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Abstract

A two-layer model describing the interaction of a shear bubble layer formed by breaking
waves and an underlying potential layer is derived in shallow water approximation. A non-
hydrostatic formulation taking into account the entrainment effects in shear flows is proposed.
Time and space periodic solutions are found, and some basic problems (the formation of bores
and periodic structures from a uniform flow) are numerically solved.

Keywords: breaking waves; shear flows; two-layer shallow water flows.

1. Introduction

The wave breaking is a complex phenomenon accompanied by a strong vorticity generation,
air entrainment and the interaction of a lower underlying layer (usually potential) under
breaking waves and an upper subsurface shear layer [32]. The article by Duncan [7] provides
a great overview of this phenomenon for spilling breakers. In [2, 3] a three-layer scheme
for mathematical modelling of spilling breakers is proposed. It involves the underlying
potential layer, intermediate single-phase turbulent layer, and subsurface two-phase layer.
The dynamics of the frontiers between these physically different flow regions (potential, shear
and multiphase) is one of the key points of the modelling [4, 20]. The model needs also to
know the structure of the velocity profile in the shear region. A cubic approximation is used
for this aim [19], [29]. The model was successfully used for the description of weak hydraulic
jumps [21]. The influence of the internal waves on acoustic properties of subsurface bubble
layer in a simplified framework was studied in [11].

This paper attempts to propose a mathematical model for the interaction between the
bubble layer formed by breaking waves and internal waves (see Fig. 1). The flow in the
upper bubble layer is considered as a shear flow of air-water mixture where the air bubbles
and surrounding fluid have the same average velocity. Such a two-phase approach is largely
used in a Navier–Stokes type modelling of breaking waves [18, 6]. We neglect here both the
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Figure 1: Two-layer stratified flow over topography.

viscosity and capillarity effects. The volume fraction will be the only parameter describing
the presence of air bubbles in water. The flow is sheared, however, we do not suppose
any specific dependence of the horiontal velocity on the vertical coordinate. Instead, under
some mathematically justified hypotheses (shallow water approximation, smallness of the air
volume fraction and its vertical gradient), we derive an evolution equation for the variable
measuring the horizontal velocity profile distortion. This variable is naturally related to the
flow vorticity. Then the depth averaging equations are derived. The upper-layer subsystem
is hyperbolic, and this eventually leads to the formation of shocks in the solutions of the
system. The vorticity is generated both by the shocks and entrainment process in shear
flows (cf. [31, 24, 25, 5, 10]).

The lower homogeneous fluid layer is potential, and can approximately be described by
the Serre–Su–Gardner–Green–Naghdi type equations [27, 28, 12]. The interaction between
the layers is taken into account through a natural kinematic boundary condition at the
interface “shear layer-potential layer” describing an entrapment of a pure fluid by a shear
bubble flow. The entrainment velocity is proportional to the intensity of large eddies in the
upper layer [33]. The presence of air drastically changes the flow characteristics. Indeed,
the fluid with air bubbles is lighter than the below fluid, so the system becomes “stably
stratified”. The stratification induces buoyancy effects that are absent in homogeneous
fluids. The model is a natural extension of the model [10] validated, in particular, on the
propagation of Favre waves [8] and shoaling of solitary waves [14].

The paper is organized as follows. In sections 2 and 3 we derive two-layer depth-
averaged equations for flows over time and space dependent topography. In section 4, a
mild slope approximation of the model is proposed. Exact periodic solutions are constructed
in section 5. In section 6, a numerical method is presented together with the non-stationary
computations showing the formation of a turbulent bore and periodic and damped solutions
from a uniform flow. Technical details are presented in the Appendices A and B.

2. Flow over topography for a lower layer with a prescribed pressure at the
interface

Consider the Euler equations for two-dimensional flows. In the horizontal direction Ox
the component of the velocity is u, and in the vertical direction Oz the velocity component
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is w. With ρl being the fluid density and p being the fluid pressure, the Euler equations for
the lower layer can be written as :

∂u

∂x
+
∂w

∂z
= 0, (1)

ρl

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
, (2)

ρl

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −ρlg −

∂p

∂z
. (3)

Here g is the gravitational acceleration in the vertical direction. The kinematic boundary
condition at z = b(t, x) is :

w |z=b= bt + u |z=b bx. (4)

At the internal boundary z = b+ h (h is the layer thickness) the kinematic condition is :

w |z=b+h −(b+ h)t − u |z=b+h (b+ h)x = M. (5)

Here the right hand side M is responsible for the mixing between layers (an empirical formula
for M will be proposed later).

We introduce the classical scaling of the shallow water theory:

x = Lx∗, z = Hz∗, t =
L√
gH

t∗, b = Hb∗,

u =
√
gHu∗, w =

H

L

√
gHw∗, p = ρlgHp

∗, h = Hh∗.

Here H and L are the characteristic vertical and horizontal scales, the dimensionless variables
are denoted with “star”. We suppose that the waves are long, so the dimensionless parameter
ε = H/L is small. Equations (1)–(3) are transformed into dimensionless form where, to
simplify the writing of equations, we drop the stars on the dimensionless variables:

∂u

∂x
+
∂w

∂z
= 0, (6)

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −∂p

∂x
, (7)

ε2
(
∂w

∂t
+
∂uw

∂x
+
∂w2

∂z

)
= −

(
1 +

∂p

∂z

)
. (8)

Equations (6)–(8) admit the conservation of energy :

∂E

∂t
+

∂

∂x
(uE + pu) +

∂

∂z
(wE + pw) = 0, (9)

where

E =
u2

2
+ ε2

w2

2
+ z
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is the dimensionless specific energy. The dimensionless form of the boundary conditions (4)
and (5) does not change under the hypothesis that the entrainment velocity M has the same
scaling as w.

Let us introduce the average velocity in the lower layer :

U =
1

h

∫ b+h

b

u dz.

Integrating equations (6), (7) and (9) with respect to z over the fluid depth and using the
boundary conditions, we get the following exact integral relations :

∂h

∂t
+

∂

∂x
(hU) = −M, (10)

∂

∂t
(hU) +

∂

∂x

(∫ b+h

b

u2 dz +

∫ b+h

b

p dz

)
= p |z=b+h (b+ h)x − p |z=b bx −Mu |z=b+h,

(11)

(∫ b+h

b

E dz

)
t

+

(∫ b+h

b

(uE + pu) dz

)
x

= pu |z=b+h (b+ h)x

−pu |z=b bx − pw |z=b+h +pw |z=b −ME|z=b+h.
(12)

To obtain a closed system of equation, we need to know the pressure distribution in the
layer. Integrating the equation (1) from b to any z, b < z < b+ h we obtain :

w(t, x, z) = w |z=b −
∫ z

b

ux dz.

In zero-order approximation the vertical velocity is :

w(t, x, z) ≈ Db

Dt
− Ux(z − b),

D

Dt
=

∂

∂t
+ U

∂

∂x
. (13)

The second-order approximation for pressure comes from (8) where we have to replace w by
(13):

∂p

∂z
= −1− ε2

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
≈ −1− ε2

(
Dw

Dt
+ w

∂w

∂z

)

= −1− ε2
(
D2b

Dt2
− (z − b)DUx

Dt
+ Ux

Db

Dt
− Ux

(
Db

Dt
− Ux(z − b)

))

= −1− ε2
(
D2b

Dt2
− (z − b)

(
DUx
Dt
− U2

x

))
.

(14)

We do not replace here Ux from the mass conservation law (10) because of the source term
M . Integrating (14) from b+ h to z (b < z < b+ h), we obtain:

p = p |z=b+h −(z − b− h)− ε2D
2b

Dt2
(z − b− h) + ε2

(
DUx
Dt
− U2

x

)
(z − b)2 − h2

2
.
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In particular, this gives the pressure distribution at the bottom:

p |z=b= p |z=b+h +h+ ε2h
D2b

Dt2
− ε2

2
h2
(
DUx
Dt
− U2

x

)
.

The integral of the pressure can then be evaluated as :

P ≡
∫ b+h

b

p dz = p |z=b+h h+
h2

2
+ ε2

(
h2

2

D2b

Dt2
− h3

3

(
DUx
Dt
− U2

x

))
.

We also introduce

e =
ε2

2h

∫ b+h

b

w2 dz.

Using (13) this “internal energy” e can be evaluated as :

e = ε2

(
1

2

(
Db

Dt

)2

− 1

2

Db

Dt
Uxh+

U2
xh

2

6

)
=
ε2

2

((
Db

Dt
− Uxh

2

)2

+
U2
xh

2

12

)
.

For the potential flows, one has [1, 9] :∫ b+h

b

u2 dz ≈ hU2 +O
(
ε4
)
.

We will prove below a more general estimate covering also the case of weakly sheared flows.
The flow is weakly sheared if in dimensionless variables one has :

∂u

∂z
= O (εα) , α > 0.

This property is time invariant : if, initially, the flow is weakly sheared, then for any time
it will also be weakly sheared. Indeed, in the long wave approximation the dimensionless
vorticity is :

ω = −∂u
∂z

+O
(
ε2
)
.

Since in 2D case the vorticity is conserved along trajectories, one obtains :(
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
∂u

∂z
= O

(
ε2
)

It implies that for any time

∂u

∂z
= O (β) , β = min (α, 2) .

In particular, it implies that

1

h

∫ b+h

b

|u− U |2 dz = O
(
ε2β
)
.
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Indeed, for any z belonging to (b, b+ h) we have

|u− U | =
∣∣∣∣u− 1

h

∫ b+h

b

udz

∣∣∣∣ =

∣∣∣∣∣
∫ z

b

∂u

∂z
dz − 1

h

∫ b+h

b

(∫ z′

b

∂u

∂z
dz

)
dz′

∣∣∣∣∣
≤
∫ z

b

∣∣∣∣∂u∂z
∣∣∣∣ dz +

1

h

∫ b+h

b

∫ z′

b

∣∣∣∣∂u∂z
∣∣∣∣ dzdz′ ≤ max

b≤z≤b+h

∣∣∣∣∂u∂z
∣∣∣∣ (∫ b+h

b

dz +
1

h

∫ b+h

b

(z′ − b)dz′
)

=
3h

2
max

b≤z≤b+h

∣∣∣∣∂u∂z
∣∣∣∣ .

Hence,
1

h

∫ b+h

b

|u− U |2 dz = O
(
ε2β
)
.

Analogously, one can prove that

1

h

∫ b+h

b

|u− U |3dz = O
(
ε3β
)
.

In particular, for the potential flows one has ω = 0 and β = 2. Keeping only the terms
of order ε0 and ε2 in (10), (11), (12) we obtain the final system for a lower potential layer
with the entrainment at the interface z = b+ h:

∂h

∂t
+

∂

∂x
(hU) = −M,

∂

∂t
(hU) +

∂

∂x
(hU2 + P ) = p|z=b+h(b+ h)x − p|z=bbx −Mu|z=b+h,

∂

∂t

(
h

(
U2

2
+ e+

h

2
+ b

))
+

∂

∂x

(
hU

(
U2

2
+ e+

h

2
+ b

)
+ UP

)
= p|z=bbt − p|z=b+h(M + (b+ h)t)

−M
(u2

2

∣∣∣
z=b+h

+
ε2

2

(Db
Dt
− Uxh

)2
+ b+ h

)
.

(15)

The value of velocity u|z=b+h is not yet determined. Let us remark that we have three
governing equations for only two unknowns h and U . The compatibility condition between
the energy, momentum and mass equations gives us only one possibility (for proof, see
Appendix A):

u|z=b+h = U.

Such a closure was also used in [10]. Thus, only the pressure p at the interface z = b + h
should be prescribed to close system (15).

6



Since the fluid density is constant, it is sufficient to put ε = 1 and “add” a multiplier g
in the pressure definition to return back to dimensional variables :

∂ (ρlh)

∂t
+
∂ (ρlUh)

∂x
= −Mρl,

∂

∂t
(ρlhU) +

∂

∂x

(
ρlhU

2 + P
)

= p|z=b+h(b+ h)x − p|z=bbx −MρlU,

∂G

∂t
+

∂

∂x
((G+ P )U) = −p|z=b+h(M + (b+ h)t) + p|z=bbt

−Mρl

(
U2

2
+

1

2

(
Db

Dt
− Uxh

)2

+ g (b+ h)

)
,

where

G = ρlh

(
U2

2
+ e+

gh

2
+ gb

)
, e =

1

2

((
Db

Dt
− Uxh

2

)2

+
U2
xh

2

12

)
,

P = p|z=b+hh+ ρl

(
gh2

2
+

(
h2

2

D2b

Dt2
− h3

3

(
DUx
Dt
− U2

x

)))
,

p|z=b = p|z=b+h + ρl

(
gh+ h

D2b

Dt2
− 1

2
h2
(
DUx
Dt
− U2

x

))
.

3. Subsurface bubble shear layer

The upper layer of thickness η(t, x) is situated in the domain Dt = {x, z | −∞ < x <
∞, b + h < z < f}, where z = f(t, x) = b(t, x) + h(t, x) + η(t, x) is the position of the free
surface. This layer will be considered as a two-phase mixture of an incompressible gas (air)
of density ρa = const and incompressible fluid (water) of density ρl = const (the same as in
the lower layer). The equations are :

∂u

∂x
+
∂w

∂z
= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −

(
ρg +

∂p

∂z

)
.

(16)

Here u = (u,w)T is the mixture velocity, ρ = αaρa + αlρl is the mixture density, p =
αapa + αlpl is the mixture pressure, αa and αl are the volume fractions of air and water,
respectively, αa + αl = 1. The two-layer system fluid is “stably stratified”, because ρ < ρl
(or, equivalently, ρa < ρl).
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The conventional hydrostatic approximation of the governing equations for the upper
layer is :

∂u

∂x
+
∂w

∂z
= 0,

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρw)

∂z
= 0,

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
+
∂(ρuw)

∂z
= 0, p(t, x, z) = −g

∫ z

f

ρ(t, x, s) ds.

This system is obtained by using the standard shallow water scaling (the terms of order
O(ε2) are neglected in the corresponding dimensionless Euler equations of non-homogeneous
fluids). The system admits the energy conservation law :

∂

∂t

(
ρ

(
u2

2
+ gz

))
+

∂

∂x

((
ρ

(
u2

2
+ gz

)
+ p

)
u

)
+

∂

∂z

((
ρ

(
u2

2
+ gz

)
+ p

)
w

)
= 0.

The boundary conditions are

∂f

∂t
+ u

∂f

∂x
− w

∣∣∣
z=f

= 0,
∂(b+ h)

∂t
+ u

∂(b+ h)

∂x
− w

∣∣∣
z=b+h

= −M.

The first condition means that there is no bubble entrainment at the free surface (the bubble
layer is already formed). The second condition describes the mixing between potential and
shear layers (entrainment process).

For any function F (t, x, z) we define its averaged value in the upper layer by :

F̄ (t, x) =
1

η

∫ f

b+h

F (t, x, s) ds.

In particular, averaging the incompressibility and mass conservation laws we have:

∂η

∂t
+
∂(ηū)

∂x
= M,

∂(ηρ̄)

∂t
+
∂(ηρu)

∂x
= Mρ|z=b+h. (17)

The averaging procedure is quite standard. For example, integrating the incompressibility
equation one has :∫ f

b+h

(ux + wz)dz =
∂

∂x

(∫ f

b+h

udz

)
− fxu|z=f + (b+ h)xu|z=b+h + w|z=f − w|z=b+h = 0.

Using the kinematic boundary conditions, we obtain the first equation of (17). The analogous
procedure was applied to obtain the second equation of (17).

The dynamic conditions at the free surface z = f and interface z = b+h were additionally
used to obtain the averaged momentum equation :

∂

∂t
(ηρu) +

∂

∂x

(
η
(
ρu2 + p

))
= Mρu |z=b+h −p |z=b+h (b+ h)x,

8



and the averaged energy equation :

∂

∂t

(
ηρ

(
u2

2
+ gz

))
+

∂

∂x

(
η

(
ρu

(
u2

2
+ gz

)
+ pu

))
=

= M

(
ρu2

2
+ ρg(b+ h)

) ∣∣∣
z=b+h

+p |z=b+h (M + (b+ h)t).

As in the case of the equations for the lower layer, we need to estimate the correlations
presented in the governing equations.

3.1. Equation for vorticity

We will derive first the equation for the vorticity vector ω = curlu in the hydrostatic
approximation. In the case of a “stratified” fluid, the estimates for the correlations become a
little bit more complicated than in the case of homogeneous fluids. We present them below.
In 2D case the vorticity has only one non-vanishing component (in y-direction). Hence, the
general equation for the vorticity vector ω:(

∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)(
ω

ρ

)
− ∂u

∂x

(
ω

ρ

)
+

g ∧∇ρ
ρ2

= 0.

This can be simplified to : (
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)(
ω

ρ

)
= −gρx

ρ2
. (18)

Here the vorticity is approximately given by ω ≈ uz. The equation for ρz = −(ρl − ρa)(αa)z
is : (

∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
(ρz) = −uzρx − wzρz.

Using the incompressibility condition we rewrite finally the equation for ρz as :(
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
(ρz) + ωρx − uxρz = 0. (19)

Equations (18) and (19) imply : if initially the gas volume fraction αa is low

αa ≈ δ, 1� δ � ε2, (20)

and the velocity and the fraction gradients are small :√
H

g
uz = O(γ), H(αa)z = O(δγ), 1� γ � ε2, (21)

then for any time √
H

g
uz = O(γ + δ), H(αa)z = O(δ(γ + δ). (22)

As before, H is a characteristic vertical scale. The proof is a consequence of the linearity of
equations for ω and ρz [31], and is reminiscent of that of section 2. We need now to estimate
all correlations presented in the averaged equations.
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3.2. Estimation of correlations

Since
|ρ− ρ̄| = |ρl − ρa||αa − ᾱa| = O(δ(γ + δ)), |u− ū| = O(γ + δ),

we obtain the following asymptotic estimates of integrals :∫ f

b+h

ρu dz = ηρu = ηρ̄ū+

∫ f

b+h

(u− ū)(ρ− ρ̄) ds = ηρ̄ū+O
(
δ(γ + δ)2

)
,

∫ f

b+h

p(t, x, s) ds = gρ̄
η2

2
− g

∫ f

b+h

(∫ z

f

(ρ− ρ̄) ds

)
dz = gρ̄

η2

2
+O (δ(γ + δ)) ,

p |z=b+h= −g
∫ b+h

f

ρ(t, x, s) ds = gρ̄η,

∫ f

b+h

zρ dz =

∫ f

b+h

z(ρ− ρ̄) dz +
ρ̄

2

(
f 2 − (b+ h)2

)
=

∫ f

b+h

z(ρ− ρ̄) dz

+
ρ̄η

2
(f + b+ h) =

ρ̄

2
η(η + 2(b+ h)) +O(δ(γ + δ)),

∫ f

b+h

ρu2 dz = ηρu2 = η
(
ρ̄ū2 + ρ̄(u− ū)2 + (ρ− ρ̄)(u− ū)2 + 2ū(ρ− ρ̄)(u− ū)

)
= η

(
ρ̄ū2 + ρ̄(u− ū)2 +O

(
δ(γ + δ)3 + δ(γ + δ)2

))
.

Since ∫ f

b+h

up ds = ū

∫ f

b+h

p ds+

∫ f

b+h

(u− ū)p ds = ū

∫ f

b+h

p ds

−g
∫ f

b+h

(
(u− ū)

∫ z

f(t,x)

(ρ− ρ̄) ds

)
dz − g

∫ f

b+h

(
(u− ū)

∫ z

f(t,x)

ρ̄ ds

)
dz

= ū

∫ f

b+h

p ds− g
∫ f

b+h

(
(u− ū)

∫ z

f(t,x)

(ρ− ρ̄) ds

)
dz − gρ̄

∫ f

b+h

(u− ū)(z − f) dz,

and

g

∫ f

b+h

zuρ dz = g

∫ f

b+h

z(u− ū)(ρ− ρ̄) dz + gρ̄

∫ f

b+h

z(u− ū) dz

+gū

∫ f

b+h

z(ρ− ρ̄) dz + gūρ̄

∫ f

b+h

z dz,

10



then ∫ f

b+h

up ds+ g

∫ f

b+h

zuρ dz = ū

∫ f

b+h

pds− g
∫ f

b+h

(
(u− ū)

∫ z

f

(ρ− ρ̄) ds

)
dz

+g

∫ f

b+h

z(u− ū)(ρ− ρ̄) dz + gū

∫ f

b+h

z(ρ− ρ̄) dz + gūρ̄

∫ f

b+h

z dz

= ū

∫ f

b+h

p ds+O
(
δ(δ + γ)2 + δ(δ + γ)

)
+ gūρ̄

η

2
(η + 2(b+ h))

= gūρ̄

(
η2

2
+
η

2
(η + 2(b+ h))

)
+O

(
δ(δ + γ)2 + δ(δ + γ)

)
.

Finally, ∫ f

b+h

ρu3 dz =

∫ f

b+h

(ρ− ρ̄)
(
(u− ū)3 + 3(u− ū)2ū+ 3(u− ū)ū2 + ū3

)
dz

= ηρ̄ū3 + 3ρ̄ū

f∫
b+h

(u− ū)2 dz

+O
(
δ(δ + γ)2 + δ(δ + γ)3 + δ(δ + γ)4 + (δ + γ)3

)
.

We will use these estimates to simplify the averaged equations in the limit where the
shear effects defined by the dimensionless parameter γ (see the definition in (21)) are more
important than the density variation defined by δ (see the definition in (20) :

γ � δ.

Keeping only the terms of order γ2 we obtain the final equations written below already in
dimensional form :

∂η

∂t
+
∂ηū

∂x
= M,

∂ρ̄η

∂t
+
∂ρ̄ηū

∂x
= Mρ|z=b+h,

∂

∂t
(ρ̄ηū) +

∂

∂x

(
ρ̄η
(
ū2 + q2

)
+ gρ̄

η2

2

)
= Mρu|z=b+h − p|z=b+h(b+ h)x,

∂

∂t

(
ρ̄η

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

))
+
∂

∂x

(
ρ̄ηū

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
+ ρ u

(
ηq2 + g

η2

2

))
= M

(
ρu2

2
+ ρg(b+ h)

)
|z=b+h + p|z=b+h (M + (b+ h)t) .

Here the variable q measuring the distortion of the velocity profile is defined as :

q2 = (u− ū)2. (23)
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The following boundary conditions should also be added:

p|z=b+h = gρ̄η, ρ|z=b+h = ρl, u|z=b+h = U. (24)

The first relation is just the definition of the hydrostatic pressure, the second relation
comes from the continuity of density at the boundary of mixing layer, and the last relation
comes from the compatibility with the energy equation (for proof, see Appendix A). The
entrainment velocity M is taken in the form [10, 16, 17]:

M = σq, σ = const > 0.

The last step will be the following modification of the energy equation for the subsurface
layer :

∂

∂t

(
ρ̄η

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

))
(25)

+
∂

∂x

(
ρ̄ηū

(
ū2

2
+

3

2
q2 + g(b+ h+ η)

))
= M

(
ρlU

2

2
+ ρlg(b+ h)

)
+ gρ̄η (M + (b+ h)t)− ρ̄d+Mρl

w2|z=b+h
2

.

Here the vertical velocity w at the boundary z = b + h comes from the free divergence
condition :

w|z=b+h = bt + Ubx − hUx =
Db

Dt
− hUx, (26)

Two extra terms have been added into the equation of energy (25). The first one defined as

ρ̄d = ρ̄
σκ

2
|q|3 > 0, κ > 0,

is responsible for the energy dissipation from large vortexes to small vortexes. The factor
1/2 is added for convenience. This term was already introduced in [10].

The second term is added to have the compatibility with the full energy equation. Indeed,
the equations in the upper shear layer are obtained in lower order with respect to ε2, while
the equations for the lower layer are obtained up to order ε2. Thus, this term assures the
energy conservation, when the term d is absent. In particular, this guarantees that the
energy can not increase. In applications, this term is almost vanishing.

3.3. Equation for the distortion variable q

We will derive here an equation for the variable q defined by (23) and measuring the
distortion of the velocity profile. Let us introduce

π = ρ̄ηq2 +
g

2
ρ̄η2.

Then the momentum equation is :

∂

∂t
(ρ̄ηū) +

∂

∂x

(
ρ̄ηū2 + π

)
= MρlU − gρ̄η(b+ h)x.

12



Its non-conservative form is :

ρ̄η
Dū

Dt
+ πx = Mρl (U − ū)− gρ̄η(b+ h)x.

The non-conservative form (25) is :

ρ̄η
D

Dt

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
+

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
Mρl

+πxū+
(
ρ̄ηq2 +

g

2
ρ̄η2
)
ūx = M

(
ρlU

2

2
+ ρlg(b+ h)

)
+ gρ̄η (M + (b+ h)t)

−ρ̄d+Mρl
w2

2
.

It gives :
ū(−πx +Mρl(U − ū)− gρ̄η(b+ h)x)

+ρ̄η
D

Dt

(
q2

2
+
g

2
(η + 2(b+ h))

)
+

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
Mρl

+πxū+
(
ρ̄ηq2 +

g

2
ρ̄η2
)
ūx = M

(
ρlU

2

2
+ ρlg(b+ h)

)
+ gρ̄η (M + (b+ h)t)

−ρ̄d+Mρl
w2

2
.

Or :
ūMρl(U − ū)

+ρ̄η
D

Dt

(
q2

2
+
g

2
η

)
+

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
Mρl

+
(
ρ̄ηq2 +

g

2
ρ̄η2
)
ūx = M

(
ρlU

2

2
+ ρlg(b+ h)

)
+ gρ̄ηM − ρ̄d+Mρl

w2

2
.

It is equivalent to :

ūMρl(U − ū) + ρ̄η
D

Dt

(
q2

2

)
+

(
ū2

2
+
q2

2
+
g

2
η

)
Mρl

+
(
ρ̄ηq2

)
ūx = M

(
ρlU

2

2

)
+
g

2
Mgρ̄η − ρ̄d+Mρl

w2

2
.

Finally, the equation for q is :

qt + (qū)x =
Mρl
2ρ̄ηq

(
(U − ū)2 + w2 − q2 − gη(ρl − ρ̄)

ρl

)
− d

ηq
, (27)

where w is given by (26). From the evolution equation (27) and the mass equation for η one
can derive the transport equation for q/η which can be interpreted as the evolution equation
for the flow vorticity in the upper layer. A priori, the vorticity can change its sign during
evolution.

13



4. Mild slope approximation

The equations can considerably be simplified under the following assumption. Let the
dimensionless bottom variation be weak: b = b(εαt, εαx), α > 0. Then one can obviously
neglect the terms containing the squared gradients and second-order derivatives of b, and
keep on the right-hand side of the dimensionless momentum equation for the upper layer
only the first gradient of b. Then the dimensional equations for the upper layer are :

∂η

∂t
+
∂ηū

∂x
= M,

∂ρ̄η

∂t
+
∂ρ̄ηū

∂x
= Mρl, (28)

∂

∂t
(ρ̄ηū) +

∂

∂x

(
ρ̄η
(
ū2 + q2

)
+ gρ̄

η2

2

)
= MρlU − gρ̄η(b+ h)x, (29)

∂

∂t

(
ρ̄η

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

))
(30)

+
∂

∂x

(
ρ̄ηū

(
ū2

2
+
q2

2
+
g

2
(η + 2(b+ h))

)
+ ρ̄ūη

(
q2 + g

η

2

))
= Mρl

(
U2

2
+ g(b+ h)

)
+ gρ̄η (M + (b+ h)t)− ρ̄d+ βMρl

w2

2
,

where
M = σq, d =

σκ

2
|q|3, w = −Uxh.

The parameter β = 0 (β = 1) corresponds to the hydrostatic (non-hydrostatic) approximation
of the governing equations.

The dimensional equations for the lower layer in a mild slope approximation are :

∂ρlh

∂t
+
∂(ρlUh)

∂x
= −Mρl, (31)

∂

∂t
(ρlhU) +

∂

∂x
(ρlhU

2 + P ) = ρ̄gη(b+ h)x − p |z=b bx −MρlU. (32)

Here

P = gρ̄ηh+ ρl

(
gh2

2
− β

3
h3
(
DUx
Dt
− U2

x

))
,

p |z=b= gρ̄η + ρl

(
gh− β

2
h2
(
DUx
Dt
− U2

x

))
,

Equations (28)–(32) form a closed system for six unknown functions η, ρ̄, ū, q, h, and U .
The energy equation

∂G

∂t
+

∂

∂x
((G+ P )U) = −gρ̄η(M + (b+ h)t) + p |z=b bt (33)

−Mρl

(
U2

2
+
β

2
w2 + g (b+ h)

)
14



is a consequence of equations (31) and (32). Here

G = ρlh

(
U2

2
+ e+

gh

2
+ gb

)
, e =

β

6
U2
xh

2.

The full energy equation is obtained by adding (30) and (33).

5. Exact solutions

In this section we present exact periodic solutions to our equations.

5.1. Time periodic solutions

Consider now oscillations of bubble clouds over a flat bottom (b = 0) that are homogeneous
in space (the dependence on the space coordinate x is absent). We also neglect the dissipation
effects (κ = 0).

The governing equations (28)–(33) are :

∂h

∂t
= −σq, ∂η

∂t
= σq,

∂

∂t
(η(ρ̄− ρl)) = 0,

∂

∂t
(ρ̄ηū+ ρlhU) = 0,

∂U

∂t
= 0,

∂

∂t

(
ρ̄η

(
ū2

2
+
q2

2
+
g

2
(η + 2h)

)
+ ρlh

(
U2

2
+
gh

2

))
= 0.

Let us note that in this case the governing equations for the hydrostatic and non-hydrostatic
approximations are the same. One can always suppose that U = const = 0. One has then :

∂h

∂t
= −σq, ∂η

∂t
= σq, η(ρl − ρ̄) = ρlL = const > 0,

ρ̄ηū = ρlHV = const, h+ η = H = const,

ρ̄η

(
ū2

2
+
q2

2
+
g

2
(η + 2h)

)
+ ρl

gh2

2
= ρlHE = const.

Here the constants L, H have the dimension of length, while V and E have the dimension
of velocity and squared velocity, respectively. Eliminating h, one can transform the energy
equation into the form :

ρ̄η

(
ū2

2
+
q2

2

)
+
g

2
ρlLη = ρlHE − ρl

gH2

2
+ gρlLH.

Finally, it implies :

V2H2

2(η − L)2
+
q2

2
+
gL
2

η

η − L
=

B
η − L

, B = H(E − gH/2 + gL) > 0. (34)
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Figure 2: Level sets of the function (34) is shown in the (η, q)- plane for different parameters B. The closed
curves correspond to periodic solutions.

Together with the equation ηt = σq they form a closed system of equations.
Let us denote :

W (η) =
V2H2

2(η − L)2
+
gL
2

η

η − L
− B
η − L

.

One has :
dW

dη
= − V2H2

(η − L)3
− gL2

2

1

(η − L)2
+

B
(η − L)2

,

d2W

dη2
=

3V2H2

(η − L)4
+

gL2

(η − L)3
− 2B

(η − L)3
.

At the extremum point ηc where W ′(ηc) = 0 one has :

W (ηc) =
gL
2
− V2H2

2(η − L)2
,

d2W

dη2
(ηc) =

3V2H2

(η − L)4
+

gL2

(η − L)3
−

2

η − L

(
V2H2

(η − L)3
+
gL2

2

1

(η − L)2

)
=
V2H2

(η − L)4
> 0.

Hence, this is a minimum point. A typical level set structure of the function (34) is shown
in Fig. 2. In the case where W (ηc) < 0, this corresponds to the time periodic solutions to
our system.

5.2. Periodic stationary waves

We study here stationary solutions to (28)–(33) over flat bottom for both hydrostatic
(β = 0) and non-hydrostatic (β = 1) cases. The stationary solutions to the non-hydrostatic
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model written in dimensional form satisfy the equations:

(Uh)′ = −σq, (ūη)′ = σq, (ūρ̄η)′ = σqρl,(
(ū2 + q2)ρ̄η +

gρ̄η2

2

)′
= σqρlU − gρ̄ηh′, (ūq)′ = F,(

U2

2
− hUh′U ′ − 1

3
h2UU ′′ + gη

ρ̄

ρl
− 1

2
h2U ′2 − σqhU ′

)′
= −gh′ − σq

3
hU ′′,

(35)

where

F =
σρl
2ρ̄η

(
(U − ū)2 + (hU ′)2 −

(
1 +

κρ̄

ρl
sgn(q)

)
q2 −

(
1− ρ̄

ρl

)
gη
)
.

Here we denote by ‘prime’ the derivative with respect to x. The normal form of (35) is :

U ′ = r r′ = s, h′ = −σq + hr

U
, ρ̄′ =

σq

ūη
,

ū′ =
G

∆
, q′ =

F − qū′

ū
, η′ =

σq − ηū′

ū
,

s′ =
3

Uh2

(
Ur + gh′ +

gη

ρl
ρ̄′ +

gρ̄

ρl
η′ +

1

3
h2rs− (Us− r2)hh′

)
,

(36)

where
G =

σqρl
ρ̄η

(
Uū− (ū2 + q2 + gη/2)

)
− 2qF − gσq

2
− gūh′,

∆ = ū2 − 3q2 − gη.
The ‘true’ normal form is obtained by replacing the derivatives appearing on the right hand
side by the corresponding algebraic relations.

The stationary solutions to the hydrostatic model satisfy the following system of ODEs :

h′ = − gh

U2 − gh

( ρ̄η
ρlū

ū′ +
( U
gh
− 1

ū

)
σq
)
, η′ =

σq − ηū′

ū
,

ρ̄′ =
σq

ūη
(ρl − ρ̄), ū′ =

G1

∆1

, q′ =
F1 − qū′

ū
, U ′ = −σq + Uh′

h
,

(37)

where

F1 =
σρl
2ρ̄η

(
(U − ū)2 −

(
1 +

κρ̄

ρl
sgn(q)

)
q2 −

(
1− ρ̄

ρl

)
gη
)
,

G1 =
gσq

U2 − gh
(Uū− gh) +

σqρl
ρ̄η
− 2qF1 −

gσq

2
,

∆1 = ū2 − 3q2 − gη
(

1 +
ghρ̄

(U2 − gh)ρl

)
.
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In the case κ = 0 one can find five first integrals of (37) :

Uh+ ūη = Q0, ρlUh+ ρ̄ūη = M0,
1

2
U2 + gh+ gη

ρ̄

ρl
= J0,

U2h+ (ū2 + q2)η
ρ̄

ρl
+
gh2

2
+ ghη

ρ̄

ρl
+
gη2

2

ρ̄

ρl
= K0,

U3h+ (ū2 + 3q2)ūη
ρ̄

ρl
+ 2g

(
Uh
(
h+ η

ρ̄

ρl

)
+ ūη(h+ η)

ρ̄

ρl

)
= E0.

(38)

Here Q0, M0, J0, K0, and E0 are constants. These integrals allow us to rigorously prove the
existence of periodic solutions of (37).

Let us introduce the variable Q = ūη. Using the first four integrals of (38) one can
present h, ρ̄, η, ū, and q2 as functions of variables Q and U :

h =
Q0 −Q
U

, ρ̄ =
M0 − (Q−Q0)ρl

Q
, η =

ρl
gρ̄

(
J0 −

U2

2
− gh

)
,

ū =
Q

η
, q2 =

ρl
ρ̄η

(
K0 − (Q0 −Q)U − gh2

2

)
− Q2

η2
− gη

2
− gh.

Substituting the previous expressions into the last integral of (38), one obtains an algebraic

equation W (Q,U) = E0. One can prove that
dW

dQ
6= 0. This allows us to determine

(implicitly) the dependence Q = Q(U). Thus, all unknowns are represented as functions
of variable U . In Fig. 3 the dependences Q(U) and q2(U) (multiplied, for a better visibility,
by the scale factor 50) are shown for the following values of Q0, M0, J0, K0, and E0 (taken
at x = 0):

h0 = 1, η0 = 0.1, U0 = 0.4, ρ̄0 = 0.9, ū0 = 0.54, q0 = 0. (39)

We also take g = 1 and σ = 0.15. As we can see from the Fig. 3, the variable q2(U) vanishes
at U0 = 0.4 and Um ≈ 0.39935. This fact allows us to construct the periodic solutions.

For this, we introduce the functions q = q± = ±
√
q2(U). Taking into account that

dQ/dx = σq, the dependence of the solution on x is given implicitly by the equation :

x = −
U0∫
U

Q′(U) dU

σq+(U)
, (40)

when U varies from U0 to Um. At the point U = Um one can ‘switch’ to the negative branch
q = q−(U) and represent the solution in the form :

x = X +

U∫
Um

Q′(U) dU

σq−(U)
, (41)
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Figure 3: Functions Q(U) (curve 1) and q2(U) with
factor 50 (curve 2) obtained from integrals (38) for
data (39).

Figure 4: The solution h(x) of equations (36) (solid
line) and (37) (dashed line) for data (39).

where U varies from Um to U0. Here X is the half-period of space oscillations, defined as :

X = −
U0∫

Um

Q′(U) dU

σq+(U)
=

U0∫
Um

Q′(U) dU

σq−(U)
.

We also note that the integral on the right-hand side of (41) (as well as of (40)) converges
because q±(U) ≈ ±α1

√
U0 − U and q±(U) ≈ ±α2

√
U − Um in the vicinity of the endpoints

U0 and Um (here α1, α2 are positive constants), and Q′(U) < 0 is a smooth function on
[Um, U0]. Moreover, in this specific case X ≈ 11.7. Thus, we have constructed a periodic
solution for the hydrostatic system (37). In Fig. 4 the depth of the lower layer h(x) is shown
(dashed line). The maximum (minimal) value of h is h = 1 (h ≈ 0.915) is attained at the
points x = 2nX (x = (2n+ 1)X, n is integer ), and corresponds to U = U0 (U = Um).

In the case κ = 0 and σ = 0.15, the non-hydrostatic (36) and hydrostatic (37) equations
were numerically solved by using the Runge–Kutta methods. The interface z = h corresponding
to both periodic solutions is shown in Fig. 4 for the ‘initial’ conditions (39) at x = 0. The
solid line corresponds to the non-hydrostatic model (36), while the dashed line corresponds
to the hydrostatic model (37). We note that for the parameters (39) there is no difference
in numerical results obtained in the framework of hydrostatic and non-hydrostatic models.
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6. Non-stationary flows over obstacle

6.1. Numerical method

For a numerical treatment of non-stationary problems, the following form of the governing
equations (28)–(33) is used:

∂h

∂t
+

∂

∂x
(hU) = −σq, ∂η

∂t
+

∂

∂x
(ηū) = σq,

∂

∂t
(ρ̄η) +

∂

∂x
(ūρ̄η) = σqρl,

∂

∂t
(ūρ̄η) +

∂

∂x

(
(ū2 + q2)ρ̄η +

gρ̄η2

2

)
= σqρlU − gρ̄ηbx + α1,

∂q

∂t
+

∂

∂x
(qū) =

σρl
2ρ̄η

(
(U − ū)2 + w2 −

(
1 +

κρ̄

ρl
sgn(q)

)
q2 −

(
1− ρ̄

ρl

)
gη
)
,

∂K

∂t
+

∂

∂x

(
KU − U2

2
+ g
(
h+

ρ̄η

ρl

)
+ α2

)
= σq

(K − U
h

+ α3

)
− gbx,

(42)

where

α1 = −gρ̄ηhx, α2 = −h
2U2

x

2
− σqhUx, α3 = hxUx, w = −hUx, (43)

and the velocity U is determined by the equation :

K = U − 1

3h
(h3Ux)x. (44)

For given K and h, equation (44) is an ordinary differential equation for U . The evolution
equation for K (the last relation in (42)) is equivalent to the momentum equation (for proof,
see Appendix B).

The system (42) can be written in conservative form :

∂u

∂t
+
∂f

∂x
= g, (45)

where u = (h, η, ρ̄η, ūρ̄η, q,K)T is the vector of unknowns, f and g are the corresponding
flux and right-hand side.

Following [15], we divide the numerical resolution of system (42) into three successive
steps:

1) numerical approximations of the terms w and αi, i = 1, 2, 3 containing spatial and
time derivatives (see relations (43));

2) time evolution of the conservative variables u using Godunov–type method;
3) resolution of an ordinary differential equation (44) to find the velocity U .
To solve balance laws (45) numerically, we implemented the Nessyahu–Tadmor second-

order central scheme [23, 26]. The details can be found in [10].
Along with the dispersive system (42), we consider the hydrostatic model which follows

from equations (28)–(33) for β = 0. These equations are also written as a system of balance

20



laws in dimensional variables:

∂h

∂t
+

∂

∂x
(hU) = −σq, ∂η

∂t
+

∂

∂x
(ηū) = σq,

∂

∂t
(ρ̄η) +

∂

∂x
(ūρ̄η) = σqρl,

∂

∂t

(
Uh+ ūη

ρ̄

ρl

)
+

∂

∂x

(
U2h+ (ū2 + q2)η

ρ̄

ρl
+ gh

(h
2

+
ρ̄η

ρl

)
+
gη2ρ̄

2ρl

)
= −

(
h+ η

ρ̄

ρl

)
gbx,

∂q

∂t
+

∂

∂x
(qū) =

σρl
2ρ̄η

(
(U − ū)2 −

(
1 +

κρ̄

ρl
sgn(q)

)
q2 −

(
1− ρ̄

ρl

)
gη
)
,

∂U

∂t
+

∂

∂x

(U2

2
+ g
(
h+

ρ̄η

ρl

))
= −gbx,

(46)

System (46) belongs to the class of equations (45) with

u = (h, η, ρ̄η, Uh+ ūηρ̄/ρl, q, U)T.

It was also solved by using the Nessyahu–Tadmor scheme [23].
As in the non-hydrostatic case, we use the equation for ‘distortion’ variable q (the fifth

equation in (46)) instead of the corresponding energy balance law.
The next subsections are devoted to the numerical results.

6.2. Formation of a stationary turbulent bore over obstacle

The quasi-steady turbulent bore is modelled on the basis of system (42) and its hydrostatic
simplification (46). At t = 0, the supercritical flow having velocities U = 1.63 and ū = 1.75
in the layers of thickness h = 1 and η = 0.1 is set. We also suppose that initially ρ̄ = 0.9,
and q = 0. In this example, g = 1, ρl = 1, σ = 0.15 and κ = 0. On the left boundary x = 0,
we use the initial data as the boundary conditions; on the right boundary x = 70, we use
the Neumann condition for u. The Nessyahu–Tadmor scheme was applied on a uniform grid
of N = 700 nodes.

The formation of the turbulent bore is due to the variation of the bottom topography.
Initially, the bottom is flat (b = 0). During time T1 = 25 the amplitude of a smooth obstacle
of width 10 located on the right edge is increased to 0.65, then over time T2 = 100 it is
reduced to 0.152. Such a choice of parameters guarantees the formation of a quasi-steady
bore. This is shown in Fig. 5 at t = 500. We can state that this regime is quasi-steady
because there is almost no visible difference in results obtained at t = 300, t = 400, and
t = 500. Curves 1, 2 and 3 correspond to the free surface z = f , interface z = h + b, and
bottom topography z = b, respectively. Let us note that the lines 1 and 2 in the region
before hydraulic jump (x < xc = 38) are not parallel: we can observe a slight growth of the
subsurface shear layer with the increase of x ∈ (0, xc). Because of the entrainment of the
pure water into the bubble layer, the fluid velocity (curves 4, 5) substantially decreases. This
results in the transition, on average, to the sub-critical flow in the vicinity of the obstacle.
The distortion variable q is generated at the wave-front (curve 6). This entails intensive
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Figure 5: Quasi-steady turbulent bore: (a) shape of the bore (1 — free surface, 2 — internal boundary
z = h+ b, 3 — bottom topography); (b) distribution of the velocities 4 — velocity U in the lower layer, 5 —
velocity ū in the upper layer, 6 — variable q. Solid curves refer to the solution of Eqs. (42), dashed curves
correspond to the solution of the hydrostatic Eqs. (46).

mixing in the region behind the wave-front and leads to the increasing of the fluid density.
One can see in Fig. 5 that the position of the wave front is different for the models. Also, in
the non-hydrostatic case the wave front behaviour is non-monotonic, while in the hydrostatic
case it is monotonic.

6.3. Formation of periodic and damped oscillations

As has been shown above, the governing equations for the dissipationless case and flat
topography admit periodic stationary solutions. Let us choose the following initial data :
U = 0.4, h = 1, ρ̄ = 0.9, η = 0.1, q = 0, and ū = U +

√
(1− ρ/ρl)gη = 0.5 at t = 0, which

is an exact solution of equations (42) or (46). At the left boundary of the computational
domain x = 0 we take the initial data as the boundary conditions except for ū, which is
equal to 0.54. This provides inflow of the light liquid in the upper layer through the left
boundary. On the right boundary x = 200, as before, we use the Neumann condition. The
computation is carried out for g = 1, ρl = 1 and σ = 0.15 on a uniform grid of N = 1000
nodes. We consider two cases corresponding to the presence (κ = 1) and absence (κ = 0) of
the energy dissipation.

The formation of periodic (κ = 0) and damped oscillations (κ = 1) is shown in Fig. 6 at
t = 300 for the dispersive (42) (solid lines) and hydrostatic model (46) (dashed lines). The
corresponding stationary solution to (36) is shown by dashed-dotted lines. Numerical results
obtained for κ = 0 (κ = 1) are shown on the left (right) column of the figure. As we can see
from Fig. 6, the disturbances generated on the left boundary have not yet reached the right
edge of the computational domain at the chosen time moment. This is why near the right
boundary we observe significant difference in results obtained on the basis of stationary and
non-stationary equations.
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Figure 6: Formation of stationary periodic and damped in the framework of models (42) (solid lines) and
(46) (dashed lines) at t = 300; dashed-dotted lines correspond to the solution of stationary equations (36):
(a) free surface z = h+ η and interface z = h (curves 1 and 2); (b) distribution of the velocities 3 — velocity
U in the lower layer, 4 — velocity ū in the upper layer, 5 — variable q; (c) density distribution (curves 6).
The graphs are obtained for κ = 0 (on the left) and κ = 1 (on the right).
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7. Conclusion

A new two-layer model for the interaction of a bubble shear layer and long internal
waves over topography has been derived and presented in a form well suited for numerical
simulation. Non-stationary computations were performed to describe the formation of bores,
and both periodic and damped oscillations. A hydrostatic approximation of this model was
compared to the full non-hydrostatic system. Even if a quantitative description by the both
models was quite similar, the qualitative behaviour of wave fronts was different. In particular,
a non-monotonic behaviour of bores has been found by using the dispersive model, while it
was monotonic in the hydrostatic model.

The analogy between mathematical modeling of two-layer bubble flows and internal waves
was underlined. This will allow us to compare in future the theoretical and experimental
results. The generation of large amplitude periodic internal waves could be such a case study
[22, 13].

8. Appendix A

The system for the lower layer is:

ht + (hU)x = −M,

∂

∂t
(hU) +

∂

∂x

(
hU2 + P

)
= p |z=b+h (b+ h)x − p |z=b bx −Mu |z=b+h,(

h

(
U2

2
+ e+

h

2
+ b

))
t

+

(
hU

(
U2

2
+ e+

h

2
+ b

)
+ UP

)
x

= −p |z=b+h (M + (b+ h)t) + p |z=b bt −M
(
u2

2
+ ε2

w2

2
+ h

) ∣∣∣
z=b+h

,

where

e = ε2

(
1

2

(
Db

Dt

)2

− 1

2

Db

Dt
Uxh+

U2
xh

2

6

)
,

P = p |z=b+h h+
h2

2
+ ε2

(
h2

2

D2b

Dt2
− h3

3

(
DUx
Dt
− U2

x

))
,

p |z=b= p |z=b+h +h+ ε2h
D2b

Dt2
− ε2

2
h2
(
DUx
Dt
− U2

x

)
w(t, x, z) |z=b+h≈

Db

Dt
− Uxh,

Db

Dt
= bt + Ubx.

The momentum equation is equivalent to

h
DU

Dt
+ Px = p |z=b+h (b+ h)x − p |z=b bx −M

(
u |z=b+h −U

)
.
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Developing the energy equation by using the momentum equation we have

h
D

Dt

(
e+

h

2
+ b

)
−M

(
U2

2
+ e+

h

2
+ b

)
+ UxP+

U
(
p |z=b+h (b+ h)x − p |z=b bx −M(u |z=b+h −U)

)
=

= −p |z=b+h (M + (b+ h)t) + p |z=b bt−

M

(
u2 |z=b+h

2
+
ε2

2

(
Db

Dt
− Uxh

)2

+ b+ h

)
.

Or

ε2h
D

Dt

(
−1

2

Db

Dt
Uxh+

U2
xh

6

)
+ Ux

(
ε2
(
h2

2

D2b

Dt2
− h3

3

(
DUx
Dt
− U2

x

)))
=(

−ε
2

2
h2
(
DUx
Dt
− U2

x

))
Db

Dt
−

M

((
u |z=b+h −U

)2
2

+ ε2
(
−1

2

Db

Dt
Uxh+

U2
xh

6

))
.

It is equivalent to
M(u |z=b+h −U)2 = 0.

Hence, to be compatible with the energy equation, we need

u |z=b+h= U.

9. Appendix B

We consider here the case of time-independent topography b = b(x). In this case ḃ =
Db
Dt

= Ubx, b̈ = D2b
Dt2

= U(Ubx)x. Consider dimensional form of the momentum equation for
the lower layer. Since p/ρl = gρ̄η, it can be transformed to the equivalent form :

h
DU

Dt
+ gh

(
bx + hx +

(
ρ̄η

ρl

)
x

)
+

(
h2

2
b̈− h3

3

(
Uxt + UUxx − U2

x

))
x

+

+h

(
b̈− h

2

(
Uxt + UUxx − U2

x

))
bx = 0.

It is equivalent to :

Ut +

(
U2

2
+ gb+ gh+ g

ρ̄η

ρl

)
x

−
(
hhxUxt +

h2

3
Uxxt + hhx

(
UUxx − U2

x

)
+
h2

3
(UUxxx − UxUxx)

)
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+b̈hx +
h

2

(
b̈
)
x

+

(
b̈− h

2

(
Uxt + UUxx − U2

x

))
bx = 0.

It implies : (
U − 1

3h

(
h3Ux

)
x
− 1

2
hbxUx

)
t

+
(U2

2
+ gb+ gh+ g

ρ̄η

ρl

)
x

−
(
hhx(UUxx − U2

x) +
h2

3
(UUxxx − UxUxx)− Uxhthx − Uxhhtx −

2

3
hhtUxx

)
+b̈hx +

h

2

(
b̈
)
x

+

(
b̈− h

2

(
UUxx − U2

x

))
bx +

1

2
Uxbxht = 0.

Replacing ht by
ht = −(hU)x −M

we obtain : (
U − 1

3h

(
h3Ux

)
x
− 1

2
hbxUx

)
t

+
(U2

2
+ gb+ gh+ g

ρ̄η

ρl

)
x

−
(
Uxhx(M + (hU)x) + Uxh(M + (hU)x)x +

2

3
h(M + (hU)x)Uxx

+hhx(UUxx − U2
x) +

h2

3
(UUxxx − UxUxx)

)
+b̈hx +

h

2

(
b̈
)
x

+

(
b̈− h

2

(
UUxx − U2

x

))
bx −

1

2
Uxbx (M + (hU)x) = 0.

It can be simplified to : (
U − 1

3h

(
h3Ux

)
x
− 1

2
hbxUx

)
t

+

(U2

2
+ gb+ gh+ g

ρ̄η

ρl
− 1

3h
U
(
h3Ux

)
x
− 1

2
h2U2

x

)
x
−(

Ux(hM)x +
2

3
hMUxx

)
+b̈hx +

h

2

(
b̈
)
x

+

(
b̈− h

2

(
UUxx − U2

x

))
bx −

1

2
Uxbx (M + (hU)x) = 0.

For a slow varying bottom topography one has the equation :(
U − 1

3h

(
h3Ux

)
x

)
t

+
(U2

2
+ gb+ gh+ g

ρ̄η

ρl
− 1

3h
U
(
h3Ux

)
x
− 1

2
h2U2

x

)
x

−
(
Ux(hM)x +

2

3
hMUxx

)
= 0.

Or, introducing

K = U − 1

3h

(
h3Ux

)
x
,
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one obtains

Kt +

(
KU − 1

2

(
U2 + h2U2

x

)
+ gb+ gh+ g

ρ̄η

ρl

)
x

−(
Ux(hM)x +

2

3
hMUxx

)
= 0.

The final form is :

Kt +

(
KU − 1

2

(
U2 + h2U2

x

)
+ gb+ gh+ g

ρ̄η

ρl
− UxhM

)
x

= −1

3
hMUxx.

The difference with an analogous equation in [10] is the buoyancy term in the flux resulting
from the variable density in the subsurface layer.
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