0. By replacing (17b) in ( 31), we have

ω Si + k θi ≤ ω max (32) 
knowing that

ω Si + k θi ≤ |ω Si | + k θi
To find the values of ω Si which verify [START_REF] Lozenguez | Simultaneous auctions for "rendez-vous" coordination phases in multi-robot multi-task mission[END_REF], it is proposed to use

|ω Si | + k θi ≤ ω max (33) 
These values then verify

|ω Si | ≤ ω max -k θi (34) 
It is clear that |ω Si | has to verify this condition (inequation 34) for every θi . The latter relation then becomes

|ω Si | ≤ min(ω max -k θi ) (35) 
min(ω max -k θi ) is obtained when θi is maximum. The maximum orientation error is when the robot has an opposite orientation compared with the set-point angle. This means that max( θi ) = π.

To remain attainable, the angular variation of the setpoint ω Si = θSati has thus to verify

|ω Si | ≤ ω max -kπ (36) 
Let us compute ω Si = θSati according to equation ( 11)

θSati = d dt [b sin(θ T -γ i )] 1 -(b sin(θ T -γ i )) 2 + γi (37) 
As noted in section 3.1, the set-point was deduced by keeping γ i constant, which means that γi = 0. It can also be noted that θSati is not defined if we have simultaneously

b = 1 sin(θ T -γ i ) = ±1 (38) 
b = 1 is true only if d Si → 0 (cf. Equation 17a), which means that this singularity may occur only when the robot is on its target. To avoid this in practice, we propose to redefine θ Sati according to equation [START_REF] Arkin | Motor schema-based mobile robot navigation[END_REF], by considering a virtual circle of radius ρ in the neighborhood of d Si ≈ 0. Considering the cases of approaching and escaping targets, θ Sati then becomes The permitted dynamic of these targets can then be easily deduced as (cf. Equation 36)

θ Sat =      arcsin(b sin(θ T -γ i )) + γ i if d Si ≥ ρ θ T if d Si < ρ and (θ T -γ i ) ∈ [ -π 2 , π 2 ] π + 2γ i -θ T if d Si < ρ and (θ T -γ i ) ∈] π 2 , 3π 2 [ (39) As θ Sati is redefined, its derivative becomes (γ i constant) θSati =        d dt [b sin(θ T -γi)] √ 1-(b sin(θ T -γi)) 2 if d Si ≥ ρ θT if d Si < ρ and (θ T -γ i ) ∈ [ -π 2 , π 2 ] -θT if d Si < ρ and (θ T -γ i ) ∈] π 2 , 3π 2 
θT ≤ ω max -kπ (41) 
Let us study now the case of robots which are not in the neighborhood of their targets. Beforehand, we recall the following properties:

1. γ i is constant ⇒ γi = 0, 2. b = v T i vi ⇒ ḃ = db dt = vT i vi-v T i vi v 2 i , 3. |a cos(α) + b sin(α)| ≤ √ a 2 + b 2 ∀a, b, α ∈ R, 4 
. ḋSi is bounded (cf. Equation 7).

By replacing equation (40) when d Si ≥ ρ in (36), and using points 1) and 2), we obtain

ḃ sin(θ T -γ i ) + b θT cos(θ T -γ i ) ≤ (ω max -kπ) 1 -(b sin(θ T -γ i )) 2 (42)
To find the permitted variation of target θT , we use the upper bound of the left member of relation (42) according to point 3). We then have

( ḃ) 2 + (b θT ) 2 ≤ (ω max -kπ) 1 -(b sin(θ T -γ i )) 2
(43) In fact, the values of θT , verifying the relation (43), verify also (42). θT can then be expressed as

( θT ) 2 ≤ [(ω max -kπ) 2 (1-(b sin(θ T -γ i )) 2 )-( ḃ) 2 ]/b 2 (44)
To remain attainable, the target must have an angular velocity θT verifying relation (44) for all the robots, in other words for all possible linear velocities. Thus, it has to be

( θT ) 2 ≤ min([(ω max -kπ) 2 (1-(b sin(θ T -γ i )) 2 )-( ḃ) 2 ]/b 2 )
(45) A necessary condition to reach the minimum of the right member, noted (R), of this relation is that 1 b → 1, since b ≤ 1 (cf. Equation 21). However this condition occurs only when d Si ≈ 0. The latter case d Si < ρ has already been addressed in equation (41).

Since v i decreases as the robot approaches its target (cf. Equation 17a), this condition occurs as d Si ≈ ρ.

First, let us calculate vi using relation (17a

) vi = vTi e -d 2 S i /σ 2 -(v max -v Ti ) -2d Si ḋSi σ 2 e -d 2 S i /σ 2 (46) 
If ρ is considered as being sufficiently small, and ḋSi is bounded (point 4)), relation (46) becomes vi ≈ vTi In the neighborhood of ρ, relation (44) becomes

( θT ) 2 ≤ [(ω max -kπ) 2 (1 -( v Ti v i (ρ) sin 2 (θ T -γ i )))] v i (ρ)
v Ti (47) Note that we can also have

(1 -( v Ti v i (ρ) sin 2 (θ T -γ i ))) = 0
Hence, min(R) = 0.

To remain attainable, the dynamic of the virtual structure has to follow two phases:

1. a transitional phase, where the robots have not yet achieved the formation. In this phase, θT is constrained such that θT = 0, 2. once the formation is achieved, the virtual structure can vary according to relation (41).

Simulation and Experimental Results

First, the behavior of a robot with respect to its dynamic target motion is observed through simulation. Next, experimentation is made with three robots to attain and to maintain a triangular formation.

Variation of the virtual structure angular velocity

This section shows the importance of bounding the angular velocity of the virtual structure θT according to the kinematic constraints of the robots. Hence, a mobile robot reaching a virtual target is simulated. The maximum angular velocity of the robot is ω max = 3rd/s. We choose k = 0.6s -1 . According to relation (41), and to simplify notation on figures, we propose to note P = ω max -kπ. Based on the chosen values of ω max and k, we find P = 1.1. First, it is proposed to show the importance of the transitional phase where the variation of θT must be set to 0 (cf. Equation 47). Hence, in figure 8.(b), we can see that θT increases at the beginning of the simulation (from 0.1s) and the target trajectory follows immediately a significant curve (cf. Figure 8.(a)). Consequently, we observe oscillations in the trajectory of the robot. The robot correctly attains the target only when this one has a straight trajectory ( θT = 0). Figure 8.(b) confirms that. In fact, even if θT satisfies the condition described in equation 44, oscillations may appear if the transitional phase is not imposed. Naturally, the distance d Si is oscillating in this case (cf. Figure 8.(c)). The Lyapunov function is also oscillating and the control law is not stable (cf. Figure 8.(d)).

Figure 9 shows the importance of satisfying the condition described in relation 41 after the transitional phase. Once the target is attained ( θT = 0 until the moment 0.5s), the condition 41 is also satisfied. It can be seen that the robot goes toward the target. Even if it increases, the variation of P is such that θT < P (cf. Figure 9.(b)). In this interval, the robot correctly tracks its target (cf. 

Experimental results: 3 robots with a attainable vir-

tual structure Experiments were performed using Khepera III robots (cf. Figure 10). For the first tests, only the perception of the MRS was centralized. Hence, navigation was achieved on a platform equipped with a camera giving positions and orientations of the robots by detecting the bar code associated with each one (cf. Figure 10). This information was sent to the robots by a computer through a Wi-Fi network.

In [START_REF] Benzerrouk | Navigation of multi-robot formation in unstructured environment using dynamical virtual structures[END_REF], the virtual structure has a straight trajectory. Here, it is proposed to extend to circular motion such that all the targets remain attainable by all the robots despite their kinematic constraints. Knowing that the dynamic of the virtual structure has to follow relation (41), the radius R vs of the circular motion formed by the main target T 1 (cf. Figure 11(a)) verify

R vs = v T θT > v T ω max -kπ (48) 
with v T constant and v T v max . First, a clockwise motion is considered (cf. Figure 11(a)). It is observed that the robots converge to the virtual structure even without passing the transitional phase. The reason is that R vs is big enough and initial conditions Notation: T i (t j ) Target i at moment j, R i (t j ) Robot i at moment j.

of the robots are far from critical situations described in section 3.4.2. In fact, equation 47 imposes constraints for even the maximal orientation errors corresponding to π (cf. Equation 36). Here, initial positions of the robots do not correspond to this critical configuration and the highest authorized bound is higher than the one given in equation 47. At time t 2 + ∆t, a jump in the virtual structure state was produced (cf. Figure 11(b)). The dynamic of the virtual structure was also changed so that its motion became counter-clockwise. Note that robots change dynamically their targets at each set-points jump to rapidly reach the new formation using RCC algorithm [START_REF] Benzerrouk | Altruistic distributed target allocation for stable navigation in formation of multirobot system[END_REF]. The distances between the robots and their targets are given in figure 12. They decreased to 0, which confirms that the formation was reached and maintained. When the virtual structure dynamic was changed, the robots were far from their targets, which explains the observed jumps. The same observations were noticed on the global Lyapunov function (cf. Figure 13). 

Conclusion and future work

In this paper, the navigation in formation of a mobile multi-robot system was studied. Mainly based on the virtual structure approach, the proposed attraction to a dynamic target controller allows to attain the virtual targets. However, it is important to constrain the structure's dynamic so that it always remains attainable. In fact, kinematic constraints of the robots (maximum velocities) impose that they cannot follow all the dynamics. Hence, the proposed control law is designed so that the robots always move faster than their targets to attain them. Constraints on the relative positions of the targets in the formation are also defined such that their linear velocities stay less than the maximum velocity of the robots (first constraint). Moreover, the angular velocity of the virtual structure is bounded such that the generated set-point angles remain attainable despite the maximum angular velocities of the robots (second constraint).

This paper treats constraints on attraction to a dynamic target controller. Obstacle avoidance controller has also to generate attainable set-points. Introducing a new parameter in the limit-cycle equation allows it [START_REF] Benzerrouk | Obstacle avoidance controller generating attainable set-points for the navigation of multi-robot system[END_REF]. Future work will aim to demonstrate the safety and the stability of the overall multi-controller architecture, even when switch occur between controllers.
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 1 Figure 1: Navigation in formation control strategies.

Figure 2 :

 2 Figure 2: The proposed architecture of control embedded in each robot.
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 3 Figure 3: Maintaining a triangular formation by defining a virtual geometrical structure.
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 4 Figure 4: Attraction to a dynamic target.
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 5 Figure 5: Escaping/Approaching target.
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 6 Figure 6: Obstacle avoidance controller [34].

Figure 7 :

 7 Figure 7: Virtual targets trajectories to keep the virtual structure shape. Dashed curved lines represent the trajectories of the targets. Straight dashed lines illustrate the virtual structure in the previous moment.
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 28 Figure 8: Undesirable oscillations of the robot trajectory if the transitional phase is not imposed.

  Figure 9.(a)). The distance d Si separating them is d Si = 0 (cf. Figure 9.(c)). The Lyapunov function also decreases and then remains equal to 0 (cf. Figure 9.(d)). After 9.5s, we remove the constraint (41) such that θT can be θT > P . It can be seen that the robot cannot track the target. The oscillation of distance d Si and V confirms this (cf. Figures 9.(c) and (d)).

Figure 9 :

 9 Figure 9: Undesirable oscillations of the robot trajectory if the imposed constraints on the dynamic target are not met (if | θT | > P ).

Figure 10 :

 10 Figure 10: Khepera III mobile robot.

Figure 11 :

 11 Figure 11: Real trajectory of the robots (top views from the camera). Distributed allocation (a) and reallocation (b) of the targets.Notation: T i (t j ) Target i at moment j, R i (t j ) Robot i at moment j.

Figure 12 :

 12 Figure 12: Variation of the distance d S i between robot i and the chosen target (i = 1..3).

Figure 13 :

 13 Figure 13: Evolution of the global Lyapunov function V .