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Realistic transformation of facial and vocal
smiles in real-time audiovisual streams

Pablo Arias, Catherine Soladié, Oussema Bouafif, Axel Roebel, Renaud Séguier,
and Jean-Julien Aucouturier

Abstract—Research in affective computing and cognitive science has shown the importance of emotional facial and vocal expressions
during human-computer and human-human interactions. But, while models exist to control the display and interactive dynamics of
emotional expressions, such as smiles, in embodied agents, these techniques can not be applied to video interactions between
humans. In this work, we propose an audiovisual smile transformation algorithm able to manipulate an incoming video stream in
real-time to parametrically control the amount of smile seen on the user’s face and heard in their voice, while preserving other
characteristics such as the user’s identity or the timing and content of the interaction. The transformation is composed of separate audio
and visual pipelines, both based on a warping technique informed by real-time detection of audio and visual landmarks. Taken together,
these two parts constitute a unique audiovisual algorithm which, in addition to providing simultaneous real-time transformations of a
real person’s face and voice, allows to investigate the integration of both modalities of smiles in real-world social interactions.

Index Terms—Smiling, Facial expressions, Vocal emotions, Audiovisual, Real-time, Video and audio signal processing

F

1 INTRODUCTION

SMILES are a fundamental element of the human expres-
sive repertoire [1]. We recognize them regardless of age,

gender or culture [2]–[4]; they influence what we think of
a person (e.g., making them more attractive [5]), how we
behave towards them (e.g., with greater empathy [6]), and
even provoke unconscious reactions [7].

It is therefore not surprising that smiling constitutes a
much-researched part of the behavioral repertoire of embod-
ied agents designed for human-computer interactions [8],
[9]. Avatars with smiling faces are judged more attractive
and positive [10] and, like smiling humans, trigger uncon-
scious physiological reactions in human observers [11], [12].
More than a feature that can be turned on and off, avatar
smiles can be synthesized gradually [13] and with temporal
dynamics [14], allowing to experiment with how and when
an avatar should smile to improve the quality of a virtual
interaction. Avatar smiles were found to have a positive
impact on the ongoing interaction [15] and on its later
outcomes, including better learning [16]–[18] and problem
solving [11].

However, because existing techniques mostly allow to
synthesize and manipulate the expression of embodied
agents, but not to transform the audiovisual expression
of real users, e.g. in a live stream, their scope is mostly
limited to human-computer interactions. In the visual do-
main, techniques allowing to control the morphological
parameters of a synthetic face (e.g. cheek-raising, mouth
opening, symmetry, lip press [9], [19]) can work in real-time,
but can only apply to human-human interactions if they
are mediated by a virtual avatar, be it photorealistic [10]
(Figure 1-a). Conversely, recent deep-learning techniques
able to learn expressive transformations from a corpus of
paired images [20] allow realistic facial transformations of
arbitrary users, but have yet to operate in real-time (Figure
1-b). Similarly, in the audio domain, hidden-markov models
[21]–[23] and formant resynthesis [24] techniques can re-

produce realistic characteristics of speech pronounced while
smiling or laughing, but only in non-real time applications.
In the same way, in the audiovisual domain, techniques
using deep neural networks are also proposed to create
expressive audiovisual speech synthesis, but are not build
with real-time constraints [25]. Given how sensitive humans
are to small deviations of interactive synchrony [19] and
face realism [15], much more could be achieved if one could
realistically control audiovisual smiles in real-time streams
between real users, rather than in virtual interactions.

Fig. 1. State-of-art in smile synthesis in the visual domain. (a) Com-
mon face synthesis systems allow to generate and control smiling
expressions in real-time, but only via the mediation of avatars (adapted
from [10]; left: original, middle: avatar with enhanced smile, right: sup-
pressed smile). (b) Deep-learning techniques can learn photorealistic
transformations of facial expressions on arbitrary photographs, but these
techniques do not typically work in real-time (adapted from [20]; left:
original picture, middle: manipulated picture with enhanced smile, right:
suppressed smile). Our proposal aims to generate real-time transforma-
tions of a user’s input, as in A, based on their normal, non-synthetic
video stream, as in B.

a

b

To this aim, we propose an audiovisual smile trans-
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formation technique able to manipulate an incoming au-
diovisual stream in real-time to parametrically control the
amount of ”smiliness” seen on the face and heard on
speech, while preserving other characteristics such as the
user’s identity or the interaction’s timing and content. The
transformation is composed of separated audio and visual
pipelines, both based on a warping technique informed by
the real-time detection of visual and audio landmarks.

The visual part of the algorithm tracks morphological
features of the face, such as the eyes and lip corners,
stretches its position using a predefined parametric model,
and resynthesizes pixel grey-levels to map the modified
shape of the face. This algorithm significantly extends what
constitute, to our knowledge, the only other example to
date of real-time smile transformation [26], by making it
adaptive to the position of the user (more precisely, to
camera-user distance and head pose), allowing users to
speak during the transformation (an important limitation
of previous work, allowing the simultaneous manipulation
of smiled speech), as well as adding the possibility to use
specific smile warpings that can be learned from a given
user. We describe this algorithm, and how it relates to the
existing literature, in Section 2.

Using a similar processing pipeline, the audio algorithm
described in Section 3 tracks the frequency positions of the
vocal formants (bumps and valleys of the vocal spectral
envelope), shifts their positions and amplitude using a pre-
defined parametric model, and reconstructs the audio signal
with the new modified spectral cues. As far as we know,
this part of the algorithm is the first published technique
able to transform running speech in real-time to give it
the characteristics of smiling (see [27] for a similar aim
with more general emotional expressions). To develop it,
we collected and analyzed a corpus of smiled and non-
smiled vocalizations and derived a parametric model of
how smiling affects the spectral properties of sound, all of
which is described in this article.

Taken together, these two parts constitute a unique au-
diovisual algorithm which, in addition to providing simul-
taneous smiled transformations in both face and voice, also
provides an experimental tool to investigate how humans
integrate visual and auditory smiles both in their productive
behaviour and in social perception. The last section of the
article (Section 4) reports on a perceptual study that both
validates each part of the algorithm separately and explores
some of these audiovisual interactions.

2 VISUAL SMILE TRANSFORMATION

2.1 Transformation algorithm
Smiling involves the activity of several muscles that raise the
corners of the mouth and cheek, and lift the lower eyelids
[28]. To recreate these distortions in real time on any face,
we designed a two-stage image processing algorithm, which
stretches morphological features of the face around the lips
and the eyes using a pre-learned parametric model, and
resynthesizes pixel grey levels to correspond to the modified
shape of the face. Figure 2 illustrates the global process.

2.1.1 Landmarks linear warping
The algorithm works in real time and applies a pre-learned
smile deformation on a frame by frame basis. For each

Fig. 2. Overview of the visual smile transformation. The first stage of
the algorithm (solid line) extracts feature from the video frames: head
pose and 84 landmarks, from which the system notably computes the
distance between the subject’s eyes. The second stage (dotted line)
operate image manipulation: first, positions of 12 of the landmarks are
modified using a learned linear model, then the grey-level pixel intensi-
ties of the image are changed using a Moving Least Square algorithm.

Landmarks linear 
warping

Head pose

frames

algorithm output

frame modification
 stage

analysis stage

α (intensity)

Landmarks

Grey level pixel mapping (MLS)

Learned 
parametric

model

Landmark positionsyaw pitch roll

new landmark positions

frame, we first detect 84 landmarks on the face, as well as
the head pose (roll, pitch, yaw) using a framework from a
generic face tracking SDK provided by Dynamixyz [29] - see
figure 3-a.

Instead of heuristically designing a fixed warping func-
tion to simulate the expression of a smile, we made the
choice to learn the pattern of landmark distortion on one ac-
tor’s expression, and then apply this pre-learned pattern to
all subsequent input videos. The reasons for this choice are
the following: first, while the smile expressions as defined
e.g. in the Facial Action Coding System (FACS) [28] make
it possible to describe or detect such deformations, we did
not find them sufficient to synthesize them with precision.
Second, in an adaptive system, it appears interesting to
learn the smile deformations that may be specific to a given
person or attitude (e.g., genuine vs fake smiles [30]).

Learning is based on two images of the same subject, a
neutral face and a slightly smiling face (with mouth shut,
no visible teeth). After aligning the two faces, we calculated
a linear deformation model for 12 landmarks to model
the changes in the Zygomaticus Major (AU 12) and the
Orbicularis Oculi (AU 6) muscles involved in smiling [28]
(2 landmarks on the lower eyelid for each eye, 2 landmarks
on the corners of the lips, three landmarks on the upper lip
and three others on the lower lip - see figure 3-b).

In more details, if i is one landmark (i = 1..12),Xn
i its 2D

coordinates from the neutral face and Xs
i its 2D coordinates

from the smiling face, the linear model can be described as

Xs
i = (Xn

i +Qr ∗ ∆xy) ∗ scale ∗ αvideo (1)

where ∆xy is the learned parameters of the model and
αvideo is the intensity of the smile distortion. To adapt to
face-camera distance and head pose, scale is computed as
the distance between the two eyes multiplied by cosine of
the angle yaw, and Qr is the rotation matrix corresponding
to the roll. Figure 3-b shows an example of original and
modified landmarks for a frontal face with αvideo = 2.5.
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2.1.2 Pixel grey levels mapping
The second step of the algorithm computes the impact of
landmark warping on the pixel grey-level intensity. As in
[26], we use the rigid Moving Least Squares (MLS) method
[31]. MLS optimizes the deformation made on an image
when the position of some landmarks is modified, while
maintaining the spatial coherence of the overall shape.

We made two approximations to the standard MLS
procedure in order to allow real-time performance. First, we
apply MLS only to areas of the image around the mouth and
the eyes. Second, we do not apply the algorithm to every
pixel of these areas but first approximate the areas with
grids (with smaller meshes close to the eyes and mouth) and
apply the deformation function to each vertex in the grid.
We then fill the resulting triangles using affine warping.
Figure 3-c shows an example of the grids after the MLS
algorithm.

Fig. 3. Illustration of the tracking, warping and mapping steps in the
visual smile transformation. (a) Tracking: 84 landmarks (turquoise dots)
are automatically detected on the face. (b) Warping: the positions of 12
of the 84 landmarks (green dots) are transformed using a pre-learned
linear model (red dots). (c) Mapping: we create a grid around the mouth
and eyes, apply Moving Least Square deformation to each vertex of the
grid and interpolate inside each resulting triangle using affine warping.
a b cTracker 

landmarks
Before warping
After warping

2.2 Video results
Figure 4 shows some examples of original (αvideo = 0) and
transformed video frames with various positive and nega-
tive intensities (αvideo = −1..1.5). The second row shows
the absolute difference between the grey-level intensities in
the original vs transformed, confirming that modified pixels
are found inside the grids around the mouth and eye areas.

A detailed quantitative evaluation can be found in Sec-
tion 4. On a qualitative level, transformations appear plau-
sible even in contexts where the subject is speaking (subject
2) or already smiling (subject 3).

One limitation of the warping model is that, while it is
by construction adaptive to the frame-by-frame position of
the mouth, it isn’t to the qualitative nature of pronounced
phonemes during speech. For instance, during real speech
production, protruded/round vowels such as [y] may be
incongruent with a large smile, whereas smiles on unround
vowels such as [i] can be amplified without breaking the
acoustic characteristics of the sound. A possible extension
of the algorithm would be to learn a separate deformation
pattern for different types of phonemes, and apply them
adaptively, but this is beyond the scope of the current work.

One limitation of the MLS algorithm is that it cannot
create textures that are not present in the original image,

such as wrinkles. In particular, there are time-varying fea-
tures (or “discontinuities”) in the mouth and eyes areas
(e.g., teeth which appear or disappear behind opening lip
tissue, white sclera revealed by opening eyelids), which the
algorithm cannot “add” to a frame if not originally present.
Finally, at large intensities, the MLS algorithm may stretch
geometric shapes, resulting e.g. in unrealistically oval rather
than round iris shape, although the effect is not observable
at the intensities investigated here.

Finally, we measured the latency of the overall visual
algorithm including the 3 processing stages. The mean
time (over 1000 iterations) to process a frame depends
on the processing power of the machine. Our tests re-
sulted in a mean 61ms processing time for a single frame
(45ms for landmark tracking, 7ms for warping and 9ms
for MLS) which is suitable for real time applications, for
instance at 15 fps. Anyway, the latency can be further
diminished either by reducing the number of landmarks
in the tracking stage—the most time consuming stage—,
or by improving the machine processing power, specially,
the CPU speed. You can find examples of the algorithm
at https://archive.org/download/StimuliExample, where
speaking and head poses/orientations variations are pre-
sented.

3 AUDIO SMILE TRANSFORMATION

3.1 The acoustics of smiled speech
Although the visual features of a smile have been widely
studied, it is still an open secret that smiles can also be
heard in speech, even in the absence of visual cues [32],
[33]. In a source-filter perspective, stretching lips while
speaking changes the shape of the vocal resonator, possibly
reducing vocal tract length, and thus transmitting filtered
frequency content from the glottal impulses compared to
normal speech. However, despite years of research on the
acoustics of smiled speech, considerable debate still exists in
the phonological community as to what features of speech
necessarily result from—or rather simply co-occur with—
smiling. Initially, smiled speech was thought to involve
prosody similar to that of expressive speech, with high mean
pitch and high intensity [24], [34], [35]. However, because
smiles can also be perceived in whispered, non-pitched
voices [36], pitch and prosody do not appear to be necessary
components of smiled speech, which may more primarily
affect sound spectrum. Accordingly, in [34], smiling was
found associated with an increase of the second formant
(F2) for words with the round vowel /o:/, of intensity as
well as F0. In [37], smiling was associated with an increase
of F2, in [21], [38] with an increase of formants and F0.
Higher F1 and F2 dispersion are also reported [39]. Comple-
menting these results, in [40] the mental representations of a
smiled ’a’ phoneme was found to have higher F1 and F2 as
well as increased high frequency content. However, as the
acoustic consequences of smiling do not seem to be similar
across different phonemes, recent work has not converged
to a common parametric model of how smiling affects the
sound spectrum.

To clarify this situation, we recorded a dataset of smiled
and non-smiled French phonemes and conducted an acous-
tical analysis of the recordings. We asked N = 8 (male: 6)
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Fig. 4. Examples of original and modified images with various positive and negative intensities (αvideo = −1..1.5). The original image is either
neutral (subject 1) or speaking (subject 2) or already smiling (subject 3). Subject 1 ∆ presents the difference between the non-modified and the
modified image for subject 1, the black areas show where the image is unchanged, the white areas where the image is transformed

αvideo = -1

Subject 1  
neutral

Subject 1  
Δ

Subject 2  
/y/

Subject 3  
smile

αvideo = -0.5 αvideo = 0 αvideo = 0.5 αvideo = 1 αvideo = 1.5

participants to pronounce 9 types of phonemes (5 voiced: a,
e, i, o, u [a,@,i,O,y] and 4 unvoiced: s, h, j, f [s, S, f, Z]), with
and without stretched lips. Phonemes were pronounced
three times each, and at 3 different pitches. The dataset
was recorded at sampling rate 44.1kHz, in a sound-proof
booth using a high quality microphone (DPA 4088 F). In
the following, we analyse the recordings with phonological
analysis software to measure the impact of smiling on three
aspects of sound spectrum: formants, spectral envelope, and
spectral centroid.

3.1.1 Consequences of smiling in formants

We analysed formant frequencies for all the smiled and
non-smiled voiced phonemes using the Praat software [41].
Statistical analysis showed a significant increase of mean
F1 between the non smiled and the smile condition (a 5%
increase from M=483 Hz to M=507 Hz; paired t-test t(7)=3.5,
p=.008), and a marginally significant increase of F2 (4% from
1572 Hz to 1634 Hz; paired t-test t(7)=1.9, p=.09), see Figure
5-a.

3.1.2 Consequences of smiling on the spectral envelope

We analysed the spectral envelope of the recordings using
the adaptive true envelope technique [42], [43]. Spectral
envelopes produced when smiling have more energy in
the high-frequency regions, both for voiced and unvoiced
phonemes (Figure 5-b). For voiced phonemes, the main
difference between the smiled and non-smiled envelopes
is found between 700 and 4000 Hz, corresponding to a
shift and boost of the region around F1-F3. For unvoiced
phonemes smiling affects higher frequencies, creating both
resonances and antiresonances in the spectral envelope.

3.1.3 Consequences of smiling on the spectral centroid

Finally, we analysed the spectral centroid (where the ”center
of mass” of the spectrum is, a measure related to perceived
brightness) for all the phonemes of the database (Figure 5-
c) and found that the mean spectral centroid increases for
every phoneme of the database when smiled, regardless of
whether the phoneme is voiced, unvoiced, opened or closed.
The overall effect is statistically significant (paired t-test t(7)
= 6.2, p=.0004).
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Fig. 5. Smiled speech corpus analysis. (a) Consequences of smiling on formants: Mean frequency shift of the first three formants, expressed in
percentage of the non-smile utterance, averaged for all phonemes (left) and for each voiced phoneme (right) in the corpus. (b) Consequences of
smiling on the spectral envelope. Top: Time-averaged spectral envelope of a single utterance of a French phonemes ’a’ and ’s’, pronounced with
and without smile. Middle: Averaged spectral envelope for all ’a’s and ’a’s of the corpus in smile and non-smiled conditions. Error bars represent
standard errors. Bottom: Mean spectral envelope difference (smile minus non-smile) for all voiced and unvoiced phonemes of the corpus. (c)
Consequences of smiling on spectral centroid. Mean spectral centroid for voiced (top), unvoiced (bottom left) and all (bottom right) phonemes in the
corpus. Error bars represent 95% confidence intervals on the mean.
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In sum, the mean acoustic consequence of smiling on
sound spectrum is to shift both formants F1 and F2 by 5-
10% (Figure 5-a) and to boost the high frequency energy
(Figure 5-b).

3.2 Transformation algorithm
To simulate these changes on arbitrary spoken input, we
designed a two-stage signal processing algorithm, which
warps the vocal spectral envelope, then filters the recon-
structed signal adaptively. Both stages are informed by
a prior detection stage which tracks the positions of the
formants. Figure 6 shows a general view of the algorithm.

This approach is different from the literature in several
ways. First, compared to [21], [23], [24], [34], we implement
here a transformation (i.e., operating on real speech input,
and preserving its identity, prosody and content) rather than
a synthesis technique (i.e., which generates speech from
scratch). Second, by operating only on the spectral envelope
and preserving the harmonic partials of the original voice,
we avoid artifacts caused by the synthetic glottal impulses
found with other formant re-synthesis approaches. Finally,
like for the visual part of the algorithm, the frame-by-frame
architecture of the system makes it suitable for real-time
processing.

3.2.1 Piecewise linear frequency warping
In order to model the transformation of the whole vocal
tract filter due to smiling, we use a spectral envelope

manipulation technique, frequency warping, which does
not only transform the local peak resonances (formants)
but also the acoustic details besides these local peaks, e.g
anti-resonances. Frequency warping was introduced to nor-
malize vocal tract differences across speakers in order to
improve the performance of recognition and categorization
algorithms [44]. More recently, it has been applied to do
speaker de-identification [45] and voice and gender conver-
sion [46], [47]. Here, we use frequency warping to shift the
spectral envelope (with its formants) either high or down
with the aim of reinforcing or reducing the smile impression
of a voice. The algorithm operates on a frame-per-frame
basis. For each frame, it estimates the vocal spectral enve-
lope (fin), using the ’true envelope’ technique [42], [43], and
manipulates it using a non-linear change, or warping, of the
frequency dimension (fout). The intensity and direction of
the warping are controlled by the parameter αaudio, such as
fout = Φ(fin, αaudio).

The transformation function Φ, illustrated in Figure 7,
was heuristically designed to shift the voice’s formants by
stretching and warping parts of the spectral envelope, to
generate similar formant distributions as the ones seen in
the voice recordings (Figure 5). Namely, to increase F1 and
F2 frequencies. Φ is piece-wise linear with cut-frequencies
defined as a function of the input signal’s formant frequen-
cies Fi: the output spectral envelope is untransformed be-
low F1/2 and above F5; the segment between F1/2 and F2

is warped so that the spectral envelope at F2 is mapped to
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Fig. 6. Overview of the audio smile transformation. The first stage of
the algorithm is a transformation of the audio frames to the frequency
domain, followed by both spectral envelope and f0 analysis. Spectral
envelope analysis allows to compute speech’s formants and F0 analysis
to extract its harmonicity, and to categorize it either as a voiced or
unvoiced frame. The two dotted blocks are the sound transformation
stage, informed by the formant frequencies and harmonicity parameters
extracted in the first stage.
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αaudio.F2 and F3 to αaudio.F3; eventually, the last segment
between αaudio.F3 and F5 is warped to return to identity
after F5. Finally, we reapply the warped spectral envelope
to the harmonic information and resynthesize the signal
using the phase vocoder technique [48] [49]. Note that, if
αaudio = 1 then fout = fin; if αaudio > 1, the algorithm
shifts the envelope towards the high frequencies, and the
higher αaudio, the higher the shift, which should increase
the smile impression in a voice; Conversely, if αaudio < 1,
the acoustic effect is opposite and the envelope is shifted
towards the low frequencies, which should reduce the smile
impression.

As for the warping of face landmark positions in the
visual part of the algorithm, the output of the frequency
warping stage is also adaptive to the input signal, since
frequency breakpoints follow formant frequencies in the
signal. This adaptability can be used at different time scales:
at low adaptation rates, if mean formant frequencies are
computed for a range of sentences by a given speaker, the
algorithm will adapt to speaker characteristics such as sex or
body size (e.g., males have lower, more dispersed formants
[50]); at faster rates, if formant frequencies are computed
for each frame, the mapping will change phoneme per
phoneme. In the current implementation and its validation
in Section 4, mean formant frequencies were computed for
each 1-second sentence in the validation set by averaging the
formants over all the harmonic parts of the signal. Formant
frequencies are estimated by taking the peaks of the 45-

Fig. 7. Piecewise linear warping function mapping the frequency axis of
the input envelope to the frequency axis of the output envelope. This
function defines how the segments of the input spectral envelope are
warped to the segments of the output spectral envelope. For instance,
the segment [F1/2 , F2] will be warped to the segment [F1/2, F2αaudio],
which will shift F2 either towards the high frequencies if αaudio > 1 or
towards the low frequencies when αaudio < 1. The same logic applies
to all the segments of the picewise linear function.
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coefficient LPC envelope at a window size of 512 samples
and hop size 8 samples (2ms), using the superVP software
[49] - a non real-time alternative would be to use the formant
estimation algorithm from the Praat software [41].

3.2.2 Optimal alpha range
Here, we present an acoustical evaluation of the algorithm
performance, to choose the optimal αaudio values, and to
test weather changes of αaudio do produce formant move-
ments comparable to those observed in the corpus analysis.

We analyze the formant frequencies of a set of 15 French
speech sentences (mean duration = 2.3s, Fs = 44100),
for five manipulation intensities (0.8, 0.9, 1, 1.1, 1.25) for
which we compute the statistical effect on F1 and F2. The
analysis was done with two one-way, within-sound-files,
repeated-measures analysis of variance (RM-ANOVA). Data
were analyzed using R (R Development Core Team, 2016),
effect sizes are reported as generalized η2 (Eta-Squared),
Greenhouse-Geisser adjustment for sphericity corrections
was applied when needed, and corrected p-values are re-
ported along with uncorrected degrees of freedom.

The analysis revealed a significant main effect of the
audio coefficient αaudio on F1 (F(4,56)=61.5, p=7.7e-10, η2

=0.14) and F2 (F(4,56)=137.1, p=4.8e-13, η2 = 0.5), as il-
lustrated in Figure 8, showing that the manipulation does
indeed shift formant frequencies. The optimal αaudio value
to recreate the formant movements caused by smiling as
observed in the natural recordings in Section 3.1 (5% for F1
and 4% for F2) is αaudio = 1.25, which increased F1 of 4.8%
(from 717 Hz to 756 Hz) and F2 of 3.9% (from 1765 Hz to
1698 Hz). Conversely, for αaudio < 1, we observe the op-
posite acoustic effect—a decrease of formant frequencies—
for both F1 and F2. For instance, for αaudio = 0.8, F1 and
F2 decreased 2.9% and 3.8% respectively (from 717 Hz to
696 Hz for F1; from 1765 to 1698 for F2). Thus, the range
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Fig. 8. Formant changes as a function of alphaaudio. F1 frequency and
F2 frequencies averaged over 15 validation sentences for intensities of
manipulation αaudio. Error bars represent 95% CI on the mean
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[0.8, 1.25] for αaudio seems to recreate the range formant
variation seen in the corpus recordings.

3.2.3 Dynamic filtering
In addition to warping the signal’s spectral envelope with
the consequence of shifting the first formant frequencies,
smiling also increases spectral energy in the higher-mids
of the signal, between 1 and 4 kHz (Figure 5-b, Bottom
left panel) for harmonic signals, a frequency area typically
associated with F3. To simulate this element of smiled
speech, in a second stage of the algorithm, we filter the
reconstructed audio signal with an adaptive bell IIR filter
which cut-frequency follows the third formant frequency.
The filter gain is computed as g = 20(αaudio − 1) dB, which
for αaudio in the range [0.75, 1.25] varies from -5dB to 5dB,
which is in line with the changes observed on real smiled
utterances in Section 3.1. The cut-frequency refresh rate for
the filter was chosen heuristically at 15ms, thus low-pass
averaging the formant frequencies extracted at a rate of 2ms
in the previous stage.

3.2.4 Special case of non-harmonic frames
Unvoiced phonemes, such as s, don’t have clearly defined
formants like voiced phonemes, and when they do, not in
the same frequency region. To avoid formant estimation
errors, we measure the signal harmonicity frame by frame,
using the confidence of the pitch estimation algorithm of
superVP. Upon reaching a low-harmonicity frame, neither
the frequency warping stage nor the filtering stage update
their parameters to the estimated formants of the frame;
rather, they continue using the formant frequencies of the
last-seen harmonic frame (until a new incoming harmonic
frame is process, at which point continuous adaptation re-
sumes with new formant frequencies). In addition, in order
to recreate the type of resonance seen in Figure 5-b, non-
harmonic frames are processed with a static filter centered
at 6000 Hz with a Q of 1.5 and gain g = 20(αaudio − 1) dB.

3.2.5 Latency
As all time-frequency based digital audio effects, the overall
latency of the algorithm depends on the window size of
the FFT. An accurate time-frequency analysis is essential
for high quality transformations as it is used to extract
both the spectral envelope and the formants in the analysis-
resynthesis stage. Here, for a sampling rate of 44100 and
for a window size of 1024 samples, which is suitable for
human voice signals, the latency of the algorithm is 75ms.

Fig. 9. Examples of the audio transformation. (a) Spectral envelopes
of recorded and transformed phonemes [a]: solid bold: original ver-
sion, pronounced with a neutral tone; dotted bold: original version,
pronounced with stretched lips (smiled); dotted light: original version
transformed with αaudio = 1.25; solid light: original neutral transformed
with αaudio = 0.8. Red area represents spectral energy added to the
neutral spectral envelope when αaudio = 1.25; blue area represents
energy taken out from the neutral envelope when αaudio = 0.8. (b)
Spectrogram of a single phoneme [a] transformed with the audio al-
gorithm with a time-varying αaudio (a sigmoid going from 0.8 to 1.25;
orange)
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This is satisfactory for real time human-human interactions,
but not for sensorimotor feedback [51]. As an example of the
overall transformation, figures 9-a and 9-b present the trans-
formed spectral envelope and spectrogram of an utterance
of phoneme [a] for different αaudio values. You can find ex-
amples at https://archive.org/download/StimuliExample.

4 PERCEPTUAL AUDIOVISUAL VALIDATION

In this section, we present a quantitative validation
of how videos processed with the visual and au-
dio smile algorithms are perceived by human ob-
servers (manipulation examples can be downloaded from
https://archive.org/download/StimuliExample). In a first
experiment, we validate the two modalities separately, by
presenting our experimental participants with video-only
and audio-only stimuli. In a second experiment, we examine
how the two modalities of smile transformation interact
when the video and audio channels of an audiovisual
stream are processed simultaneously.

4.1 Validation of each modality

Ten participants (M=23, SD=3.21, 4 female, 6 men) took part
in an experiment measuring the perceptual consequences
of both the audio and the visual algorithm. Participants
were naive to the fact that stimuli may be algorithmically
manipulated, gave informed consent and were compensated
for their participation.

Audio and video channels were separated from audio-
visual recordings of 15 sentences with neutral content (6
Males, 9 female speakers, same audio as in Section 3.2.2).
The 15 audio channels were transformed with the audio
smile algorithm at 5 levels of intensity αaudio (0.8, 0.9, 1.0,
1.1, 1.25), for a total of 75 audio stimuli. The video channels
were transformed with the visual smile algorithm at 6 levels
of intensity αvideo (-1,-0.5, 0, 0.5, 1.0, 1.5), for a total of 90
video stimuli without audio.

The task was composed of two blocks. In the first block,
participants heard each of the 75 audio stimuli and had
to answer the question ”to what extent was this sentence
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pronounced with a smile?” in a unipolar continuous scale
anchored with ”not smiling at all” and ”with a lot of
smile” (a mid-point was also included, which was - perhaps
confusingly - labeled as ”neutral”). In the second block,
participants had to answer the same question, using the
same scale, for each of the 90 video stimuli. Both in the audio
and in the visual block, the presentation distance between
manipulated variants of the same utterance was maximized.
Stimulus order was pseudo-randomized following this con-
straint.

Participants’ ratings are presented in figure 10 (where
they are z-score normalized for visualisation purpose). The
effect of smile intensity parameter αaudio on participants’
ratings in the first block, and αvideo on ratings in the second
block, was analysed with two separate one-way within-
subjects RM-ANOVA (statistics are reported as in Section
3.2.2).

In the audio block, intensity of audio smile (αaudio) had
a significant main effect on participant ratings of smiliness
(F(4,36)=4.8, p=0.004, η2=0.07), with increasing manipula-
tion intensities (i.e. larger formant shifts and energy boost)
perceived as increasingly smiling (Figure 10-a). Similarly,
in the video block, we found a main effect of the video
coefficient (F(5,45)=11.0, p=0.001, η2=0.37), with increas-
ing manipulation intensities (i.e. larger deformation of the
mouth corners and eye regions) perceived as increasingly
smiling (Figure 10-b). In sum, both the audio and the video
manipulations had a significant influence on participants’
ratings of smiliness. The effect of the video smile intensity
parameter (η2=0.37) was about 5 times larger as that of the
audio smile intensity (η2=0.07).

A breakdown of the effect on male and female videos
can be seen in Figures 10-c-d. The visual smile transforma-
tion appears relatively stable across speaker gender, but at
high visual smile intensity (αvideo=1.5, 2) female speakers
received higher ratings of smiliness than male speakers.
Similarly, the audio smile transformation appears to work
better on female than male voices. Indeed, although for both
male and females an αaudio > 1 does change positively
the impression of a smile, αaudio < 1 seem to reduce the
perception of smiles only for female speakers.

In both modalities, such disparities across speaker gen-
der may result from algorithmic limitations with certain
physical features of the input stimuli. For instance, the audio
disparities might come from difficulties shifting down the
formants in low-pitched male voices. The visual disparities
might be due to face size differences between genders—
females have generally smaller face size than men [52].
Because the deformation model is linear, the visual trans-
formation may transform more face area in small faces,
giving higher ratings to females. Another possibility is that
these disparities are in fact perceptual asymmetries. Female
speakers may be perceived as more emotional than males at
similar levels of expressive intensity.

Finally, it should be noted that we did not evaluate
here the perceived naturalness of the transformations, i.e.
whether transformed stimuli are readily accepted by listen-
ers as authentic, plausible human expressions. Naturalness
is an important consideration for audio/visual transforma-
tions. It is often found to be negatively affected by the
effect intensity [27]. Future work should investigate this

Fig. 10. Validation of the audio (A-C) and video (B-D) smile transforma-
tions in separate modalities. (A) Mean participant ratings of smiliness (z-
score) in transformed audio recordings as a function of audio algorithm
intensity (male and female stimuli). (B) Mean participant ratings of smili-
ness (z-score) in transformed video recordings (w/o sound) as a function
of visual algorithm intensity (male and female stimuli) (C) Breakdown
of audio results by speaker gender. (D) Breakdown of video results by
speaker gender. Error bars represent 95% CI on the mean
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aspect of the transformations, but also how these interact
with speaker identity (“sounds/looks human, but not like
this speaker”), temporal dynamics (“nobody would smile
continuously for such a long time”) or semantics (“nobody
would smile while saying that”).

4.2 Audiovisual interaction

In a second experiment, we examine how the two modalities
of smile transformation interact when the video and audio
channels of an audiovisual stream are processed simul-
taneously. A separate group of N=15 participants (M=22,
SD=3.6, 8 female, 7 men) took part in the study, in similar
circumstances as above.

A subset of 12 videos (3 males, 9 females) taken from the
first experiment was manipulated using the same five αaudio

and six αvideo levels as before, only this time conjointly.
For each original audiovisual recording, we thus created
30 (6*5) manipulated videos with all the pairs of possible
audiovisual manipulations, for a total of 360 rated videos, in
which both congruent and incongruent audiovisual smiles
are present. In a single experimental block, participants were
presented all 360 stimuli, for each of which they were asked
to rate their answer to the question ”What is the emotional
state of this person?” on a unipolar continuous scale ranging
from ”negative” to ”positive”. Note that, in this task, we
used a more holistic question about emotional valence as a
proxy to smiling, in order to force participants to use both
audio and visual cues, as we found in pilot experiments that
participants asked to evaluate ”smilingness” in multimodal
stimuli interpreted the task as the purely visual question
whether the speaker’s face showed the visual features of
a smile, regardless of audio content. Participants ratings are
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Fig. 11. (A) Mean participant rating of speaker emotionality (z-score) in transformed audio-visual recordings as a function of audio and video
algorithm intensity (male and female stimuli). (B) Mean participant ratings of speaker emotionality (z-score) in transformed audio-visual recordings
as a function of visual algorithm intensity only (male and female stimuli) (C) Mean participant ratings of speaker emotionality (z-score) in transformed
audio-visual recordings as a function of audio algorithm intensity only (male and female stimuli) (D-E-F): same data as A-B-C, restricted to female
stimuli. (G): scatter plot and linear fit between the audio coefficient and participant ratings, broken down by level of video transformation intensities
(female stimuli only). Error bars represent 95% CI on the mean
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presented in figure 11. Figure 11-a presents mean participant
rating (z-scored) for each pair of audio and video intensity
levels. As can be seen, there was a clear horizontal gradi-
ent of emotional ratings from left to right, following the
video intensity parameter, but no obvious vertical gradient
of ratings following the audio smile intensity parameter.
Figures 11-b-c slice through the same data, grouping by
separate values of visual smile intensity (a), and audio smile
intensity (c). A repeated measures-anova (RM-anova), with
two within factors (audio coefficient : 5 levels, and video
coefficient : 6 levels), confirmed a significant main effect of
the video coefficient (F(5,70)=25.9, p=2.2e-5, η2 = 0.24) and
a non-significant effect of the audio coefficient (F(4,56)=1.6,
p=0.19, η2 = 0.003) on participant rating of the emotional
state displayed in these stimuli. Because the audio smile
manipulation was found in Section 4.1 to operate more
strongly on female than male speakers, we analysed the
subset of the current audiovisual data restricted to female

stimuli (Figure 11d-f). This time, an RM-ANOVA revealed a
significant main effect of both the audio (F(4,56)=X, p=4.7e-
2, η2 = 0.006) and the video (F(5,70)=23.5, p=8.4e-5, η2 =
0.3) coefficients on participant ratings of emotion, as well
a significant interaction between the audio and the video
coefficients (F(20,280)=2.04, p=3.5e-2, η2 = 0.015). Even re-
stricted to female speakers, the size of the effect of the video
transformation (η2 = 0.3) remained 50 times larger than that
of the audio effect (η2 = 0.006), a ten-times increase of the
difference in effect size seen in Section 4.1.

In sum, while the audio smile transformation is effective
in an audio-only presentation, its effect is largely overridden
by that of the video smile transformation in an audiovisual
context. It appears cognitively plausible that visual cues
are considered more reliable and salient in judging a given
speakers emotion, and that in some cases, audio cues are
only useful when visual cues are ambiguous or otherwise
unavailable. The present data supports this interpretation:



1949-3045 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2811465, IEEE
Transactions on Affective Computing

IEEE AFFECTIVE COMPUTING, VOL. 14, NO. 8, AUGUST 2017 10

Figure11-g breaks down the relation between the audio
coefficient and participant ratings for the different levels
of video transformation intensities for female stimuli. At
extreme positive and negative video transformation inten-
sities, the relation between αaudio and participant ratings
is a flat horizontal line. However, for intermediate αvideo

values (i.e. when positive or negative cues are not, or not
as much, available in the visual modality), the correlation
between the strength of the audio transformation and the
ratings becomes positive and statistically significant (R=0.9,
p=.02 for αvideo = 0).

5 CONCLUSION AND PERSPECTIVES

We created an audiovisual smile transformation algorithm
able to manipulate an incoming video stream in real-time to
parametrically control the amount of smile seen and heard
on the users’ face and voice. To simulate visual smiles, we
use face recognition and automatic landmark positioning,
followed by a warping and a mapping stage. For the audio
transformation, we measured the acoustic consequences of
phonation with stretched lips, and implemented an algo-
rithm that simulates these acoustic cues on speech using
adaptive frequency warping and dynamic filtering, with the
consequence of significantly increasing formant frequency
in running speech.

We validated the transformation using audio-only,
video-only, and audiovisual stimuli processed with these
algorithms. In separate modalities, both the audio and video
smile transformations were associated with increased partic-
ipant evaluations of speaker’s smiliness, with some gender
differences (stronger effects for female speakers). However,
in audiovisual contexts, the strength of the audio transfor-
mation was largely overridden by that of the video smile
transformation, which average effect was quantified as fifty
times larger than the audio effect even when restricted to
female stimuli. Further analysis revealed that the audio
smile transformation was only significantly associated with
participants’ ratings of speaker emotionality when smile
visual cues were weak or ambiguous, which suggests that
human observers use a hierarchy of perceptive processes,
with higher priority/saliency to visual than audio cues,
when judging audiovisual smiles.

This does not entail that audio smile transformations
are not useful. First, they find a natural application in
audio-only interactions. With more than 60% of all customer
experience interactions still happening over the telephone
[53], it would be particularly interesting to test the effect of
audio smile enhancement on variables like customer satis-
faction or retention rates in naturalistic contexts like a call-
center [33]. Second, the fact that auditory smile cues may be
secondary to visual cues does not diminish their usefulness
in contexts where it is inappropriate or otherwise impossible
to manipulate visual cues, e.g. when manipulations need to
remain undetectable.

Several algorithmic improvements can be pursued for
the techniques reported here. In the audio modality, it
should be clarified whether the difference in perceived smile
intensity between male and female stimuli result from algo-
rithmic limitations when processing male rather than female
voices. One notable possibility is that lower-pitched male

voices suffer from spectral estimation artifacts at the time
resolution used in the algorithm, thus hurting the precision
of pitch and formant frequency estimation in the analysis
stage, or the precision of phase-vocoder reconstruction in
the synthesis stage (similar problems were discussed e.g. in
[27]). It remains an intriguing possibility, however, that these
differences are explained by a cognitive, rather than an al-
gorithmic, asymmetry, in which observers judge objectively-
identical levels of transformation differently depending on
speaker gender [54].

In the visual algorithm, the transformation described
here is based on a parametric warping model learned from a
single subject. While this approximation proved reasonable
here, as shown e.g. by quantitative evaluations in video
and audio/video contexts, the method could be extended
to simulate different kinds of smiles (e.g. genuine vs fake
smiles, the discrimination of which may depend on process-
ing the eye region and temporal dynamics [55]) or to convey
different types of smile-expressed affect as amusement, joy,
or shame. The tool would also readily lend itself to modeling
specific smile transformations for different users, potentially
allowing more precise or realistic expressions across e.g.
gender or individual differences. This may be particularly
needed when manipulating facial features of well-known
or familiar speakers, for which observers may have more
stringent representations of what’s real and what’s not.

Finally, independently from work in each modality, fur-
ther improvements to the system may consider its inte-
gration with wider information about the context of the
interaction. First, algorithms in both modalities can be
controlled in real-time using their intensity parameter α,
which opens the question of modeling appropriate temporal
dynamics for both effects in the course of an interaction,
such as e.g., detecting phrase boundaries to smile as a back-
channel at the end of a turn [56]. Second, the effects could
be integrated in a wider audiovisual emotion recognition
system, and thus make the transformed smiles adaptive
to a speaker’s emotional expression. Finally, an intriguing
possibility would also be to use our audiovisual system
to generate large amounts of parametrically-varied training
examples for face and voice classification algorithms to learn
from.

Beyond affective computing and human-computer inter-
action, we anticipate that this technology will find wide-
ranging applications as an experimental method in the
behavioral sciences, because it enables a high level of control
over the acoustical, visual and emotional content of experi-
mental stimuli in a variety of laboratory situations, includ-
ing video-mediated real-time social situations. Possible ap-
plications include e.g. creating stimuli with systematically-
varying degrees of audio and visual smiles to study their
audiovisual integration in observers [57], modeling the pro-
cess of facial mimicry and emotional contagion in observers
depending on the intensity of the facial and auditory cues
that are presented to them [58] or studying the impact of
emotional processes on group performance by manipulating
smile expressive cues in a group of participants while they
are interacting to solve a problem [59]. Efforts will be made
to make the tool available in a user-friendly format to
support this type of applications.
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