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Side-Channel Attacks

B Cryptographic primitives are designed to be finally executed on a physical system.

B The physical characteristics of the computing platform produce side effects depending on
the processed data

◦ Power consumption ◦ Electromagnetic emanations ◦ Time execution ◦ Sound ...

B One can measure these side effects to get information on the processed values during
sensitive operations

B Using an appropriate leakage model, one can recover the secrets involved in calculations
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Selection Functions

B Differential Power/Electromagnetic analyses target an intermediate state y which depends
on a known input x and a secret k.

B This value is defined by a selection function ϕ(x, k) = y .

B High non-linearity is a valuable property as it ensures a good distinguishability between
correct and incorrect key guesses.
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The ChaCha Family of Stream Ciphers

B ChaCha is a family of stream ciphers introduced by Daniel J. Bernstein in 2008.

B ChaCha is based on Salsa20 (eSTREAM portfolio) while improving diffusion without perfor-
mance hit.

B ChaCha20 has been widely adopted in practice

◦ Android phones (ChaCha20-Poly1305 AEAD used in TLS with Chrome)

◦ Apple HomeKit for IoT devices (ChaCha20-Poly1305 AEAD with HKDF-SHA-512 derived keys)

◦ Linux kernel 4.8+ (/dev/urandom based on ChaCha20)

◦ OpenBSD (ChaCha20 now replaces RC4 for pseudo-random number generator)

◦ Numerous security protocols (TLS, SSH, IPsec, ...)
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How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code
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Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7
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Practical experiments

B All practical experiments were done on an ARM Cortex-M3
clocked at 24MHz using

◦ Langer HF-U 5 near-field probe (30 MHz - 3 GHz)
◦ Langer PA 303 BNC preamplifier (+ 30dB)
◦ LeCroy WaveSurfer 10 oscilloscope (10GS/s)

B Application of both attacks on two different ChaCha20
implementations

◦ OpenSSL (1.0.1f) compiled using the GNU ARM C compiler (5.06)
◦ Homemade ARM assembly

Device Under Test

(a) C compiled (b) ARM Assembly
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Assembly VS C compiled

-O0 Compilation

LDR r1 ,[sp ,#0x10]

LDR r0 ,[sp ,#0x00]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x00]

LDR r1 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r1

LSLS r1 ,r0 ,#16

LDR r2 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r2

ORR r0,r1 ,r0,LSR #16

STR r0 ,[sp ,#0x30]

LDR r1 ,[sp ,#0x30]

LDR r0 ,[sp ,#0x20]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x20]

LDR r1 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r1

LSLS r1 ,r0 ,#12

LDR r2 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r2

ORR r0,r1 ,r0,LSR #20

STR r0 ,[sp ,#0x10]

...

-O3 Compilation

LDR r1 ,[sp ,#0x10]

LDR r0 ,[sp ,#0x00]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x00]

LDR r1 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r1

ROR r0,r0 ,#16

STR r0 ,[sp ,#0x30]

LDR r1 ,[sp ,#0x30]

LDR r0 ,[sp ,#0x20]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x20]

LDR r1 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r1

ROR r0,r0 ,#20

STR r0 ,[sp ,#0x10]

...

ARM Assembly

LDR r1, [r0]

LDR r2, [r0 , #16]

LDR r3, [r0 , #32]

LDR r4, [r0 , #48]

ADD r1, r1, r2

EOR r4, r4, r1

ROR r4, r4, #16

ADD r3, r3, r4

EOR r2, r2, r3

ROR r2, r2, #20

ADD r1, r1, r2

STR r1, [r0]

EOR r4, r4, r1

ROR r4, r4, #24

STR r4, [r0 , #48]

ADD r3, r3, r4

STR r3, [r0 , #32]

EOR r2, r2, r3

ROR r2, r2, #25

STR r2, [r0 , #16]
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Information Leakage & Implementation Aspects

B Load/store architectures divide instructions into
2 categories

◦ Memory accesses
◦ Arithmetic Logic Unit (ALU) operations

B When a CPU loads values from RAM to
registers

◦ The memory address is placed on the address bus
◦ The data contained at the address is moved to the

data bus
◦ The data is transferred into a register

B When a CPU performs ALU operations

◦ The operand registers’ content are transferred to
the ALU

◦ The ALU performs the calculation and places the
result in the output register

Is it easier to exploit leakages in relation to memory instructions?
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Focusing on Memory Instructions

B Focusing on memory accesses imply to analyze the whole QR

B The simplest selection function is defined by focusing the first STR instruction

ϕ1 (noncei , ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16� ki+4 ⊕ ki ≪ 12� k̃i

where k̃i = ki � constanti

B ϕ1 implies a side-channel attack on 2 key words at once (i.e. |K| = 264) ⇒ undoable in
practice!
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Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]

B Targeting n bits of y = ϕ1(noncei , ki ‖ ki+4) does not lead to a complexity equal to 22n

B The key search space depends on the windows’ size n

|K| =


24n, if n ≤ 4

23n+4, if 4 ≤ n ≤ 12

22n+16, if 13 ≤ n ≤ 16

2n+32, otherwise

B ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃A

i �n kB
i+4 ⊕ kB

i �n k̃C
i

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8
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Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]
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Focusing on the QR

B We performed software simulations using the Hamming Weight model (without any
additional noise) and random nonces

B As expected, the right key matches with the highest coefficient but others too ⇒ collisions!

Proposition

An attack on ϕ2,n returns up to n · 2n+2 collisions.

Key hypotheses
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Focusing on the QR

B On top of collisions, ϕ2,n is a victim of carry propagations

B The attack should be run twice: with and without taking the carry into consideration

ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃Ai �n kBi+4 ⊕ kBi �n k̃Ci
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y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8
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Benefits of the Inverse Quarter Round

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕ = c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

IQR(a,b,c,d) pseudo code

B The simplest selection function is defined by

ϕ3

(
b ‖ c ‖ d̃i , kb ‖ kc

)
=
(
b � kb ≫ 7

)
⊕
(
c � kc ≫ 12

)
⊕
(
c � kc � d̃i

)
where d̃i = di � noncei

B a does not impact the update of b

B The probability p of a carry propagation can be estimated

p = P
(
k

[0,x[
b > b[0,x[

)
=

2x −
(
b[0,x[ + 1

)
2x
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Benefits of the Inverse Quarter Round

B Discarding rotations results in

ϕ4,n

(
b ‖ c ‖ d̃i , kA

b ‖ k
B
c ‖ k

C
c

)
=
(
bA �n kA

b

)
⊕
(
cB �n kB

c

)
⊕
(
cC �n kC

c �n d̃C
i

)

B Smaller key search space than ϕ2,n

|K| =


23n, if n ≤ 12

22n+12, if 12 ≤ n ≤ 20

2n+32, otherwise

kc

kb

y
A B C

≫ 7 ≫ 12

D&C approach on the ChaCha IQR, n = 8
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Benefits of the Inverse Quarter Round

B Carries were taken into account if p ≥ 3
4

B Much less collisions than ϕ2,n

Proposition

An attack on ϕ4,n returns 4 collisions.
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Bricklayer Attack

B Sequential approach

B Taking advantage of windows previously recovered instead of executing attacks in parallel

B The carry estimation is only necessary during the first attack ⇒ especially interesting for
ϕ2,n

B Collision bits’ positions are changed at each attack ⇒ some collisions cancelled

B In the case of ϕ4,n, collisions only depends on MSBs ⇒ the bricklayer approach allows the
correct collision to stand out
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Bricklayer Attack Overview

kckb

31 4 0202431 11 7 0

31 8 0202831 15 7 0

31 12 02031 19 7 0

31 16 02031 23 7 0

31 16 031 27 7 0

31 16 031 27 7 0

31 031 0

targeted bits collisions fully recovered bits

Bricklayer attack example on IQR
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Practical Experiments
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Figure: Bricklayer attack against k2 and k7
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Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram
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Masking ARX Designs

B Blinding processed values x using random masks r ⇒ impossible to predict intermediate
values

B ARX designs need both boolean (x′ = x ⊕ r) and arithmetic (x′ = x � r) masking

B Two approaches

◦ Switch from one masking scheme to the other
◦ Perform additions on the masked values

B Boolean-to-arithmetic conversions are cheap while arithmetic-to-boolean are very heavy

B Secure adders usually rely on arithmetic to boolean conversions ⇒ same complexity

Time Penalty factor

ChaCha20 unmasked 4 380 1
ChaCha20 with Karroumi et al. SecAdd [3] 121 618 28
ChaCha20 with Coron et al. SecAdd [1] 93 993 22

Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on an ARM Cortex-M3
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Conclusion & Perspectives

Conlusions

B ARX designs remain vulnerable to
power/electromagnetic side-channel

B Our practical setup was able to exploit
memory accesses only

B Introduced the Bricklayer attack with
simulated & practical measurements

B Harder to attack the QR than its
reverse function

Open Questions

B How could we exploit ALU
operations? Is decapping necessary?

B Can we use these properties to mask a
subset of instructions?

B Is it possible to implement ChaCha20
in a secure way with reasonable
performances?

22 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017



Conclusion & Perspectives

Conlusions

B ARX designs remain vulnerable to
power/electromagnetic side-channel

B Our practical setup was able to exploit
memory accesses only

B Introduced the Bricklayer attack with
simulated & practical measurements

B Harder to attack the QR than its
reverse function

Open Questions

B How could we exploit ALU
operations? Is decapping necessary?

B Can we use these properties to mask a
subset of instructions?

B Is it possible to implement ChaCha20
in a secure way with reasonable
performances?

22 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017



References
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Thank you for your attention!

Questions?
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