
Bricklayer Attack: A Side-Channel Analysis on the
ChaCha Quarter Round

Alexandre Adomnicai 1,3 Jacques J.A. Fournier 2 Laurent Masson 1

1Trusted Objects

2CEA-Leti

3EMSE

INDOCRYPT 2017

Chennai, December 13th

Side-Channel Attacks

B Cryptographic primitives are designed to be finally executed on a physical system.

B The physical characteristics of the computing platform produce side effects depending on
the processed data

◦ Power consumption ◦ Electromagnetic emanations ◦ Time execution ◦ Sound ...

B One can measure these side effects to get information on the processed values during
sensitive operations

B Using an appropriate leakage model, one can recover the secrets involved in calculations

P
la

in
te

xt
s

C
ip

he
rt

ex
ts

D
ata

acquisition

2 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Side-Channel Attacks

B Cryptographic primitives are designed to be finally executed on a physical system.

B The physical characteristics of the computing platform produce side effects depending on
the processed data

◦ Power consumption ◦ Electromagnetic emanations ◦ Time execution ◦ Sound ...

B One can measure these side effects to get information on the processed values during
sensitive operations

B Using an appropriate leakage model, one can recover the secrets involved in calculations

P
la

in
te

xt
s

C
ip

he
rt

ex
ts

D
ata

acquisition

2 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Selection Functions

B Differential Power/Electromagnetic analyses target an intermediate state y which depends
on a known input x and a secret k.

B This value is defined by a selection function ϕ(x, k) = y .

B High non-linearity is a valuable property as it ensures a good distinguishability between
correct and incorrect key guesses.

0 50 100 150 200 250

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ϕ(x, k) = x ⊕ k

0 50 100 150 200 250
-0.5

0

0.5

1

ϕ(x, k) = x � k

0 50 100 150 200 250
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ϕ(x, k) = AESSbox(x ⊕ k)

Simulation of Correlation Power Analyses (CPA) in the Hamming Weight model

3 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Selection Functions

B Differential Power/Electromagnetic analyses target an intermediate state y which depends
on a known input x and a secret k.

B This value is defined by a selection function ϕ(x, k) = y .

B High non-linearity is a valuable property as it ensures a good distinguishability between
correct and incorrect key guesses.

0 50 100 150 200 250

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ϕ(x, k) = x ⊕ k

0 50 100 150 200 250
-0.5

0

0.5

1

ϕ(x, k) = x � k

0 50 100 150 200 250
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ϕ(x, k) = AESSbox(x ⊕ k)

Simulation of Correlation Power Analyses (CPA) in the Hamming Weight model

3 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

The ChaCha Family of Stream Ciphers

B ChaCha is a family of stream ciphers introduced by Daniel J. Bernstein in 2008.

B ChaCha is based on Salsa20 (eSTREAM portfolio) while improving diffusion without perfor-
mance hit.

B ChaCha20 has been widely adopted in practice

◦ Android phones (ChaCha20-Poly1305 AEAD used in TLS with Chrome)

◦ Apple HomeKit for IoT devices (ChaCha20-Poly1305 AEAD with HKDF-SHA-512 derived keys)

◦ Linux kernel 4.8+ (/dev/urandom based on ChaCha20)

◦ OpenBSD (ChaCha20 now replaces RC4 for pseudo-random number generator)

◦ Numerous security protocols (TLS, SSH, IPsec, ...)

4 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

The ChaCha Family of Stream Ciphers

B ChaCha is a family of stream ciphers introduced by Daniel J. Bernstein in 2008.

B ChaCha is based on Salsa20 (eSTREAM portfolio) while improving diffusion without perfor-
mance hit.

B ChaCha20 has been widely adopted in practice

◦ Android phones (ChaCha20-Poly1305 AEAD used in TLS with Chrome)

◦ Apple HomeKit for IoT devices (ChaCha20-Poly1305 AEAD with HKDF-SHA-512 derived keys)

◦ Linux kernel 4.8+ (/dev/urandom based on ChaCha20)

◦ OpenBSD (ChaCha20 now replaces RC4 for pseudo-random number generator)

◦ Numerous security protocols (TLS, SSH, IPsec, ...)

4 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

How to Dance the ChaCha

B Operate like an iterative 512-bit block cipher using CTR mode

B The internal state consists in a 4× 4 matrix of 32-bit elements

B Every round is divided in quarter rounds (QR)

B QRs only use Additions, Rotations and XORs: ARX-based
cipher

B If the round number is odd/even QRs are applied on
columns/diagonals

B After the last round, the keystream is obtained by adding the
current state with the initial one

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) Even round

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) Odd round

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

Initial State

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

5 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7

6 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7

6 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7

6 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7

6 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Attack published at DATE 2017

B All key words are directly involved during
the first column round.

B They interact with the only changing
variable: the nonce.

B The entire key can be recovered using
power/electromagnetic analyses [2].

B k0,1,2,3 are retrieved using ϕ(x, k) = x ⊕ k

B k4,5,6,7 are retrieved using ϕ(x, k) = x � k

‘expa’ ‘nd 3’ ‘2-by’ ‘te k’

k0 k1 k2 k3

k4 k5 k6 k7

nonce0 nonce1 nonce2 nonce3

quarter round(‘expa’, k0, k4, nonce0)

1: a← ‘expa′ � k0

2: d ← a⊕ nonce0 . k0 recovery
3: d ← d ≪ 16
4: c ← d � k4 . k0 & k4 recovery
5: b ← c ⊕ k0

6: b ← b≪ 12
7: a← a � b
8: d ← d ⊕ a
9: d ← d ≪ 8

10: c ← c � d
11: b ← b ⊕ c
12: b ← b≪ 7

6 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Practical experiments

B All practical experiments were done on an ARM Cortex-M3
clocked at 24MHz using

◦ Langer HF-U 5 near-field probe (30 MHz - 3 GHz)
◦ Langer PA 303 BNC preamplifier (+ 30dB)
◦ LeCroy WaveSurfer 10 oscilloscope (10GS/s)

B Application of both attacks on two different ChaCha20
implementations

◦ OpenSSL (1.0.1f) compiled using the GNU ARM C compiler (5.06)
◦ Homemade ARM assembly

Device Under Test

(a) C compiled (b) ARM Assembly

7 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Practical experiments

B All practical experiments were done on an ARM Cortex-M3
clocked at 24MHz using

◦ Langer HF-U 5 near-field probe (30 MHz - 3 GHz)
◦ Langer PA 303 BNC preamplifier (+ 30dB)
◦ LeCroy WaveSurfer 10 oscilloscope (10GS/s)

B Application of both attacks on two different ChaCha20
implementations

◦ OpenSSL (1.0.1f) compiled using the GNU ARM C compiler (5.06)
◦ Homemade ARM assembly

Device Under Test

(a) C compiled (b) ARM Assembly

7 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Assembly VS C compiled

-O0 Compilation

LDR r1 ,[sp ,#0x10]

LDR r0 ,[sp ,#0x00]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x00]

LDR r1 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r1

LSLS r1 ,r0 ,#16

LDR r2 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r2

ORR r0,r1 ,r0,LSR #16

STR r0 ,[sp ,#0x30]

LDR r1 ,[sp ,#0x30]

LDR r0 ,[sp ,#0x20]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x20]

LDR r1 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r1

LSLS r1 ,r0 ,#12

LDR r2 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r2

ORR r0,r1 ,r0,LSR #20

STR r0 ,[sp ,#0x10]

...

-O3 Compilation

LDR r1 ,[sp ,#0x10]

LDR r0 ,[sp ,#0x00]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x00]

LDR r1 ,[sp ,#0x00]

LDR r0 ,[sp ,#0x30]

EORS r0 ,r0,r1

ROR r0,r0 ,#16

STR r0 ,[sp ,#0x30]

LDR r1 ,[sp ,#0x30]

LDR r0 ,[sp ,#0x20]

ADD r0,r0 ,r1

STR r0 ,[sp ,#0x20]

LDR r1 ,[sp ,#0x20]

LDR r0 ,[sp ,#0x10]

EORS r0 ,r0,r1

ROR r0,r0 ,#20

STR r0 ,[sp ,#0x10]

...

ARM Assembly

LDR r1, [r0]

LDR r2, [r0 , #16]

LDR r3, [r0 , #32]

LDR r4, [r0 , #48]

ADD r1, r1, r2

EOR r4, r4, r1

ROR r4, r4, #16

ADD r3, r3, r4

EOR r2, r2, r3

ROR r2, r2, #20

ADD r1, r1, r2

STR r1, [r0]

EOR r4, r4, r1

ROR r4, r4, #24

STR r4, [r0 , #48]

ADD r3, r3, r4

STR r3, [r0 , #32]

EOR r2, r2, r3

ROR r2, r2, #25

STR r2, [r0 , #16]

8 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Information Leakage & Implementation Aspects

B Load/store architectures divide instructions into
2 categories

◦ Memory accesses
◦ Arithmetic Logic Unit (ALU) operations

B When a CPU loads values from RAM to
registers

◦ The memory address is placed on the address bus
◦ The data contained at the address is moved to the

data bus
◦ The data is transferred into a register

B When a CPU performs ALU operations

◦ The operand registers’ content are transferred to
the ALU

◦ The ALU performs the calculation and places the
result in the output register

Is it easier to exploit leakages in relation to memory instructions?

9 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Information Leakage & Implementation Aspects

B Load/store architectures divide instructions into
2 categories

◦ Memory accesses
◦ Arithmetic Logic Unit (ALU) operations

B When a CPU loads values from RAM to
registers

◦ The memory address is placed on the address bus
◦ The data contained at the address is moved to the

data bus
◦ The data is transferred into a register

B When a CPU performs ALU operations

◦ The operand registers’ content are transferred to
the ALU

◦ The ALU performs the calculation and places the
result in the output register

Is it easier to exploit leakages in relation to memory instructions?

9 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Information Leakage & Implementation Aspects

B Load/store architectures divide instructions into
2 categories

◦ Memory accesses
◦ Arithmetic Logic Unit (ALU) operations

B When a CPU loads values from RAM to
registers

◦ The memory address is placed on the address bus
◦ The data contained at the address is moved to the

data bus
◦ The data is transferred into a register

B When a CPU performs ALU operations

◦ The operand registers’ content are transferred to
the ALU

◦ The ALU performs the calculation and places the
result in the output register

Is it easier to exploit leakages in relation to memory instructions?

9 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on Memory Instructions

B Focusing on memory accesses imply to analyze the whole QR

B The simplest selection function is defined by focusing the first STR instruction

ϕ1 (noncei , ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16� ki+4 ⊕ ki ≪ 12� k̃i

where k̃i = ki � constanti

B ϕ1 implies a side-channel attack on 2 key words at once (i.e. |K| = 264) ⇒ undoable in
practice!

10 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on Memory Instructions

B Focusing on memory accesses imply to analyze the whole QR

B The simplest selection function is defined by focusing the first STR instruction

ϕ1 (noncei , ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16� ki+4 ⊕ ki ≪ 12� k̃i

where k̃i = ki � constanti

B ϕ1 implies a side-channel attack on 2 key words at once (i.e. |K| = 264) ⇒ undoable in
practice!

10 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on Memory Instructions

B Focusing on memory accesses imply to analyze the whole QR

B The simplest selection function is defined by focusing the first STR instruction

ϕ1 (noncei , ki ‖ ki+4) = noncei ⊕ k̃i ≪ 16� ki+4 ⊕ ki ≪ 12� k̃i

where k̃i = ki � constanti

B ϕ1 implies a side-channel attack on 2 key words at once (i.e. |K| = 264) ⇒ undoable in
practice!

10 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]

B Targeting n bits of y = ϕ1(noncei , ki ‖ ki+4) does not lead to a complexity equal to 22n

B The key search space depends on the windows’ size n

|K| =


24n, if n ≤ 4

23n+4, if 4 ≤ n ≤ 12

22n+16, if 13 ≤ n ≤ 16

2n+32, otherwise

B ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃A

i �n kB
i+4 ⊕ kB

i �n k̃C
i

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

11 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]

B Targeting n bits of y = ϕ1(noncei , ki ‖ ki+4) does not lead to a complexity equal to 22n

B The key search space depends on the windows’ size n

|K| =


24n, if n ≤ 4

23n+4, if 4 ≤ n ≤ 12

22n+16, if 13 ≤ n ≤ 16

2n+32, otherwise

B ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃A

i �n kB
i+4 ⊕ kB

i �n k̃C
i

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

11 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]

B Targeting n bits of y = ϕ1(noncei , ki ‖ ki+4) does not lead to a complexity equal to 22n

B The key search space depends on the windows’ size n

|K| =


24n, if n ≤ 4

23n+4, if 4 ≤ n ≤ 12

22n+16, if 13 ≤ n ≤ 16

2n+32, otherwise

B ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃A

i �n kB
i+4 ⊕ kB

i �n k̃C
i

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

11 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Divide & Conquer

B It has been proved there is still a correlation when predicting a subpart of the word [4]

B Targeting n bits of y = ϕ1(noncei , ki ‖ ki+4) does not lead to a complexity equal to 22n

B The key search space depends on the windows’ size n

|K| =


24n, if n ≤ 4

23n+4, if 4 ≤ n ≤ 12

22n+16, if 13 ≤ n ≤ 16

2n+32, otherwise

B ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃A

i �n kB
i+4 ⊕ kB

i �n k̃C
i

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

11 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on the QR

B We performed software simulations using the Hamming Weight model (without any
additional noise) and random nonces

B As expected, the right key matches with the highest coefficient but others too ⇒ collisions!

Proposition

An attack on ϕ2,n returns up to n · 2n+2 collisions.

Key hypotheses
0 50 100 150 200 250 300

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Attack simulation on ϕ2,2

12 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on the QR

B We performed software simulations using the Hamming Weight model (without any
additional noise) and random nonces

B As expected, the right key matches with the highest coefficient but others too ⇒ collisions!

Proposition

An attack on ϕ2,n returns up to n · 2n+2 collisions.

Key hypotheses
0 50 100 150 200 250 300

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Attack simulation on ϕ2,2

12 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on the QR

B We performed software simulations using the Hamming Weight model (without any
additional noise) and random nonces

B As expected, the right key matches with the highest coefficient but others too ⇒ collisions!

Proposition

An attack on ϕ2,n returns up to n · 2n+2 collisions.

Key hypotheses
0 50 100 150 200 250 300

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Attack simulation on ϕ2,2

12 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on the QR

B On top of collisions, ϕ2,n is a victim of carry propagations

B The attack should be run twice: with and without taking the carry into consideration

ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃Ai �n kBi+4 ⊕ kBi �n k̃Ci

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

13 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Focusing on the QR

B On top of collisions, ϕ2,n is a victim of carry propagations

B The attack should be run twice: with and without taking the carry into consideration

ϕ2,n

(
noncei , k̃

A
i ‖ k

B
i ‖ k

B
i+4 ‖ k̃

C
i

)
= nonceAi ⊕ k̃Ai �n kBi+4 ⊕ kBi �n k̃Ci

ki+4

ki

k̃i

y
A B C

≪ 16 ≪ 12

D&C approach on the ChaCha QR, n = 8

13 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕ = c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

IQR(a,b,c,d) pseudo code

B The simplest selection function is defined by

ϕ3

(
b ‖ c ‖ d̃i , kb ‖ kc

)
=
(
b � kb ≫ 7

)
⊕
(
c � kc ≫ 12

)
⊕
(
c � kc � d̃i

)
where d̃i = di � noncei

B a does not impact the update of b

B The probability p of a carry propagation can be estimated

p = P
(
k

[0,x[
b > b[0,x[

)
=

2x −
(
b[0,x[+ 1

)
2x

14 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕ = c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

IQR(a,b,c,d) pseudo code

B The simplest selection function is defined by

ϕ3

(
b ‖ c ‖ d̃i , kb ‖ kc

)
=
(
b � kb ≫ 7

)
⊕
(
c � kc ≫ 12

)
⊕
(
c � kc � d̃i

)
where d̃i = di � noncei

B a does not impact the update of b

B The probability p of a carry propagation can be estimated

p = P
(
k

[0,x[
b > b[0,x[

)
=

2x −
(
b[0,x[+ 1

)
2x

14 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕ = c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

IQR(a,b,c,d) pseudo code

B The simplest selection function is defined by

ϕ3

(
b ‖ c ‖ d̃i , kb ‖ kc

)
=
(
b � kb ≫ 7

)
⊕
(
c � kc ≫ 12

)
⊕
(
c � kc � d̃i

)
where d̃i = di � noncei

B a does not impact the update of b

B The probability p of a carry propagation can be estimated

p = P
(
k

[0,x[
b > b[0,x[

)
=

2x −
(
b[0,x[+ 1

)
2x

14 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

a �= b; d ⊕= a; d ≪= 16;

c �= d; b ⊕= c; b ≪= 12;

a �= b; d ⊕= a; d ≪= 8;

c �= d; b ⊕= c; b ≪= 7;

QR(a,b,c,d) pseudo code

b ≫= 7; b ⊕= c; c �= d;

d ≫= 8; d ⊕= a; a �= b;

b ≫= 12; b ⊕ = c; c �= d;

d ≫= 16; d ⊕= a; a �= b;

IQR(a,b,c,d) pseudo code

B The simplest selection function is defined by

ϕ3

(
b ‖ c ‖ d̃i , kb ‖ kc

)
=
(
b � kb ≫ 7

)
⊕
(
c � kc ≫ 12

)
⊕
(
c � kc � d̃i

)
where d̃i = di � noncei

B a does not impact the update of b

B The probability p of a carry propagation can be estimated

p = P
(
k

[0,x[
b > b[0,x[

)
=

2x −
(
b[0,x[+ 1

)
2x

14 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

B Discarding rotations results in

ϕ4,n

(
b ‖ c ‖ d̃i , kA

b ‖ k
B
c ‖ k

C
c

)
=
(
bA �n kA

b

)
⊕
(
cB �n kB

c

)
⊕
(
cC �n kC

c �n d̃C
i

)

B Smaller key search space than ϕ2,n

|K| =


23n, if n ≤ 12

22n+12, if 12 ≤ n ≤ 20

2n+32, otherwise

kc

kb

y
A B C

≫ 7 ≫ 12

D&C approach on the ChaCha IQR, n = 8

15 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Benefits of the Inverse Quarter Round

B Carries were taken into account if p ≥ 3
4

B Much less collisions than ϕ2,n

Proposition

An attack on ϕ4,n returns 4 collisions.

Key hypotheses
0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Attack simulation on ϕ4,4

16 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Bricklayer Attack

B Sequential approach

B Taking advantage of windows previously recovered instead of executing attacks in parallel

B The carry estimation is only necessary during the first attack ⇒ especially interesting for
ϕ2,n

B Collision bits’ positions are changed at each attack ⇒ some collisions cancelled

B In the case of ϕ4,n, collisions only depends on MSBs ⇒ the bricklayer approach allows the
correct collision to stand out

17 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Bricklayer Attack

B Sequential approach

B Taking advantage of windows previously recovered instead of executing attacks in parallel

B The carry estimation is only necessary during the first attack ⇒ especially interesting for
ϕ2,n

B Collision bits’ positions are changed at each attack ⇒ some collisions cancelled

B In the case of ϕ4,n, collisions only depends on MSBs ⇒ the bricklayer approach allows the
correct collision to stand out

17 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Bricklayer Attack

B Sequential approach

B Taking advantage of windows previously recovered instead of executing attacks in parallel

B The carry estimation is only necessary during the first attack ⇒ especially interesting for
ϕ2,n

B Collision bits’ positions are changed at each attack ⇒ some collisions cancelled

B In the case of ϕ4,n, collisions only depends on MSBs ⇒ the bricklayer approach allows the
correct collision to stand out

17 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Bricklayer Attack Overview

kckb

31 4 0202431 11 7 0

31 8 0202831 15 7 0

31 12 02031 19 7 0

31 16 02031 23 7 0

31 16 031 27 7 0

31 16 031 27 7 0

31 031 0

targeted bits collisions fully recovered bits

Bricklayer attack example on IQR

18 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Practical Experiments

0 500 1000 1500 2000 2500

-0.05

0

0.05

0.1

0.15

κ = k23...20
7 ‖ k3...0

7 ‖ k10...7
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

0.05

0.1

0.15

κ = k27...24
7 ‖ k7...4

7 ‖ k14...11
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.05

0.1

0.15

0.2

0.25

κ = k31...28
7 ‖ k11...8

7 ‖ k18...15
2

0 100 200 300 400 500 600

0.15

0.2

0.25

0.3

κ = k15...12
7 ‖ k22...19

2

0 50 100 150 200 250 300
0.1

0.15

0.2

0.25

0.3

κ = k19...16
7 ‖ k26...23

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.2

0.3

0.4

0.5

0.6

κ = k31...27
2 ‖ k6...0

2

Figure: Bricklayer attack against k2 and k7

19 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram

20 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram

20 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram

20 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram

20 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Application on Existing Protocols

B ϕ1 requires the knowledge of nonces

B ϕ3 requires the knowledge of plaintexts + ciphertexts + nonces

B nonce0,...,4 = counter ‖ IV

B About TLS

◦ 96-bit IV is picked randomly for each session
◦ 32-bit counter is the only predictable part⇒ 64 key bits can be recovered at most
◦ Protocol-level countermeasure

B About SSH

◦ 64-bit IV defined by the packet sequence number
◦ 64-bit counter reset for each packet
◦ Possible to predict the entire nonce! ⇒ Need of dedicated countermeasures

B XChaCha construction

◦
◦ Implemented in Libsodium (≥ 1.0.12)
◦ Extend the nonce size to pick it at random
◦ The nonce is public and must be sent with the cryptogram

20 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Masking ARX Designs

B Blinding processed values x using random masks r ⇒ impossible to predict intermediate
values

B ARX designs need both boolean (x′ = x ⊕ r) and arithmetic (x′ = x � r) masking

B Two approaches

◦ Switch from one masking scheme to the other
◦ Perform additions on the masked values

B Boolean-to-arithmetic conversions are cheap while arithmetic-to-boolean are very heavy

B Secure adders usually rely on arithmetic to boolean conversions ⇒ same complexity

Time Penalty factor

ChaCha20 unmasked 4 380 1
ChaCha20 with Karroumi et al. SecAdd [3] 121 618 28
ChaCha20 with Coron et al. SecAdd [1] 93 993 22

Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on an ARM Cortex-M3

21 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Masking ARX Designs

B Blinding processed values x using random masks r ⇒ impossible to predict intermediate
values

B ARX designs need both boolean (x′ = x ⊕ r) and arithmetic (x′ = x � r) masking

B Two approaches

◦ Switch from one masking scheme to the other
◦ Perform additions on the masked values

B Boolean-to-arithmetic conversions are cheap while arithmetic-to-boolean are very heavy

B Secure adders usually rely on arithmetic to boolean conversions ⇒ same complexity

Time Penalty factor

ChaCha20 unmasked 4 380 1
ChaCha20 with Karroumi et al. SecAdd [3] 121 618 28
ChaCha20 with Coron et al. SecAdd [1] 93 993 22

Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on an ARM Cortex-M3

21 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Masking ARX Designs

B Blinding processed values x using random masks r ⇒ impossible to predict intermediate
values

B ARX designs need both boolean (x′ = x ⊕ r) and arithmetic (x′ = x � r) masking

B Two approaches

◦ Switch from one masking scheme to the other
◦ Perform additions on the masked values

B Boolean-to-arithmetic conversions are cheap while arithmetic-to-boolean are very heavy

B Secure adders usually rely on arithmetic to boolean conversions ⇒ same complexity

Time Penalty factor

ChaCha20 unmasked 4 380 1
ChaCha20 with Karroumi et al. SecAdd [3] 121 618 28
ChaCha20 with Coron et al. SecAdd [1] 93 993 22

Running time in clock cycles to encrypt a 512-bit block using ChaCha20 on an ARM Cortex-M3

21 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Conclusion & Perspectives

Conlusions

B ARX designs remain vulnerable to
power/electromagnetic side-channel

B Our practical setup was able to exploit
memory accesses only

B Introduced the Bricklayer attack with
simulated & practical measurements

B Harder to attack the QR than its
reverse function

Open Questions

B How could we exploit ALU
operations? Is decapping necessary?

B Can we use these properties to mask a
subset of instructions?

B Is it possible to implement ChaCha20
in a secure way with reasonable
performances?

22 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Conclusion & Perspectives

Conlusions

B ARX designs remain vulnerable to
power/electromagnetic side-channel

B Our practical setup was able to exploit
memory accesses only

B Introduced the Bricklayer attack with
simulated & practical measurements

B Harder to attack the QR than its
reverse function

Open Questions

B How could we exploit ALU
operations? Is decapping necessary?

B Can we use these properties to mask a
subset of instructions?

B Is it possible to implement ChaCha20
in a secure way with reasonable
performances?

22 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

References

Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and
Praveen Kumar Vadnala.
Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity, pages
130–149.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

B. Jungk and S. Bhasin.
Don’t fall into a trap: Physical side-channel analysis of ChaCha20-Poly1305.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2017.

Mohamed Karroumi, Benjamin Richard, and Marc Joye.
Addition with Blinded Operands, pages 41–55.
Springer International Publishing, Cham, 2014.

M. Tunstall, N. Hanley, R. McEvoy, C. Whelan, C. Murphy, and W. Marnane.
Correlation Power Analysis of Large Word Sizes.

23 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

Thank you for your attention!

Questions?

24 / 24

Bricklayer Attack: A Side-Channel Analysis on the ChaCha Quarter Round - INDOCRYPT 2017

