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Ce travail présente une formulation analytique de la diffraction d'une onde acoustique par une grille d'aubes rectilinéaire figurant un stator, en prenant en compte un écoulement porteur et une condition de Kutta au bord de fuite. L'effet de cette dernière sur la forme et l'amplitude du champ diffracté augmente avec le nombre de Mach de l'écoulement. La formulation analytique s'appuie sur une méthode de raccordement modal. La méthode est appliquée en deux dimensions pour une onde acoustique plane monochromatique. Les résultats obtenus illustrent l'effet de la condition de Kutta sur la puissance acoustique diffractée et les champs de pression acoustique pour différents nombres de Mach.

Introduction

Axial-flow fan stages are made of a rotor operating with a downstream row of stationary outlet guide vanes (stator). The role of the stator is to recover mechanical energy from the induced swirl. Its aeroacoustic behavior is twofold. Firstly the wakes issued from the upstream rotor impinge on the vanes, inducing unsteady loads which are responsible for what is referred to as wake-interaction noise. Secondly the acoustic waves generated by unsteady aerodynamic phenomena occurring on the rotor blades are restructured by their transmission through the stator before propagating in the exhaust duct. Both mechanisms need being modeled with a reasonable accuracy and at reasonable computational cost for the sake of low-noise design, especially at the preliminary design stage. This is why the modeling task is addressed analytically in the present work, only devoted to the sound transmission problem.

Analytical modeling requires drastic approximations on the geometry and the flow features in order to produce tractable, closed-form solutions. At the same time, it must be extended as far as possible to relevantly address configurations of industrial interest. Because the exit flow from outlet guide vanes must be axial, the vanes assumed with zero camber are modelled as a rectilinear cascade of parallel, axially aligned and zero-stagger plates. Then, the mean flow is considered as uniform and purely axial, of subsonic Mach number M . It has a significant effect on the acoustic propagation of the scattered waves. Firstly, due to the composition of velocities, upstream waves propagate slower and downstream waves faster than in absence of flow with respect to a fixed observer. Wavelengths are also modified accordingly. Secondly, the Kutta condition has an significant effect on the strengths of the scattered waves. According to Howe [START_REF] Howe | Attenuation of sound due to vortex shedding from a splitter plate in a mean flow duct[END_REF] and Job [START_REF] Job | Diffraction of an acoustic wave by a plate in a uniform flow: a numerical approach[END_REF], a part of the acoustic energy of the incident waves is converted into hydrodynamic waves, due to the introduction of viscous effects. Consequently, it is essential to account for it in the analytical formulation. The present study proposes a formulation based on a modematching technique (see Mittra-Lee [START_REF] Mittra | Analytical techniques in the theory of guided waves[END_REF]). First attempts by Ingenito and Roger [START_REF] Ingenito | Analytical modelling of sound transmission through the passage of centrifugal compressor[END_REF], readdressed by Bouley et al. [START_REF] Bouley | On a uniform rotor-stator wake-interaction noise model based on a mode-matching technique[END_REF], showed promising results turbomachinery aeroacoustics.

In the first part, the analytical formulation accounting for the Kutta condition is presented. Simulations are then performed with and without this condition for several Mach numbers to observe its effect. Results focusing on the scattered acoustic pressure field and the acoustic power balance are then discussed.

Analytical Formulation

Figure 1 shows a 2D unwrapped representation of zero-stagger stator vanes. a denotes the inter-vane distance, c the chord length. Φ I is the potential associated with the incident acoustic wave while Φ R,D,U,T denote the potentials of the scattered waves. All waves are monochromatic of pulsation ω.

Mode-Matching Principles

Consider an oblique incident acoustic wave of angle Θ, the potential of which reads:

φ I = e iα i 0 z e iK + i 0 x , α i 0 = k sin Θ 1 + M cos Θ , k = ω c 0 (1) 
where α i 0 and K + i 0 are respectively the azimuthal and the axial wave numbers. This potential is solution of the convected Helmholtz equation in a uniform axial mean flow. As a result, its axial wave number follows:

z = R 0 θ M Θ a x (0) (1) (2) c (m) x = 0 x = c Φ R Φ D Φ U Φ T Φ I
K + i 0 = - M k β 2 + k 2 -β 2 α 2 i 0 β 2 , β = 1 -M 2 (2) 
The principles of the mode-matching technique are explained in the next sections.

Formulation of the Scattered Potentials

Acoustic potentials upstream/downstream the vanes (φ R , φ T ) are expressed as infinite sums of plane waves. Their potentials are also solutions of the convected Helmholtz equation and their azimuthal wave number is imposed by the incident wave (see Dowling and Ffows-Williams [START_REF] Dowling | Sound and sources of sound[END_REF]). As a result, they read:

φ R φ T = +∞ s=-∞ R s T s e iαsz e iK - s x e iK + s (x-c) (3) 
α s = α i 0 + s 2π a , K ± s = - M k β 2 ± k 2 -β 2 α 2 s β 2
R s , T s are the reflected and transmitted modal amplitudes.

In the inter-vane channels, potentials (φ D , φ U ) are expressed as infinite sums of duct modes that fulfill the rigid wall condition on the vanes and propagating on either sides (upstream/downstream). The incident wave imposes a phase-shift between adjacent channels. By virtue of this phase-shift, the acoustic potentials only needs being solved for the reference channel 0:

φ d φ u = +∞ p=0 D 0 p U 0 p cos pπ a z e iK + p x e iK - p (x-c) (4) 
K ± p = - M k β 2 ± k 2 -(pπ/a) 2 β 2
D p and U p are the modal amplitudes of the downstream and upstream travelling waves, respectively.

Matching Equations

To determine the modal amplitudes, matching equations on the acoustic pressure and axial velocity are set up at the leading-edge interface (x = 0) and at the trailing-edge interface (x = c). These equations are inherited from the basic conservation laws of fluids dynamics applied to a stator (see Roger et al [START_REF] Roger | Generation and transmission of spiral acoustic waves in multi-stage subsonic radial compressors[END_REF]). As an example, matching equations at the trailing-edge interface read:

p D (c, z) + p U (c, z) = p T (c, z), ∀z (5) 
v x,D (c, z) + v x,U (c, z) = v x,T (c, z), ∀z (6) 
The expression of the acoustic pressure and velocity are reminded here:

p = -ρ 0 ∂φ ∂t + W .∇φ , v = ∇φ (7) 
Equations 5-6 give rise, after mathematical projections, to a linear system (see Bouley et al. [START_REF] Bouley | On a mode-matching technique for sound generation and transmission in a linear cascade of outlet guide vanes[END_REF] for further details) in which modal amplitudes U 0 and T are the unknown variables, D 0 being already known from a previous solving iteration at the leading-edge interface. This linear system, being well conditionned, is then solved by matrix inversion. The same procedure applies at the leading-edge interface.

Kutta Condition

The Kutta condition is introduced to account for the viscosity effect at the trailing-edges: the pressure jump between both sides of a vane must be zero at the trailing-edge. Considering the m th channel, this gives:

p m-1 D (c, ma) + p m-1 U (c, ma) = p m D (c, ma) + p m U (c, ma) (8) 
The solving of the matching equations (Eqs. 5-6) with the Kutta condition (Eq. 8) leads to an overdetermined linear system. Only an approximate solution can be found using a least-square minimization approach. But this implies that Eqs. 5-6 and Eq. 8 are not properly fulfilled.

Due to viscous effects artificially introduced by the Kutta condition, vorticity perturbations are produced downstream of the vanes. Howe [START_REF] Howe | Attenuation of sound due to vortex shedding from a splitter plate in a mean flow duct[END_REF] suggests that these vorticity perturbations can be concentrated on lines (in a 2D approach) at z = ma, x ≥ c, when the length scale of the vorticity is large compared to the vane and wake thickness. Consequently, the vorticity field can be modeled as a Dirac comb, the magnitude of each Dirac function being phase-shifted between adjacent trailing-edges. These vorticity waves are convected by the mean flow. Their expression is given as:

Ω K (x, z). y = Ω 0 e i(ω/Wx)x +∞ m=-∞ e imu δ(z -ma) y, u = aα i 0 , x ≥ c (9) 
Ω 0 represents the magnitude of the vorticity and is a new unknown variable. The Dirac comb of vorticity can be expanded into a Fourier series. As a result, the vorticity field is written as an infinite sum of plane waves:

Ω K (x, z). y = Ω 0 a +∞ q=-∞ e i(ω/Wx)x e iαqz y, α q = α i 0 + q 2π a , x ≥ c (10) 
The associated velocity field v K follows the same plane-wave expansion. The definition of the vorticity, Ω K (x, z). y = rot v K and the incompressible property of the velocity field enables to determine each velocity component. The expression for the axial velocity is given as:

v x,K (x, z) = +∞ q=-∞ V q e i(ω/Wx)x e iαqz , V q = iΩ 0 α q a α 2 q + ω 2 W 2 x (11)
Then, it can be included into the matching equation for the axial velocity:

v x,D (c, z) + v x,U (c, z) = v x,T (c, z) + v x,K (c, z), ∀z (12) 
Due to the vorticity variable Ω 0 , Eqs. 5,8 and 12 become, after mathematical projections, a square linear system. This system admits an unique solution.

Results and Analysis

The methodology is applied for an oblique plane wave incident on a two-dimensional cascade. The main parameters are (see Fig. 1):

-direction of the incident wave:

Θ = 30 • -non-dimensioned incident wavenumber : k × c = 5
-solidity of the vanes: σ = c/a = 1.25

These parameters are selected as a test case for illustration. In practical applications, they would be tuned to ensure the 2π-periodicity of the original stator.

Acoustic Pressure Fields

Figure 2 presents the instantaneous acoustic pressure fields obtained with the mode-matching approach with (right side) and without Kutta condition (left side) for several Mach numbers. From Fig. 2-(a,b) to (e,f), the effect of the Mach number is visible: adjacent wavefronts of the downstream propagating waves become more distant while those of the upstream waves get closer to each other. With increasing Mach number, additionnal modes become cut-on: for instance, results at M = 0.6 show that at least two modes propagate downstream the vanes whereas only one exists for the other Mach numbers (M = 0.2, M = 0.4).

Figure 2 also highlights the increasing effect of the Kutta condition with the Mach number. At M = 0.2, the magnitudes of the reflected and transmitted wave are slightly higher when this condition is not active. However, the structure of the upstream and downstream pressure fields remains quite similar. At M = 0.4 and M = 0.6, the magnitude of the scattered pressure fields become significantly different whether the Kutta condition is imposed or not. This implies as well different structures of the scattered pressure fields. Figure 2 shows also that the upstream field is much more sensitive to the Kutta condition than the downstream field. and without Kutta condition is introduced as:

Acoustic Power

∆P = 10 log P K P (13) 
where P and P K denote the acoustic power without and with Kutta condition, respectively.

Several comments can be made concerning the results from Fig. 3. Firstly, at M = 0, acoustic powers are identical for both calculations because the Kutta condition has no effect in the absence of mean flow. Secondly, upstream and downstream acoustic powers are overestimated for all Mach numbers when the Kutta is not imposed, except for the narrow range M = 0.45 -0.5 for the downstream waves. This range of Mach numbers is singular because it corresponds, for the present configuration, to cases in which the transmitted acoustic power is close to zero if the Kutta condition is ignored. Nearly all the incident acoustic energy is reflected. With the Kutta condition, the energy is balanced differently between upstream, downstream acoustic waves and downstream vorticity waves in such a way that part of the sound is transmitted in the range M = 0.45 -0.5. Thirdly, the upstream acoustic power is more sensitive to the Kutta condition than the downstream one. Excluding the singular cases, the acoustic power is overestimated by around 2 dB for the downstream waves in absence of Kutta condition. For the upstream waves, the discrepancies are much higher and can reach up to 15 dB for the highest simulated Mach numbers. The present results demonstrate the necessity to account for a Kutta condition for sound transmission in turbomachinery stages with a mean flow above M = 0.2.

Conclusions

An analytical formulation based a mode-matching technique and accounting for the Kutta condition has been proposed to formulate the problem of sound transmission in an axial-flow stator of turbomachine. Imposing a zero pressure jump at the trailing-edge is not sufficient and induced vorticity waves need to be considered in the wakes. Simulations on an infinite rectilinear cascade of rigid flat plates impinged by an acoustic plane wave have been performed. The results prove the significant and increasing effect of the Kutta condition with the Mach number on the scattered pressure fields.

Complementary results [START_REF] Bouley | On a mode-matching technique for sound generation and transmission in a linear cascade of outlet guide vanes[END_REF] indicated that the present model is equivalent to the Wiener-Hopf technique developed by Posson et al. [START_REF] Posson | On the use of a uniformly valid analytical cascade response function for fan broadband noise predictions[END_REF]. The interest of the mode-matching technique is that it can be extended to annular cascades in cylindrical coordinates. This extension is currently in progress.
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 1 Figure 1: Incident and scattered wave notations. 2D unwrapped representation.
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 32 Figure3completes the analysis by quantifying the deviation from the exact energy balance between incident, reflected and transmitted waves. The ratio of acoustic power per unit span in dB obtained with
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 3 Figure 3: Power ratio in dB between results with and without Kutta condition (see Eq. 13).