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Abstract

We study an innovative modification of recurrence plots defining the recurrence by the local

ordinal structure of a time series. In this paper we demonstrated that in comparison to a recently

developed approach this concept improves the analyis of event related activity on a single trial

basis.
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I. INTRODUCTION

A basic research in cognitive science deals with the study of the behaviour of the brain

after short, surprising stimuli. Such event related changes can be measured as changes in the

brain potentials with electroencephalography (EEG), and are called event related potentials

(ERPs) [13].

Traditionally, ERP waveforms are determined by computing an ensemble average of a

large collection of EEG trials that are stimulus time locked. This is based on the following

assumptions: (1) the presentation of stimuli of the same kind is followed by the same

sequence of processing steps, (2) these processing steps always lead to activation of the same

brain structures, (3) this activation always elicits the same pattern of electrophysiological

activity, which can be measured at the scalp [12] and (4) spontaneous activity is stationary

and ergodic.

EEG data contain a composition of different effects in the brain. Other signals not related

with ERPs are regarded in this context as noise. In order to find characteristic ERPs in such

strongly noisy EEG data, EEGs of a number of trials are measured. By averaging the data

points, which are time locked to the stimulus presentation, it is possible to filter out the

ERP signal of the noise (spontaneous activity). This way, a positive potential 300 ms after

the stimulus (P300) was the first ERP discovered. It was inferred that the P300 component

varies in dependence on subject internal factors, like attention and expectation, instead on

physical characteristics [13]. The amplitude of the P300 component is highly sensitive to

the novelty of an event and its relevance (surprising moment), so this component is assumed

to reflect the updating of the environmental model of the information processing system

(context updating) [3, 4].

A disadvantage of the averaging is the high number of trials needed to reduce the signal-

to-noise-ratio. This disadvantage is crucial for example in clinical studies, studies with

children and studies in which repeating a task would influence the performance. Moreover,

several high frequency structures of the ERPs are filtered out by using the averaging method.

Therefore, new methods for the analysis of event related activity on a single trial basis are

highly desirable.

A recently developed approach based on the recurrence quantification analysis has proven

its ability to indicate transitions in the brain processes due to the surprising moment and
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to distinguish ERPs [10]. In this paper we demonstrated an improvement in the analysis by

an innovative modification of the recurrence plots, where the recurrence is defined by order

patterns [6].

This paper is organized as follows. First we briefly review the recurrence plots and

its recurrence quantification analysis. Then, the modification of recurrence plots by order

patterns is introduced. Finally, we compare both approaches on event related data from the

Oddball experiment.

II. RECURRENCE PLOTS

We develop a recurrence quantification based on recurrence plots (RP). A RP is a N × N

matrix representing neighbouring states ~xi in a d-dimensional phase space (Fig. 1) [5]

Ri,j(ε) =

1 : ‖~xi − ~xj‖ ≤ ε

0 : otherwise
~xi ∈ Rd, i, j = 1 . . . N, (1)

where N is the number of considered states ~xi; ε is a threshold distance and ‖ · ‖ a norm.

Hence, (1) is a pairwise test of the closeness of points on a phase space trajectory: points

which fall in the neighbourhood of size ε are recurrence points. Another definition of RPs

does not use such a fixed threshold ε: only the F nearest neighbours are considered to

be recurrence points. This is the fixed amount of nearest neighbours (FAN) method and

coincides with the original definition of RPs by Eckmann et al. [5]. The ratio F/N is the

recurrence point density of the RP and we denote it as εFAN = F/N .

In RPs we obtain different structures: If the phase space trajectory returns to itself and

runs close for some time we obtain diagonal lines. Vertical lines or areas indicate phase

space trajectory which remain in the same area of the phase space for some time, and single

dots indicate that the phase space trajectory heavily fluctuates. The phase space vectors

can be reconstructed with the Taken’s time delay method ~xi = (ui, ui+τ , . . . , ui+(m−1) τ ) from

one-dimensional time series ui (observation) with embedding dimension m = 2(d + 1) and

delay τ [7, 14].

To characterize the dynamics of the underlying system several measures were intro-

duced [9, 11, 17]. Here we focus on the following four measures. We denote the frequency

distribution of the lengths of diagonal lines by P (l) and that of vertical lines by P (v).
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FIG. 1: (A) Segment of the phase space trajectory of the Lorenz system [for standard parameters

r = 28, σ = 10, b = 8
3 ; 8] by using its three components and (B) its corresponding recurrence plot.

A point of the trajectory at j which falls into the neighbourhood (grey circle in (A)) of a given

point at i is considered as a recurrence point (black point on the trajectory in (A)). This is marked

with a black point in the RP at the location (i, j). A point outside the neighbourhood (small circle

in (A)) causes a white point in the RP. The radius of the neighbourhood for the RP is ε = 5.

The determinism is the amount of recurrence points forming diagonal lines with regard

to the total amount of recurrence points

DET (ε) =

∑N
l=lmin

l P (ε, l)∑N
i,j Ri,j(ε)

. (2)

Processes with stochastic behaviour cause none or very short diagonals, and thus we get low

DET . Deterministic processes cause longer diagonals and less single, isolated recurrence

points, and we get higher DET . The threshold lmin excludes the diagonal lines which are

formed by the tangential motion of the phase space trajectory. For lmin = 1 the DET = 1,

therefore lmin should be at least 2. To exclude the tangential motion, lmin can be, e. g.,

determined with the autocorrelation time [15], but it has to be taken into account that a

too large lmin can worsen the histogram P (l) and thus the reliability of the measure DET .

Diagonal structures indicate segments of the trajectory which are close to another segment

of the trajectory at different time. Thus these lines are related to the divergence of the
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trajectory segments. The average diagonal line length

L(ε) =

∑N
l=lmin

l P (ε, l)∑N
l=lmin

P (ε, l)
(3)

is the average time that two segments of the trajectory are close to each other, and can be

interpreted as the mean prediction time. Although several authors stated that the inverse

of the length of the diagonal lines correlates with the largest positive Lyapunov exponent

[e. g. 16], it is important to note that this relationship is more complex.

Analogous to the definition of the determinism (2), we define the ratio between recurrence

points forming vertical structures and the entire set of recurrence points as

LAM(ε) =

∑N
v=vmin

vP (ε, v)∑N
v=1 vP (ε, v)

, (4)

the laminarity. The computation of LAM is realized for those v that exceed a minimal

length vmin in order to decrease the influence of sojourn points. For maps, vmin = 2 is

used. LAM represents the occurrence of laminar states in the system without describing

the length of these laminar phases. If the RP consists of more single recurrence points than

vertical structures LAM decreases.

The average length of vertical structures (cp. Eq. (3)) is defined as

TT (ε) =

∑N
v=vmin

vP (ε, v)∑N
v=vmin

P (ε, v)
, (5)

and is called trapping time. With TT we measure the mean time that the system will abide

at a specific state (how long a state will be trapped). The computation also uses the minimal

length vmin as for LAM .

Note that these measures can be computed from an entire RP or in moving windows

(i. e. sub-RPs) covering the main diagonal of the RP. The latter allows us to study the

change of these measures with time, which can reveal transitions in the system. Whereas

the diagonal-wise defined measures are able to find chaos-order transitions [16], the vertical-

wise defined measures indicate chaos-chaos transitions [11].

III. ORDER PATTERNS RECURRENCE PLOTS

In (1) a recurrence is defined by spatial closeness between phase space trajectories ~xi or

embedded time series ui. Now we neglect the norm ‖ · ‖ and define a recurrence by the local
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FIG. 2: Order patterns for dimension d = 3 (tied ranks ui = ui+τ are assumed to be rare).

order structure of a trajectory. Given a one-dimensional time series (u1, . . . , ui, . . . , uN) we

start to compare d = 2 time instances and define the order patterns as

πi =

0 : ui < ui+τ

1 : ui > ui+τ

(6)

with the scaling parameter τ (tied ranks ui = ui+τ are assumed to be rare). Next, for d = 3

there are six order patterns between ui, ui+τ and ui+2 τ possible (Fig. 2). In general the

d components in ~xi = (ui, ui+τ , . . . , ui+(d−1)τ ) can form d! different patterns. On systems

with continuous distribution of the values the equality has measure zero and we neglect this.

From these order patterns we get a new symbolic time series πi and define the order patterns

recurrence plot (OPRP) as [6]

Ri,j(d) =

1 : πi = πj

0 : otherwise
i, j = 1 . . . N. (7)

The order patterns decompose the phase space ~x into d! equivalent regions and recurrence

is given if the trajectory runs throw the same region at different time. A main advantage

of this symbolic representation is the well-expressed robustness against non-stationary data.

The order patterns are invariant with respect to an arbitrary, increasing transformation of

the amplitude. A common approach to overcome the problem of a non-stationary amplitude

is the decomposition of a signal into instantaneous phase and amplitude, where only the

phase is studied. In [6] relations between phase and order patterns are represented.

Furthermore a robust complexity measure based on this symbolic dynamics was already

proposed [1] and successfully applied to epileptic seizure detection[2].
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TABLE I: Notation of the electrodes and their numbering as it is used in the figures (electrodes

26–31 are reference electrodes).

# Electrode # Electrode # Electrode # Electrode

1 F7 8 T7 15 P7 22 POZ

2 FC5 9 CP5 16 PZ 23 PO3

3 F3 10 C3 17 P3 24 CPZ

4 FZ 11 FCZ 18 CZ 25 PO4

5 F4 12 C4 19 P4

6 FC6 13 CP6 20 P8

7 F8 14 T8 21 OZ

IV. EVENT RELATED POTENTIALS

A. The Oddball experiment

The Oddball experiment studies brain potentials during a stimulus presentation. In the

present Oddball experiment accoustic stimuli were used. Test subjects were seated in front

of a monitor and had to count tones of high pitch using the cursor keys of the keyboard.

During these tests, the EEG of the subjects was recorded. The experiment was repeated

in nine blocks containing at least 30 target tones. The blocks varied in the probability

of occurrence of the higher tones from 10 to 90%. The accoustic stimuli were computer-

generated beeps of 100 ms length and of either high (1400 Hz) or low (1000 Hz) pitch. They

were presented with an interstimulus interval of 1000 ms.

The measurement of the EEG was performed with 31 electrodes/ channels (Tab. I), where

electrodes 26-31 were reference electrodes. The sample interval for the measurements was

4 ms (250 Hz).

We focus on the ERP data for an event frequency of 90% (ERP90) and 10% (ERP10).

For ERP90, a set of 40 trials and for ERP10 a set of 31 trials are measured. The averaging

of the potentials of ERP90 and ERP10 over the trials reveals the P300 ERP component,

where its amplitude is higher for ERP10 (higher surprise moment, Fig. 3) [10]. This confirms

the knowledge about this ERP, that is related on subject-internal factors like attention and

expectation instead of physical characteristics [13] and its amplitude is sensitive to novelty

7



of an event and its relevance [context updating, 3, 4].
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FIG. 3: Mean event related potentials for event frequencies of 90 % (left, 40 trials) and 10% (right,

31 trials) at selected electrodes. The P300 component is well pronounced for the frequencies of

10 %.

B. Recurrence quantification

Recurrence quantification measures were already successfully applied to ERP data [10].

In this work it has been shown that especially the measures DET , L, LAM and TT can be

used for discrimination the events on a single trial bases.

In order to uncover transitions in the brain processes during unexpected stimulation

on a single trial basis, we firstly compute common RPs and their quantification similar

as presented in [10]. The quantification is applied on moving windows of size 240 ms (60

samples) with a shifting step of 8 ms, which allows us to study the time dependance of

the recurrence measures. We use the embedding parameters m = 3 and τ = 12 ms and

a neighbourhood criterion of εFAN = 10 % (fixed amount of nearest neighbours). The

embedding parameters dimension and delay were estimated by the standard methods false

nearest neighbours and mutual information, respectively [7]. The neighbourhood criterion

of 10 % nearest neighbours was found heuristically to be reliable even for non-stationary
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data.

The RPs of the ERP90 and ERP10 data sets contain diagonal lines and extended white

areas (Fig. 4). One white band is located at the time of the stimulus. Other white bands

which are located around 250 and 400 ms, occur almost only for ERP10 data and correspond

with the P300 component. Moreover, clustered black points around 300 ms occur also only

in RPs of the ERP10 data set.

The application of the recurrence quantification measures to these ERP data discriminates

the single trials with a distinct P300 component resulting from a low surprise moment

(high frequent events) in favour of such trials with a high surprise moment (less frequent

events). In a previous study it was found that LAM is the most distinct parameter for this

discrimination [10]. In the ERP data, the LAM reveals transitions from less laminar states

to more laminar states after the occurrence of the event and a transition from more laminar

states to less laminar states after approximately 350 ms. These transitions occur around

bounded brain areas (parietal to frontal along the central axis). The comparable measures

DET and LAM as well as L and TT reveal similar results, because extended black areas

contain also a high amount of diagonal lines (Figs. 5 and 6).

Next we compute OPRPs and quantify them by using the same moving windows as for the

common RPs. We use a dimension d = 3, i. e. six order patterns and a delay of τ = 20 ms.

The OPRPs are different in comparison to the common RPs (Fig. 7). They are more

homogeneous and do not reveal such “disruption” as shown in Fig. 4. This is due to the

insensitivity of OPRPs regarding non-stationarity.

All measures gained from OPRPs reveal significant differences between ERP90 and

ERP10. For the same trial, we find a more distinct difference using OPRPs than com-

mon RPs (Fig. 8). The quantification measures for ERP10 reveal high amplitudes at ap-

proximately 300 ms after the stimulus, wheras for ERP90 they vary within their standard

deviation.

In contrast to the analysis with common RPs, the measures based on OPRPs are more

different for different channels (Figs. 6 and 9). Electrodes in the frontal-central area (FZ,

FCZ, CZ) reveal high amplitudes in DET , L, LAM and TT between 100 and 400 ms.

Electrodes in the right frontal to parietal area (F4, C4, CP6, P4, PO4) reveal high amplitudes

in these measures around 300 to 400 ms after the stimulus.
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FIG. 4: Recurrence plots (RPs) for the ERP90 and ERP10 measured at the central-parietal elec-

trode (CPZ). For the ERP10, more cluster of recurrence points occur around 300ms.

V. CONCLUSIONS

From these results we can infer that the application of order patterns is more appropri-

ate in order to study event related potentials on a single trial basis. In comparison with

the common recurrence plots, the transition to order patterns has the advantage to reveal

more significantly the P300 component and, moreover, differentiates better between single

electrodes.

As already found in a previous work, the P300 component is related with specific chaos-

chaos transitions where laminar states occur [10]. These transitions can also be detected

with order patterns. Using OPRPs, these transitions can be localized in the frontal-central

and slightly right frontal to parietal regions.

The reliability of this method is currently tested by using EEG data of linguistic experi-

ments. A further improvement of this approach could be possible by using a spatio-temporal

approach for the reconstruction of the phase space trajectory.
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FIG. 5: RQA measures for selected single trials and the central-parietal electrode (solid line). The

trial-averaged RQA measures for the same electrode is shown with a dashed line (the light grey

band marks the 95 % significance interval).
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FIG. 6: RQA measures for the same trials as in Fig. 5, but shown for all electrodes.
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FIG. 7: Order patterns recurrence plots (OPRPs) for the ERP90 and ERP10 measured at the

central-parietal electrode (CPZ). Their appearance differ from those of common recurrence plots

(Fig. 4)
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