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Computing ALCH-Subsumption Modules Using Uniform Interpolation

We investigate how minimal subsumption modules can be extracted using methods for uniform interpolation and forgetting. Given an ontology and a signature of concept and role names, a subsumption module is a subset of the ontology that preserves all logical entailments that can be expressed in the description logic of the ontology using only terms in the specified signature. As such, they are useful for ontology reuse and ontology analysis. While there exists a range of methods for computing or approximating minimal modules for a range of module types, we are not aware of a practical, implemented method for computing minimal subsumption modules in description logics beyond ELH. In this paper, we present a method that uses uniform interpolation/forgetting to compute subsumption modules in ALCH, and which under certain conditions guarantees minimality of the extracted modules. As a side product, our method computes a so-called LK subsumption module, which over-approximates the union of all minimal subsumption modules, and as such may already have applications of its own. We further present an initial evaluation of this method on a varied corpus of ontologies. 51

Introduction

Description Logics [START_REF]The description logic handbook: theory, implementation, and applications[END_REF] (DLs) are a well-investigated family of logics that are commonly used to describe terminological knowledge in form of ontologies. Applications in areas such as medicine, biology and the semantic web have lead to the development of very large ontologies that, with growing size, become harder to understand and maintain. Due to the complexity of existing ontologies, there are areas where it is useful to extract a subset of the ontology, a so-called module, based on a set of terms of interest. For example, when developing a new ontology for a specialised application, one may want to reuse knowledge from an existing ontology. If this ontology covers a large domain of concepts, not all information in it will be relevant for the application at hand, so that it makes sense to first extract a module of the ontology that is sufficient for the application. Secondly, for maintaining an existing ontology it may be important for an ontology engineer to understand which axioms in the ontology are responsible for which of its logical entailments. Modules give the engineer an overview on the axioms of the ontology that contribute to any entailment over a selected set of terms. This allows him to browse the ontology in a more directed manner guided by the terms he is interested in. In the mentioned applications, it is usually desirable to extract a module that is optimal in some sense, for example minimal w.r.t. set inclusion.

There are a range of different notions and properties for modules that have been defined in the literature, and correspondingly a range of methods for module extraction have been developed [START_REF] Botoeva | Inseparability and conservative extensions of description logic ontologies: A survey[END_REF][START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF]. For some of those notions, such as semantic modules, deciding whether a subset of the ontology is a module that is minimal w.r.t. set inclusion is undecidable already for ontologies formulated in the lightweight DL EL [START_REF] Konev | Model-theoretic inseparability and modularity of description logic ontologies[END_REF]. In this paper, however, we consider a notion for which computing a minimal module is decidable. More precisely, we are interested in computing minimal subsumption modules, which are modules that preserve all logical entailments in the form of concept inclusions over the specified signature of terms.While a method for computing minimal subsumption modules in acyclic EL ontologies has been presented in [START_REF] Chen | On computing minimal EL-subsumption modules[END_REF], in this paper we focus on the more expressive DL ALCH. Already for ALC ontologies, deciding whether a subset of the ontology is a subsumption module, is known to be 2ExpTimecomplete [START_REF] Ghilardi | Did I damage my ontology? A case for conservative extensions in description logics[END_REF], but we are not aware of a practical implementation for extracting minimal subsumption modules in DLs that are more expressive than ELH [START_REF] Chen | Zooming in on ontologies: Minimal modules and best excerpts[END_REF].

The core idea of our method is to use uniform interpolation [START_REF] Lutz | Foundations for uniform interpolation and forgetting in expressive description logics[END_REF] to compute a finite representation of the entailments the module has to preserve, together with techniques from axiom-pinpointing [START_REF] Schlobach | Non-standard reasoning services for the debugging of description logic terminologies[END_REF]. The method can compute small subsumption modules of ALCH-ontologies for signatures that contain all role symbols, which under certain conditions guarantees minimality of the computed modules. As a side-product, the method computes a lean kernel (LK) subsumption module, an over-approximation of all minimal subsumption modules, which, as our evaluation indicates, is computationally cheaper to compute and usually not much larger than the minimal subsumption module. Moreover, we believe LK subsumption modules may have applications on its own: if subsumption modules are used by ontology engineers to investigate information with respect to certain signatures, it might be useful to have an overview of all the axioms that contribute to this information: this overview is provided, if over-approximated, by the LK subsumption module.

Our method only supports signatures that contain all role names, while arbitrary signatures are left for future work. Modules for this type of signatures have a property that makes them especially useful for ontology reuse. Specifically, as we show, modules for signatures that include all role names provide for a weak form of robustness under replacement [START_REF] Konev | Formal properties of modularisation[END_REF].

The paper is structured as follows. We first recall related work on module extraction and uniform interpolation in Section 2, and give the preliminaries on ALCH, subsumption modules and uniform interpolation in Section 3. We then describe our core algorithm for computing subsumption modules based on axiom pin-pointing in Section 4. A central idea for reducing the number of entailment checks is to use a technique to quickly compute uniform interpolants for differ-ent subsets of the input ontology, for which we compute an annotated uniform interpolant defined in Section 5. As a by-product, the annotated uniform interpolant encodes an upper approximation of the minimal subsumption module, which indeed over-approximates all minimal subsumption modules. We call this module lean kernel subsumption module, as they are similar to lean kernels in axiom pinpointing, which we discuss in more detail in Section 6. Finally, we give results from an initial evaluation in Section 7 and conclude with a discussion in Section 8.

Related Work

There is a range of types and properties of modules that have been investigated in the literature, surveys of which can be found in [START_REF] Konev | Formal properties of modularisation[END_REF] and [START_REF] Botoeva | Inseparability and conservative extensions of description logic ontologies: A survey[END_REF]. Usually, modules are computed on the basis of an ontology and a signature Σ, i.e. a set of concept and role names, and preserve certain properties of the ontology with respect to that signature Σ. Examples include semantic modules, which preserve all models of the ontology when restricted to Σ [START_REF] Konev | Model-theoretic inseparability and modularity of description logic ontologies[END_REF] and subsumption modules, which preserve all logical entailments in the form of concept inclusions over Σ that can be expressed in the description logic under consideration [START_REF] Chen | On computing minimal EL-subsumption modules[END_REF][START_REF] Chen | Zooming in on ontologies: Minimal modules and best excerpts[END_REF]. Apart from minimality under set inclusion, additional properties have been considered such as self-containedness (the module is also a module with respect to its own signature) and depletedness (the remaining ontology only entails tautologies in the specified signature, i.e. all relevant information is in the module). Deciding whether a subset of the ontology is a semantic module for a signature is undecidable already for EL-ontologies [START_REF] Konev | Model-theoretic inseparability and modularity of description logic ontologies[END_REF], and consequently minimal (depleting, self-contained) semantic modules can only be approximated in practice. For EL and ALCI, an exception are modules of acyclic ontologies and for signatures that contain only concept names, for which methods to extract depleting modules have been implemented in the tool MEX [START_REF] Konev | Model-theoretic inseparability and modularity of description logic ontologies[END_REF]. A well-known approximation of semantic modules are locality-based modules, of which syntactical variants, such as ⊥ * -modules, can be computed very cheaply [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF][START_REF] Kontchakov | Logic-based ontology comparison and module extraction, with an application to DL-Lite[END_REF]. However, localitybased modules may still contain a large portion of the original ontology [START_REF] Sattler | Which kind of module should I extract?[END_REF]. A more refined technique for extracting semantic modules is presented in [START_REF] Gatens | Lower and upper approximations for depleting modules of description logic ontologies[END_REF], which computes lower and upper approximations of minimal depleting modules in ALCQI using QBF-reasoning. Depending on the application, modules that only preserve entailments in a certain query-language may be sufficient. A method that approximates minimal modules taylored towards specific query languages uses datalog reasoning and has been presented in [START_REF] Romero | Module extraction in expressive ontology languages via datalog reasoning[END_REF].

For computing minimal subsumption modules of ELH-terminologies, a method has been presented in [START_REF] Chen | Zooming in on ontologies: Minimal modules and best excerpts[END_REF]. An alternative approach is presented in [START_REF] Chen | On computing minimal EL-subsumption modules[END_REF], which uses a black-box search algorithm that detects axioms that can be safely removed without causing a logical difference, i.e. a difference in the set of entailed concept inclusions over the selected signature. For computing logical differences, the authors use the tool CEX [START_REF] Konev | The logical difference for the lightweight description logic EL[END_REF], whose latest version supports the computation of logical differences between ELH r -ontologies [START_REF] Ludwig | The logical difference for ELH r -terminologies using hypergraphs[END_REF]. However, in principle, the same algorithm could be used for ontologies formulated in any logic for which a tool for computing logical differences exists. We tried this for ALCH ontologies, deploying the tool Lethe [START_REF] Koopmann | Lethe: Saturation-based reasoning for nonstandard reasoning tasks[END_REF] that allows for computing logical differences in ALCH for arbitrary signatures, provided a uniform interpolant exists for them. However, we found that this approach is too computationally expensive in practice.

A notion strongly related to that of subsumption modules is that of uniform interpolants, which are also computed as part of our method. Both subsumption modules and uniform interpolants preserve all logical entailments in the specified signature that can be expressed in the respective description logic. However, while subsumption modules are subsets of the input ontology, uniform interpolants are themselves completely formulated in the specified signature, and may therefore contain axioms that do not occur in the original ontology. In fact, in the worst case, already for the description logics EL and ALC, the uniform interpolant may have a size that is triple exponential in the size of the input ontology [START_REF] Nikitina | Non-)succinctness of uniform interpolants of general terminologies in the description logic EL[END_REF][START_REF] Lutz | Foundations for uniform interpolation and forgetting in expressive description logics[END_REF]. Despite this discouraging theoretical result, various practical methods for computing uniform interpolants in expressive description logics have been developed [START_REF] Ludwig | Practical uniform interpolation and forgetting for ALC TBoxes with applications to logical difference[END_REF][START_REF] Koopmann | Count and forget: Uniform interpolation of SHQontologies[END_REF][START_REF] Koopmann | Uniform interpolation and forgetting for ALC ontologies with ABoxes[END_REF][START_REF] Zhao | Forgetting concept and role symbols in ALCOIHµ + ( , ∩)-ontologies[END_REF]. In fact, it turns out that in practice, uniform interpolants are often of moderate size.

Preliminaries

We recall the description logic ALCH [START_REF]The description logic handbook: theory, implementation, and applications[END_REF], as well as the notions of subsumption modules and uniform interpolants.

Let N c and N r be two disjoint, countably infinite, sets of respectively concept names and role names. A signature Σ ⊆ N c ∪ N r is a finite set of concept names and role names.

The set of concepts C, D, TBox axioms α and RBox axioms β the set of ALCH-inclusions α are built according to the following grammar rules:

C ::= | ⊥ | A | ¬C | C C | C C | ∃r.C | ∀r.C α ::= C C | C ≡ C β ::= r s | r ≡ s
where A ∈ N c and r ∈ N r . A TBox is a finite set of TBox axioms, an RBox a finite set of RBox axioms, and an ontology is the union of a TBox and RBox.

The semantics of ALCH is defined using interpretations I = (∆ I , • I ), where the domain ∆ I is a non-empty set, and • I is a function assigning each concept name A to a subset A I of ∆ I and every role name r to a binary relation r I over ∆ I . Then • I is inductively extended to complex concepts by: ( ) A signature is a (countable but possibly infinite) set Σ ⊆ N r ∪ N c of concept and role names. Given a concept/axiom/ontology α, we denote by sig(α) the set of concept and role names occuring in α.

I := ∆ I , (⊥) I := ∅, (¬C) I := ∆ I \C I , (C D) I := C I ∩ D I , (C D) I := C I ∪ D I , (∃r.C) I := {x ∈ ∆ I | ∃y ∈ C I : (x, y) ∈ r I },
Definition 1 (Σ-Inseparability, Subsumption Module, Uniform Interpolant.). Let O 1 and O 2 be two ALCH-ontologies, and let Σ be a signature.

Then O 1 and O 2 are Σ-inseparable, denoted as O 1 ≡ Σ O 2 , iff for every axiom α s.t. sig(α) ⊆ Σ, we have O 1 |= α iff O 2 |= α. A Σ-subsumption module of O is an ontology M s.t. O ≡ Σ M and M ⊆ O. M is minimal iff there exists no Σ-subsumption module M of O s.t. M M. A uniform interpolant of O for Σ is an ontology O Σ s.t. O ≡ Σ O Σ and sig(O Σ ) ⊆ Σ.

Minimal Subsumption Modules as Justifications

A related problem to minimal subsumption module extraction is that of computing justifications [START_REF] Schlobach | Non-standard reasoning services for the debugging of description logic terminologies[END_REF]. Given an ontology O and an axiom α that is entailed by O, a justification for α in O is a subset J of O s.t. J is minimal w.r.t. and J |= α. We can generalise this notion to justifications of ontologies O by asking for minimal subsets J ⊆ O s.t. J |= O . One easily sees that every minimal subsumption module is a justification of a uniform interpolant: for a given ontology O and signature Σ, a uniform interpolant O Σ captures all entailments of O that are in Σ, and therefore, any subset of O that entails O Σ entails all axioms that are in Σ. Therefore, one possible approach for computing minimal subsumption modules is to first compute a uniform interpolant, and then compute a justification for it using any DL reasoner that supports this. As there are implemented systems for both for uniform interpolation (e.g. [START_REF] Ludwig | Practical uniform interpolation and forgetting for ALC TBoxes with applications to logical difference[END_REF][START_REF] Koopmann | Lethe: Saturation-based reasoning for nonstandard reasoning tasks[END_REF][START_REF] Zhao | Forgetting concept and role symbols in ALCOIHµ + ( , ∩)-ontologies[END_REF]), and for computing justifications (reasoners such as HermiT [START_REF] Glimm | HermiT: an OWL 2 reasoner[END_REF], JFact [START_REF] Tsarkov | FaCT++ description logic reasoner: System description[END_REF] and Pellet [START_REF] Sirin | Pellet: A practical OWL-DL reasoner[END_REF] support this directly via the OWL API [START_REF] Horridge | The OWL API: A Java API for OWL ontologies[END_REF]), it seems that such a method could be implemented without much effort.

However, there are two short-comings of this approach. First, it is well-known that uniform interpolants do not always exists for any pair of ontology and signature. For this reason, existing methods for uniform interpolation either only compute approximations of the uniform interpolant, or they compute a uniform interpolant in an extended language that uses greatest fixpoint operators. Unfortunately, we are not aware of any reasoner that supports fixpoint operators, so that the method can only be applied for ontology-signature pairs for which there exist a uniform interpolant without fixpoint operators. Secondly, in first experiments of this idea we quickly found out that reasoners such as HermiT, Pellet and JFact struggle with the computation of justifications for large entailments such as uniform interpolants. While in this paper, we offer no general solution for the case in which there is no uniform interpolant without fixpoints, to overcome the more practical problem of computing justifications for uniform interpolants without fixpoint operators, we developed a more refined approach based on ideas for computing justifications.

Given an ontology O 1 and a set of entailed axioms O 2 , such as a uniform interpolant, we can compute a justification for O 2 in O 1 using the following algorithm A1. 

1. Input: ontology O 1 , entailed set of axioms O 2 2. For each α ∈ O 1 : (a) Set O 1 = O 1 \ {α} (b) If O 1 |= O 2 , set O 1 = O 1 3. Return O 1 If in Step 2b),
Σ 2 of O m \ {β} for Σ (b) Set O d = O Σ \ O Σ 2 (c) If O Σ 2 |= O d , set O m = O m \ {β} 5. Return O m
Of course, the improvement of this method relies on the shape of the uniform interpolants we compute: in general, O Σ and O Σ 2 may not overlap at all, so that O d may have the same size as O Σ . However, as our experiments confirmed, if the uniform interpolants are computed wisely, in the algorithm above O d is usually significantly smaller than O Σ 2 , and in fact often contains only a single axiom. Therefore, the algorithm is expected to require a much smaller number of entailment checks than A1. However, we now need to compute a uniform interpolant in every iteration, which usually is a much more expensive operation than testing for entailment of axioms. Luckily, as it turns out, for signatures Σ s.t. N r ⊆ Σ, we can compute the required uniform interpolants very efficiently if we compute an annotated uniform interpolant first, from which all required uniform interpolants can then be obtained by simple replacement operations.

Annotated Uniform Interpolants

In the following, for simplicity, let O be the input ontology of our method. Let N a ⊆ N c be a special set of concept names called annotation concepts, which we assume to be disjoint from the signature of O, and let A : O → N c be a bijective function that maps each axiom in O to an annotation concept. To improve readability, we write A(α) as A α .

Note that in ALCH, every TBox axiom is equivalent to a set of TBox axioms of the form C D. Given a TBox axiom α, we denote by gci(α) the set of GCIs that is equivalent to α. Definition 2. Given an axiom α, the annotation α a of α is defined as

{C D A α | C D ∈ gci(α)}.
Given an ontology O, the annotation O a of O is the union of all annotations of axioms in O. Given a signature Σ, a annotated uniform interpolant of O for Σ is a uniform interpolant O Σ a of the annotation of O for the signature

Σ ∪ {A α | α ∈ O}.
Note that the annotation O a of an ontology O is usually not a conservative extension. Specifically, O a |= C D may not hold even for C D ∈ O, due to the added disjuncts. Instead, all non-tautological entailments now involve annotation concepts that refer to the axioms that have been used to infer the axiom.

The idea of the annotation concepts is to track which axioms contributed to computing a uniform interpolant. This way, we can easily obtain a uniform interpolant of any subset of the original ontology. Specifically, given an annotated uniform interpolant of O for Σ, where N r ⊆ Σ, we can obtain uniform interpolants for Σ of any subset O of O as follows: we replace every annotation concept A α s.t. α ∈ O by ⊥, and every remaining annotation concept by .

Example 1. Consider the following ontology O.

∃r.

A B A ≡ ∃r.B

The following ontology is a uniform interpolant of O for Σ = {A, r}.

A ∃r. ∃r.(∃r.

¬A) A

To track which axioms contributed to the uniform interpolant, we compute the annotated uniform interpolant. For this, we first compute the annotation of O, which is the following.

∃r.

A This technique however only works for signatures that contain all role symbols of the original ontology. The following lemma, which can be shown by inspection of the uniform interpolation method presented in [START_REF] Koopmann | Forgetting concept and role symbols in ALCHontologies[END_REF], provides the central property of uniform interpolants which make our technique possible. 

O 2 = O \ O 1 . Further, let O Σ 2 be a uniform interpolant of O 2 for Σ. Then, O 1 ∪ O Σ 2 is a uniform interpolant of O for Σ.
As a corollary of this lemma, we obtain the robustness property of subsumption modules for signatures Σ s.t. N r ⊆ Σ which was claimed in the introduction, and which can equivalently be proved based on a corresponding result for ALC from [START_REF] Konev | Formal properties of modularisation[END_REF]. We can now show that uniform interpolants of subsets of the original ontology can indeed be computed using the replacement operations described earlier.

(Recall that annotated uniform interpolants are defined as uniform interpolants of the annotated ontology, for the given signature extended by annotation concepts.) 

O Σ 1 = O Σ a [A α → ⊥ | α ∈ O 1 ][A α → | α ∈ O \ O 1 ]
is a uniform interpolant of O 1 for Σ.

Proof. Let O, Σ, O Σ a and O 1 be as in the lemma. Let O a be the annotation of O, and extend O a to following ontology O 2 .

O a ∪ {A α ≡ ⊥ | α ∈ O 1 } ∪ {A α ≡ | A α ∈ O \ O 1 }
By looking at the way axioms are annotated, one easily establishes that the uniform interpolant of O 2 for sig(O) is equivalent to O 1 . Also, one easily sees that this uniform interpolant is simply obtained by replacing every annotation concept A α s.t. α ∈ O by ⊥, and every annotation concept A α s.t. A α ∈ O \ O 1 by . Since uniform interpolation is commutative, we can obtain a uniform interpolant of O 1 for Σ, starting from O 2 , in two ways. Either we first compute O 1 as uniform interpolant of O 2 , and compute then the uniform interpolant of O 1 for Σ. Or we first compute the uniform interpolant of O 2 for Σ ∪N a , of which we then compute the uniform interpolant for Σ. As observed earlier, this last step is simply performed by replacing annotation concepts by ⊥ respectively . By Lemma 1, the uniform interpolant of O 2 is equivalent to the uniform interpolant of O a -the annotated uniform interpolant-together with the additional axioms in O 2 , which means, these axioms are only involved in computing the second uniform interpolant. Therefore, we obtain the same ontology if we first compute the annotated uniform interpolant of O, and then perform the substitution on the annotated uniform interpolant.

LK Subsumption Modules

Theorem 1 allows us to apply Algorithm A2 without having to use an expensive uniform interpolation method in each step. Another consequence of Theorem 1 is that, if we take the axioms associated with the set of annotation concepts occurring in the annotated uniform interpolant, we obtain a set of axioms that contains all minimal subsumption modules. This module is not necessarily equal to the union of all minimal subsumption modules, since the annotated uniform interpolant may contain tautological axioms, so that it is an over-approximation. We call this module lean kernel subsumption module (LK subsumption module for short), since it contains all axioms that were involved in computing the uniform interpolant, similar to lean kernels in SAT-solving [START_REF] Kullmann | Categorisation of clauses in conjunctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel[END_REF]. LK subsumption modules can be computed more cheaply than minimal subsumption modules, as they do not require any further subsumption tests after the annotated uniform interpolant is computed. We believe that they also have a special use in ontology engineering: given a set of concept names, they allow the ontology engineer to quickly examine all the axioms that are involved in inferring any entailments involving no other concept names. Definition 3. Let O be an ontology and Σ a signature. An ontology M Σ lk is a Σ LK subsumption module iff there exists an annotated uniform interpolant O Σ a of O for Σ that is obtained by collecting all axioms that belong to some annotation concepts occurring in O Σ a : Since LK subsumption modules can be obtained from the annotated uniform interpolant without additional subsumption tests, they can always be computed even in the case where the annotated uniform interpolant contains fixpoint operators. However, different to minimal subsumption modules they do not offer any minimality guarantees: which axioms are contained in the LK subsumption module depends on the uniform interpolation procedure used, and as uniform interpolants may contain redundant and tautological information, it is in general possible that an LK subsumption module contains axioms that are not included in any minimal subsumption module.

M Σ lk = {α | A α ∈ sig(O Σ a )}.
The requirement that the signature contains all role names is indeed crucial for the correctness of our method, as is exemplified by the following example.

Example 2. Take following ontology O:

A ∃r.B A C B ⊥,
and consider the signature Σ 1 = {A, r}. The annotation O a of O looks as follows.

A ∃r.B A A ∃r.B A C A A C B ⊥ A B ⊥ A uniform interpolant O Σ a for O a for {A, r, A A ∃r.B , A A C , A B ⊥ } is A ∃r.A B ⊥ A A ∃r.B .
Consequently, the Σ 1 LK subsumption module contains the first and the last axiom of O. One easily verifies that these two axioms also form the only minimal Σ 1 -subsumption module of O. Now consider the signature Σ 2 = {A, C}. A close look at the original ontology shows that in fact, the concept A is unsatisfiable, which can be inferred just from the first and the last axiom. This makes the second axiom redundant, and therefore the minimal subsumption module for Σ 2 is the same as for Σ 1 . However, the uniform interpolant O Σ2 a for O a for {A, C, A A ∃r.B , A A C , A B ⊥ } just contains the following axiom.

A C A A C
That is, the LK subsumption module contains just one axiom, which is exactly the only axiom that does not occur in the minimal subsumption module. The reason that the annotated uniform interpolant does not contain any more axioms is that the axiom A ∃r.A B ⊥ A A ∃r.B has no non-tautological ALCHentailment that does not also make use of the role name r.

Finally, for the complete signature Σ 3 = {A, r, C}, the Σ 3 LK subsumption module contains all axioms. However, as we already observed, the second axiom is redundant, and thus, this subsumption module is not minimal.

Evaluation

To evaluate how our method performs in practice, we implemented a Java prototype of our method and did an initial evaluation on a set of 96 ontologies that were taken from the classification track for OWL DL ontologies at the ORE competition 2014 [START_REF] Parsia | The OWL reasoner evaluation (ORE) 2015 competition report[END_REF]. The prototype was implemented in Java 1.7, using the OWL-API [START_REF] Horridge | The OWL API: A Java API for OWL ontologies[END_REF] for ontology access, Lethe [START_REF] Koopmann | Lethe: Saturation-based reasoning for nonstandard reasoning tasks[END_REF] for computing the annotated uniform interpolants, and MORe [START_REF] Romero | MORe: Modular combination of owl reasoners for ontology classification[END_REF] as a reasoner in the minimisation step. MORe is a hybrid reasoner that utilises the OWL DL reasoner HermiT [START_REF] Glimm | HermiT: an OWL 2 reasoner[END_REF] together with the EL reasoner ELK [START_REF] Kazakov | The incredible ELK[END_REF]. As it was to be expected that the module as well as the uniform interpolants could often be expressed purely in EL, this reasoner was selected to improve reasoner performance for these cases. In fact, we noticed that the minimalisation step was usually significantly faster when using MORe than when using HermiT.

We were particularly interested in the performance for computing small subsumption modules. In particular, we were interested in the following questions: 1) how well does the method perform in practice for computing LK subsumption modules and minimal subsumption modules, and 2) can minimal subsumption modules in ALCH be expected to be smaller than modules extracted by alternative methods, such as locality-based modules. Since we expected both the computation of the annotated uniform interpolant, as well as the minimisation step afterwards, to be costly in practice, we computed subsumption modules in a relaxed setting. For this, we used a timeout for the uniform interpolation step. Lethe computes uniform interpolants by eliminating names outside of the specified signature one after the other. If it did not succeed in computing the uniform interpolant within the specified timeout, we continued the computation with the uniform interpolant it computed so far, thus obtaining LK subsumption modules and minimal subsumption modules for an extended signature. This way, we were able to get an upper bound on the size of the minimal subsumption module even if the annotated uniform interpolant was too difficult to compute. Furthermore, note that the annotated uniform interpolant computed in the first step may contain fixpoint expressions, so that the LK subsumption module cannot be minimised in the second step, as we cannot test for entailment of axioms with fixpoint expressions using MORe. To still get an idea about the minimisation potential of our approach, we simply treated entailment of axioms with fixpoint expressions as failure, unless the axiom was syntactically contained in the current module. Note that this may result in a module that is not minimal, similar to when the uniform interpolation procedure created a timeout.

The ontologies for our experiments were selected as follows. We selected our ontologies from the track "Classification of OWL DL ontologies" of the OWL Reasoner Evaluation competition 2015, because they provide a small, yet well balanced mix of ontologies with very different properties [START_REF] Parsia | The OWL reasoner evaluation (ORE) 2015 competition report[END_REF]. As our method only supports ALCH ontologies, we further removed from each ontology the axioms that were not in ALCH, where we kept n-ary equivalence and disjointness axioms, as well as concept inclusions. From this set of 315 ontologies, we selected those that contained less than 10,000 axioms and more than 150 concept names, resulting in a set of 96 ontologies in total.

The experiment was performed on a server running Ubuntu 15.10 with Intel Xeon 2.50GHz cluster Core 4 Duo CPU with 64GiB RAM. We used our prototype to compute subsumption modules for randomly created signatures containing 10, 25, 50, 100 and 150 concept names, were we used 30 samples per signature size. The timeout for the interpolation procedure was set to 5 minutes, while the overall timeout was set to 10 minutes. The results of our experiment are shown in Table 2. The success rate shows the number of runs in which the method succeeded within the timeout. The next rows show the percentage of runs that produced modules which were guaranteed to be minimal (Row 3), that did not guarantee minimality due to fixpoints in the uniform interpolant (Row 4), and that did not guarantee minimality due to a timeout in the interpolation procedure (Row 5). Note that the latter two cases may overlap. We then list the minimal, maximal, median and average duration of computing the module in the successful runs. We obtained median durations between 4.1 and 11.6 seconds, which might be reasonable for daily applications. However, as to be expected, in general our method is more computationally expensive than other methods for module extraction.

The following rows compare the sizes of the TBoxes of the ⊥ * -modules, the LK subsumption modules and the minimised subsumption modules. Note that, because the signatures always contained all role names, the ⊥ * -modules as well as the subsumption modules always had the same RBox as the original ontology. It is for this reason that we focus on the TBoxes of the modules to provide for a more meaningful comparison. The LK subsumption modules were on average 12.3%-16.8% smaller than the ⊥ * -modules, while the minimised variants differed only little in size to the LK subsumption modules. This shows that in practice, LK subsumption modules provide for good approximations of minimal subsumption modules. The last row shows for comparison the minimal, maximal, median and average size of the input ontologies.

Conclusion and Future Work

We presented a method for extracting subsumption modules in ALCH for signatures Σ s.t. N r ⊆ Σ. The method ensures minimality of the extracted modules provided that a uniform interpolant without fixpoint operators can be computed for the given ontology and signature. In the first step, the method computes an annotated uniform interpolant, from which an approximation of the minimal subsumption module, the LK subsumption module can be obtained. This module is then minimised in a subsequent step by comparing entailments of corresponding uniform interpolants. Our evaluation indicates that in most cases, the LK subsumption module is already minimal or close-to minimal, so that the second step can be omitted. As for LK subsumption modules, we do not have a restriction for cyclic ontologies, this means that our method provides for good approximations of minimal subsumption modules for ALCH ontologies in general. Our evaluation indicates that our method is often able to compute subsumption modules that are smaller than locality-based modules. However, in some cases, the computation of these modules was quite time-consuming. Our implementation uses a timeout for the uniform interpolation step, and computes a subsumption module for the signature for which a uniform interpolant could be computed within that timeout. It would be interesting to see the exact effect of this timeout on the computed subsumption modules. For small timeouts, our implementation would compute an LK subsumption module for an extended signature that in addition contains those concept names that are especially hard for Lethe to eliminate, which usually is only a small fraction of complete signature. It is possible that those LK subsumption modules provide for close approximations of the LK subsumption modules for the given signature, though computable in much shorter time.

There are obvious short-comings of our evaluation that should be addressed in future work. First, the sample size used for the signatures was very small, which is why we are currently running the experiments with a higher number of signatures per ontology. Second, we only compared our method with the syntactical method for computing ⊥ * -modules. An alternative obvious choice for comparison would be AMEX [START_REF] Gatens | Lower and upper approximations for depleting modules of description logic ontologies[END_REF], which can approximate depleting semantic modules of ALCQI ontologies. Such a comparison could give insights on whether subsumption modules are in practice smaller than semantic modules, or whether they are mostly similar. Third, it would be interesting to evaluate our method on larger ontologies and not only ontologies with at most 10,000 axioms. Furthermore, it would be interesting to test our method with other implementations for uniform interpolation than Lethe, for example the Ackermann-based method presented in [START_REF] Zhao | Forgetting concept and role symbols in ALCOIHµ + ( , ∩)-ontologies[END_REF].

Open problems with our approach are 1) how to obtain an optimal, practical method in the case uniform interpolants contain fixpoints, and 2) how to compute minimal subsumption modules for signatures that do not contain all role names. In order to tackle these, it might be necessary to use the uniform interpolation method not as a black box, but to modify its implementation to track inferences directly. Again, it is possible that techniques from the area of justification and axiom-pinpointing could be used here.

  and (∀r.C) I := {x ∈ ∆ I | ∀(x, y) ∈ r I : y ∈ C I }. An interpretation I satisfies a TBox axiom C D (C ≡ D) iff C I ⊆ D I (C I = D I ). It satisfies an RBox axiom r s (r s) iff r I ⊆ s I (r I = s I ). We write I |= α if I satisfies the axiom α. An interpretation I is a model of an ontology O if I satisfies all axioms in O. An axiom α is entailed by O, written O |= α, if for all models I of O, we have that I |= α.

Lemma 1 .

 1 Let O be an ontology and Σ a signature s.t. N r ⊆ Σ. Let O 1 ⊆ O be such that sig(O 1 ) = Σ and O 1 contains no RBox axioms, and let

Corollary 1 (

 1 Weak robustness under replacement). Let O be an ontology, Σ a signature s.t. N r ⊆ Σ, and M be a Σ-subsumption module for O. Let O be an ontology s.t. sig(O )∩sig(O) ⊆ Σ and O contains no RBox axioms containing role names from O. Then, for any axiom α s.t. sig(α) ⊆ sig(O ) ∪ Σ, we have O ∪ O |= α iff M ∪ O |= α.

Theorem 1 .

 1 Let O be an ontology, Σ a signature s.t. N r ⊆ Σ, and O Σ a an annotated uniform interpolant of O for Σ. Let O 1 ⊆ O. Then, the ontology

Corollary 2 .

 2 Given an ontology O, a signature Σ s.t. N r ⊆ Σ and a Σ LK subsumption module M Σ lk for O, we have M ⊆ M Σ lk for every minimal Σsubsumption module M of O.

  we test entailment of O 2 by checking one axiom after the other, this algorithm has to perform a quadratic number of entailment tests, namely one for each pair (α, β) of axioms α ∈ O 1 and β ∈ O 2 . However, if O 1 and O 2 overlap syntactically, this number of tests can be reduced, as we do not need to call a reasoner for axioms that are already in O 1 . Unfortunately, if O 2 is a uniform interpolant of O 1 for Σ, it only contains axioms in Σ, and is therefore unlikely to syntactically overlap with O 1 , especially if Σ is significantly smaller than the signature of O 1 . To overcome this problem, we propose the following algorithm A2, which checks for entailment of the uniform interpolant by another uniform interpolant. 1. Input: Ontology O, signature Σ 2. Initialise O m to the ⊥ * -module of O for Σ 3. Compute the uniform interpolant O Σ of O m for Σ 4. For each β ∈ O

m : (a) Compute the uniform interpolant O

  B A ∃r. A B By interpolating the annotation of O, we obtain the following annotated uniform interpolant of O for Σ. The annotation concepts mark which parts of the uniform interpolant where influenced by which axiom. If we replace every annotation concept by ⊥, we obtain a uniform interpolant of O again. If instead, we replace A A≡∃r.B by ⊥ and A ∃r. A B by , we obtain the following uniform interpolant of A ≡ ∃r.B:

	∃r.(∃r.	A A≡∃r.B ¬A ¬A ∃r. A B ) A A A≡∃r.B A ∃r.
		∃r.(∃r.	A ∃r. ¬A ¬ ) A ⊥,	⊥
	which can be simplified to {A ∃r. }, as the second axiom is tautological. In a same way, we obtain that a uniform interpolant of ∃r. A B is {⊥ }.
		A ∃r.B A A≡∃r.B ∃r.B A A A≡∃r.B

Table 1 .

 1 Results of our evaluation for signatures containing 10/25/50 concept names (minimal/maximal/median/average).

	|Σ ∩ Nc| Success Rate	10 92.2%	25 90.3%	50 90.6%
	Minimal	71.2%	70.3%	68.7%
	Fixpoints	20.8%	19.8%	23.6%
	UI Timeout	2.0%	2.2%	2.0%
	Duration (s)	0.4 / 594.0 / 3.7 / 20.6	0.4 / 591.9 / 4.1 / 27.1	0.5 / 592.0 / 6.1 / 32.5
	Size ⊥ * -Module Size LK Module	0 / 1021 / 131.0 / 204.4 0 / 1374 / 164.0 / 256.7 0 / 1047 / 204.0 / 260.3 0 / 723 / 103.5 / 170.1 0 / 1054 / 144.0 / 216.7 0 / 835 / 170.0 / 218.5
	Size Min. Module	0 / 723 / 103.0 / 169.8	0 / 1051 / 142.0 / 216.1 0 / 814 / 169.0 / 218.0
	Size Original Ontology			186 / 8926 / 1792.0 / 2547.5
	|Σ ∩ Nc| Success Rate	100 87.7%	150 85.7%
	Minimal		66.5%	66.0%
	Fixpoints		21.7%	20.6%
	UI Timeout	2.6%	1.7%
	Duration (s)	0.9 / 584.5 / 9.1 / 39.1	1.0 / 594.9 / 11.6 / 39.7
	Size ⊥ * -Mod Size LK Mod	1 / 1374 / 305.0 / 352.2 6 / 1242 / 385.0 / 435.8 1 / 1054 / 267.0 / 301.2 6 / 1242 / 342.0 / 382.1
	Size Minimised Mod	1 / 1051 / 264.0 / 300.0 6 / 1234 / 336.0 / 379.9
	Size Original Ontology		186 / 8926 / 1792.0 / 2547.5

Table 2 .

 2 Results of our evaluation for signatures containing 100/150 concept names (minimal/maximal/median/average).