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ABSTRACT 

Air traffic generators are widely used in the air traffic control and aeronautics industry for 

training purposes and to validate new concepts or new systems. But it is difficult for a 

machine to generate realistic trajectories and behavior for an aircraft which lead to the 

participation of many humans in the simulation to compensate. Traditional generators 

require performance data for aircrafts and heavy preparation to generate realistic 

trajectories. Our approach takes advantage of widespread flight location data to learn 

from their behavior and improve traffic generation. Combining cooperative multi-agent 

learning methods and big data we show that it is possible to design and generate a 

realistic and intelligent traffic more easily and without human intervention. 
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1 INTRODUCTION 

Simulation of air traffic is broadly used in the air traffic control world for the training of 

pilots or controllers, the validation of new functions or systems, and demonstration purposes.  

Those platforms put controllers and pilots in as-real-as-possible situations to test their 

ability to take the good decisions in real-time. For example, for a controller it might be useful 

to evaluate if he or she is able to know when to give an order to a pilot and what order to 

give. That is why the simulation has to be realistic, otherwise the tests would be meaningless. 

In this paper we will first present the state of the art of the simulation platforms, their 

limits and why a new approach is possible and needed. In the second section we will explain 

what kind of data we use and how we use them. Then we will present our approach based on 

cooperative multi-agent systems [1], our results and analysis. 

 

2 Current air traffic simulation methods 

In the real world, an aircraft has a flight plan (a list of waypoints it will overfly). But it 

never happens as planned. Events are part of an aircraft’s life: 

· the company delayed the departure time, 

· a controller intervening to prevent aircrafts from being too close to each other, 

· a controller giving permission to the pilot to use a shortcut, 

· a meteorological event forbid any aircraft to go through a certain area. 

 

The way an aircraft flies depends on a lot of variables: speed, climb rate, weight, wind … 

Current air traffic generator uses those variables to build physical models of the aircraft and, 

with the flight plan, can generate a trajectory. 

The technical specifications of those aircraft are collected [2] to be used in a kinematic 

model. Those aircrafts then follow the scenario of the simulation which is crafted by hand to 

match the specifications of the current exercise. Sadly, every simulation with the same 

trajectories will be the same because those simulated aircrafts don’t have any decision 

making abilities: they cannot adapt to a new situation the person in training could (and will) 

produce. It is possible, and that is the current way of solving this problem, to add other 

human pilots and controllers to enhance the simulation but it is a heavy and costly process. 

 
2.1 Existing platforms 

In this section we present a list of existing simulation platforms. This list is not exhaustive 

but is sufficient to grasp what kind of problem and limitations exist in the field. 

RATSG [3] is a MIT software able to generate 4D (latitude, longitude, altitude and time) 

trajectories passing by navigation points. It generates changes in trajectory, speed and other 

parameters based on the technical specifications of the aircraft and basic mechanics 

equations. It is used in real-time simulation with human in the loop and could, according to 

its authors, be used in accelerated simulation. The scenario can include complex elements 

such as the triggering of audio recordings and can force aircrafts to be in a conflicting state 

(common in training simulation). 

AirTrafficFX [4] is a real-time traffic generator for Microsoft Flight Simulator. It can 

generate in-flight traffic and specific aircraft formations. Scenarios must be very precise (the 

full flight plan has to be specified) and it needs humans to adapt to changes when running. 

eATG (enhanced Air Traffic Generator) [2] is a traffic generator developed by 

Eurocontrol using the specifications available in the BADA database. Since this database is 

completed by aircraft manufacturers themselves, it is almost always up to date and covers 
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98% of the aircrafts flying in the European airspace. Trajectories of aircrafts are computed 

based on the flight plan, the model of the aircraft using variable mass system equations. 

Humans are integrated into the simulation and that is how the system takes into account the 

changes coming from the controller. 

Modifying existing traffic is also a solution to “generate” traffic. A good example of this 

method is the one used at ACT-250 [5]. They modify recording in two different ways. First, 

they are able to increase traffic load by doing temporal compression which means reducing 

the minimum time between two planes taking off. Second, they do random time adjustments 

to flights to the time of departure of the flight. 

 
2.2 Limits of current approaches 

As we saw in the previous section, existing simulators exclusively model aircrafts based 

on their technical specifications and those specifications are not easily available. And even if 

they were, modeling the aircraft is not enough: the aircraft has a pilot who sometimes takes a 

shortcut, or goes a little faster, sometimes there are unwritten habits about how to navigate 

through a sector, and sometimes the rule is written but not available for everyone to see. 

There is much more to simulate than the aircraft: the whole environment must be simulated 

and there is no specification for that. 

Modifying existing traffic is, at least in part, a solution. The global traffic looks different 

and it might enough in some cases but trajectories are copies of existing trajectories and the 

consistency of the traffic is comprised. 

With so many actors taking decisions and so many rules it is not possible for humans to 

build a reliable model: we think learning is the way to go and we have a huge amount to go 

through to get realistic models. 

 
2.3 The EVAA approach 

We feel we can improve this process by using real flight data of many flights and during a 

large period of time. Every civilian aircraft has a transponder that broadcasts information 

such as its identifier and position and we can use that information to build a model of its 

behavior. It would be a huge improvement for the domain since it would enable users to 

make realistic simulations much more easily, more frequently and with more realism. 

We feed the learning algorithm of EVAA with real-flight data to obtain a model of how 

aircrafts behave in the sky. With this model we can create simulation where aircraft agents 

are capable of making decision based on the situation we observed during the learning. It 

means we could have virtual aircrafts flying from point A to point B without having to 

specify anything other than the actual coordinates of A and B. And then, if the scenario forces 

the aircraft to go a specific way the aircraft will adapt its trajectory and behavior in a realistic 

way. 

 

3 AUTOMATIC GENERATION OF TRAJECTORIES 

Every month there is policy changes to the air space; simulator must be capable to take 

into account those changes which means we have to be able to treat the data. We will see in 

the first subsection the amount of data that our system has to take into account. And, finally, 

we will describe the algorithm itself. 
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3.1 Data volume and format 

To power our algorithm we take multiple samples of flight data in a specific zone for a 

long period of time. Some data are very dynamic like location (latitude, longitude, altitude), 

speed, heading. They are sampled every four seconds which is a common refresh rate in this 

domain. Others are static data (unique for a single flight) like flight number, aircraft 

manufacturer and model, airline. 

A sample is a combination of static and dynamic data in the form of a tuple of variable 

where each attribute is indicative of the aircraft’s state at a specific time. We store those 

samples in a database which will be used during the offline learning phase. 

Table 1 shows the volume and velocity of those data according to several parameters. 

Table 1- Volume of data available for learning 

Zone Duration Points Flights Size (GB) 

Toulouse – Paris Orly 1 day 119 739 59 0.02 

Toulouse – Paris Orly 1 month 3 652 040 1 813 0.14 

France 1 day 16 200 790 13 675 2.41 

France 1 month 494 124 095 417 074 73.64 

World 1 day 322 374 231 80 000 55.58 

World 1 month 9 832 414 038 2 440 000 1 695.10 

The “Points” column is the number of samples made for this zone and duration. The “Flights” column is 

the number of recorded flights for this zone and duration. 

 

Since the air traffic controlled policies can be changed every month, there could be many 

differences between recordings from two consecutive months. We plan to apply our system to 

monthly data to extract behaviors and policies. 

 
3.2 Learning algorithm 

We use multi-agent learning. The main principle of multi-agent systems is to use the agent 

to have a different grasp of the problem at hand [6]. We treat the data using an approach 

based on a self-organizing multi-agent architecture [7]. The aim of our learning algorithm is 

to be able to generate easily aircraft realistic trajectories in a simulated environment. We 

want to learn how an aircraft behaves and to be able to reproduce a similar behavior. 

The recorded flight data are replayed and observed by the learning algorithm in two steps: 

· The first step is learning on a single flight. An aircraft agent observes the aircraft and 

stores relevant information thanks to point of interest agents 

· In the second step, we consider multiple trajectories; the points of interest agents 

works together to build a graph that will, in the end, represent flights behaviors. 

We describe more precisely how this process works in the following sections. 

 

Two-point trajectory 

First let’s review an example of a recording showing an aircraft going in a straight line 

from point A to point B. When the aircraft is in A the algorithm will memorize this location 

as a situation of interest (SA). We define a situation as a set of variables that represents the 

current state of the aircraft. When the aircraft finally reaches B its current situation has 

changed to SB. The system will then conclude that “an aircraft in a situation similar to A 

should aim to be in a situation similar to B”. We call this simple rule a situation vector. 

It means that the system is given a pair of item (SA, SB) where SA is the current situation 

and SB is what we want our system to predict. 

Multi-point trajectory 
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After this simple example let’s see what happens in the case of a complete trajectory of a 

single aircraft. The aircraft doesn’t fly in a straight line because it follows waypoints defined 

by air traffic control organism. Those waypoints are crossing points for aircrafts; it’s 

basically like an intersection for cars. The recording will show that the aircraft follows a 

trajectory in straight lines (segments) between waypoints, and in curved lines around 

waypoints. 

When the aircraft turns (left or right), it means that there is a situation of interest at the 

current location. A point of interest is placed here and another will be placed the next time the 

aircraft turns, defining a segment. We apply for each segment of the trajectory the algorithm 

previously described: we obtain an ordered list of the points the aircraft successively went 

through. 

From turn to situation shift detection 

We detect turns because the resulting points provide a good summary of the route used by 

the aircraft. But an aircraft moves in a three dimensional space: we have to take into account 

latitude, longitude and altitude to detect the “turns” of the aircraft. 

What about a change of speed? Or any other relevant parameter? We have to add it to the 

list of parameters that defines a situation. It is now difficult to keep calling that “turns 

detection” and we decided to call that a situation-shift detection. 

Multiple trajectories 

We described how the first step (on a single aircraft) of the algorithm works. In this 

section we will see how that information is aggregated to extract powerful and reliable 

behaviors. 

The recording can show multiple aircrafts flying, turning and crossing paths. Sometime 

they have a situation shift around the same geographical location even if their trajectories 

diverge completely. It means that in this precise location we may have to discriminate 

between multiple situation vectors. Aggregated points are created to merge those data. The 

result of our learning algorithm is a graph where each node is an aggregated point and each 

edge is a situation vector. Those vectors can are used to direct a plane from one point to 

another, creating a trajectory. 

 

4 RESULTS 

In this section we compare real trajectories to simulated trajectories. First, we show that 

the simulation give realistic and various trajectories. Then we show an example where the 

learning converges. 

 
4.1 Relevance and realism 

Figure 1 and 2 present the trajectories of recorded and simulated aircrafts going from 

Toulouse to Paris. We can see that the simulated trajectories (Figure 2) are close to the 

original one (Figure 1) we used for learning but not exactly the same. It means that we do not 

copy what we have learned, we use the graph from the learning phase (see 3.2) to obtain an 

autonomous aircraft able to decide where it should go next depending on it current situation. 
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Figure 1: raw data on which the learning was made 

 

Figure 2: simulated trajectories 

The amount of behavioral data we detected can be represented by the amount of situation 

vectors that we found and the amount of behavioral data actually learned can be represented 

by the number of aggregated points that we stored. On Figure 3 we can see that the number 

of situation vectors grows linearly with the number of aircraft in the simulation and that the 

number of aggregated point grows logarithmically and even stabilize at the end when the 

system learned all it could on the dataset. We stopped the graph at 30 aircrafts for readability 

but it is important to the number of situation vectors keep growing linearly and that the 

number of aggregated points stays constant. 

 

Figure 3 - Number of situations vector and aggregated 

points on Toulouse-Paris flights 

 

Figure 4 - Simulation duration according to the 

number of planes simulated 

4.2 Performance 

Considering the amount of data we have and how often the air traffic control policies 

change we need an algorithm with good performance. To evaluate performance we measured 

how much time the learning was taking according to the number of plane simulated. The tests 

are made on a laptop and the results are shown in Figure 4. 

There are approximately 60 planes a day on the route we studied and we learn the 

behavior of those planes in 47 minutes. It might not be fast enough if we want to apply our 

system to the full world but it is possible to apply it to a country. We can also see that the 

time to complete the simulation increase linearly with the number of plane simulated which is 

a good indication of scalability. 
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5 CONCLUSION 

We saw in the previous section that our algorithm delivered realistic behaviors for aircrafts 

in terms of trajectories and flight duration. We also noticed that the learning time increases 

linearly with the size of the data sample proving that our system is scalable. This is because 

agents work from a local point of view. It is opposed to a global approach with a global 

evaluation function that would see the sample size increase much faster. The reader can see a 

video example of the process [8] shows the different phases from recording to simulation. 

This article presents a new approach for generating smart air traffic: a traffic in which 

aircrafts don’t just fly as defined in their flight plan and don’t copy another flight. We 

generate traffic that has never been seen with very little specification necessary because 

aircraft agents are capable of automatically making decision. We saw in the state of the art 

that this is an important improvement on the existing simulations of air traffic in order to 

improve aided-decision for controllers and pilots. Then, we described the big-data element of 

our research by presenting what kind and volume of data we had to treat. Finally, we 

presented how our learning algorithm worked and presented results that showed its relevance, 

realism and scalability. 

In future works we plan to gain access to more input data like weather and to be more 

resistant to noise in the raw data. We also plan to extend the scope of what kind of behavior 

we can learn: trains, cars, humans … 
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