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Abstract—This paper presents a novel approach for 

generating new actions to learn supervised algorithms such as 

the Adaboost in the context of human action recognition. 

Indeed, the learning process requires a large amount and 

variety of data. Our motivation in this work is to reduce the 

dependency on public databases and allow learning with small 

sets of actions. We overcome the problem of non-

discriminatory action datasets for action recognition by 

enlarging a set of actions performed by different persons in 

different ways and captured by a Kinect. We present a way to 

enlarge the originally captured dataset from a Kinect device or 

from simply annotated data. This is done by combining the 

extrema of the action sequences into intervals, creating 

random points within them, and adding certain variables to 

discriminate the samples. These actions are learned and tested 

with a late fusion Adaboost using simple features and a strong 

classifier for each joint. Finally, a confidence coefficient is 

calculated and used as input of a higher level Adaboost 

classifier. 

Keywords—Action Recognition; Simulating actions; Late 

fusion Adaboost 

I.  INTRODUCTION 

The recent emergence of the Kinect, a RGB and depth 
infrared-based camera capturing technology, helped facilitate 
and improve the study of human action recognition. In 
addition to its RGB-D capability, it provides a framework for 
finding 20 landmarks on the human skeleton and an Active 
Appearance Model (AAM) face recognition, as well as 
speech recognition. 

Its usage rapidly spread across many fields: in health 
where it was used as a monitoring system in senior homes 
[1], security, health [2] [3] and of course gaming [4]. 
Furthermore, researchers benefitted of this technology to 
solve the problem of action recognition; they used the 
captured data as features by running them through 
algorithms such as Support Vector Model (SVM) [5], bag-
of-features and Adaboost. 

Of course, all of these require a large and discriminative 
action dataset for the training phase. Therefore, the same 
action should be performed by multiple persons in very 
different ways. Yet, the available online databases do not 
contain enough samples for each action and there is also the 
problem of asking people to perform a gesture or giving 

them instructions to perform actions they are not familiar 
with (e.g. not everyone will know how to perform a tennis 
smash for instance). 

In this paper, we present a training model from simulated 
actions generated from a limited number of initially captured 
ones. These simulated actions are expected to be relevant to 
train a two-level Adaboost algorithm with Mid-Level 
features extracted from the 20 joints of the human body. 

II. RELATED WORK 

Using video data, algorithms such as the SVM with the 
bag-of-features, are very common for recognizing actions; as 
an example in [6], both algorithms were used on a YouTube 
dataset with the Actlets features... Also, we state the use of 
the 3D Joint Angles [7] of a human body as features for 
training a Hidden Markov Model or even simpler algorithms 
as the Multidimensional Dynamic Time Wrapping MD-
DTW for aligning extracted features from each time instance 
[8]. Other studies have considered the depth data captured 
from a Kinect and results have been compared in the 
framework of the HARL international campaign [9]. 

The usage of the Adaboost algorithm in this contribution 
was inspired by previous work on face and action 
recognition. It showed good results with the well-known 
Viola Jones algorithm [10] and has proved to be a promising 
algorithm for its application on images with Mid-Level 
features for action recognition [11].  

The Kinect has improved the accuracy and speed of 
tracking a person’s location. Consequently, it is very easy to 
work with skeleton data; a C# code was posted online as 
Open Source for a DTW algorithm that aligns 3D 
coordinates from the Kinect’s Joints and labels simple 
gestures [12]. This method is very simple and its learning 
phase does not require a lot of training data as opposed to the 
algorithms stated above which require much larger action 
datasets. 

Many databases have been made available for public use 
for actions that have been captured by the Microsoft Kinect 
like the MSRC-12 database [13], which contains 12 gestures 
performed by 30 people. So far, the actions are simple: 
crouch, lift both arms, move hand, wear goggles, kick... The 
MSRC-12 database has been analyzed in [14] using a Hidden 
Markov Model and it has been stated that it is the largest one 



that can be found. There are other databases available like 
the MoCap BVH [15] [16] which contains captured actions 
from 40 infrared sensors that follow white spots located on a 
person wearing black. The recorded data is converted into 
BVH files with flawless joint angles data. One of the other 
databases available is the MSR [16] which has a very large 
set of actions where some of them are performed numerous 
times. These actions are not very different since they have 
been performed by a maximum of 12 persons for the largest 
database. We also state the UMD-Telluride Kinect Dataset 
[17], the G3D gaming action dataset [18] and the Cornell 
Activity Dataset 60 [19]; however, the actions are captured 
by at most 4 subjects. 

III. METHOD 

Our approach consists of capturing the data from the 
Kinect, calculating the joint angles for simulation and finally 
testing the resulting simulated actions with a late fusion 
Adaboost.  

A. Microsoft Kinect 

This infrared-based camera uses RGB-D data to 
recognize the positions of the following 20 joints: Hip 
Center, Spine, Shoulder Center, Head, Shoulder Left, Elbow 
Left, Hand Left, Wrist Left, Shoulder Right, Elbow Right, 
Hand Right, Wrist Right, Hip Left, Knee Left, Ankle Left, 
Foot Left, Hip Right, Knee Right, Ankle Right and Foot 
Right. All this data is collected using the Microsoft Kinect 
SDK which is an API available online for public usage. 

B. Capture and analysis 

By recording few actions from the Microsoft Kinect, we 
simulate and add different variables to the initially captured 
actions. To achieve this, we first test the Kinect to find if the 
initial data generates a quantifiable error when tracking the 
joints. This will be taken into account in the simulation 
model.  

To this end, we capture data from a mannequin for 
approximately 10 minutes from which, 100 frames are 
displayed in Fig. 1 and Fig. 2.  

Fig. 1. 100 frames samples for captured Kinect Hip Center joint X 

position from a manequin. This graph plots variations in the detected 

hip position along the time. The scale of the vertical axis is the meter 

 

 

Fig. 2. 100 frames samples for captured Kinect Hip Center joint Y 

position from a manequin. This graph plots variations in the detected 

hip position along the time. The scale of the vertical axis is the meter 

We conclude that the error is quantified in millimeters 
and sometimes less, and is therefore negligible. Yet, we 
should take into consideration the joints which are not 
tracked because they might be concealed or are located out 
of the camera's viewpoint. 

We will therefore add a small random error to the 
generated action, later in the simulator. 

C. Simulation algorithm 

1) Calculating the angles 
The 3D joint angles are expected to be more invariant 

and more discriminant for an action then the coordinates. We 
calculate them to be used as features to represent bone 
orientations for the connected joints. In this phase, we use 
the BVH angles from the MoCap database and also compute 
them in our custom way by considering every bone rotation 
from an initial body T position. Consequently, we obtain two 
angles for each bone as in the following algorithm: 

a) Move the joints to form a T position for the body 

while conserving the length of each bone. 

b) Calculate the angles ( x, y, z) for each joint: 

For each coordinate as i:  

Calculate next vector  

ntcurrentjoinextjoint iiniV

Calculate previous vector 

ntcurrentjoiintpreviousjo iipiV

At T position (Unit Vector) 

 
According to each orientation of the bone in T position,  

If bone is vertical: 

VVeSignedAngl pznyx ,

 



Calculate rotation Matrix Rx 

RVV xnxnx'

VVeSignedAngl pynxz ,'

If bone is horizontal:  

VVeSignedAngl pznxy ,

Calculate rotation Matrix Ry 

RVV ynyny'

VVeSignedAngl pynyz ,'

2) Aligning the local minima and local maxima of the 

action 

a) Joint Angles with DTW 

Let k={ x, y, z} the joint angles as calculated from (1) 

For every action coordinate sequence Aik, we find the set 
of local minima and maxima and form another sequence Sik. 
This step is supposed to reduce dependencies to the gesture 
dynamicity.    

We choose a reference action R randomly. 

We align all the sequences Sik with R by applying the 
DTW algorithm. As a result, we obtain a sequence of 
intervals.  

We join all of these intervals according to the frame 
number of the reference action’s extrema, and obtain a final 
sequence of intervals Iik 

3) Choosing the points 
We triple the size of every Iik to increase the diversity of 

the actions’ angles as following: 

)]LB(I -) UB(I*2 ),UB(I-)LB(I*[2=I ikikikikik

Where LB(I) and UB(I) are respectively the lower and 
the upper bounds of the interval I. 

This step is a parameter that we choose arbitrarily to add 
the diversity. The more the Iik is big, the more the simulated 
action changes from the initially captured ones. 

Then, the points are chosen arbitrary by one of the 
following three methods: 

i. For the first frame,  

We choose an angle Kr as reference. 

We get a random point inside an Iik for Kr. 

We calculate the rest of the K angles proportionally. 

We find the rest of the frames’ angles the same way. 

ii. We choose randomly the first point P0 (as in (i)) in 
Ii, then, to improve the action’s smoothness, we 
calculate the rest of the points proportionally to 
the previous interval Ii-1. 

iii. For each interval we calulate P from (i), P’ from (ii) 
and average (i) and (ii) to smooth the action. We 
calculate all the intervals the same way.   

4) Adding the variables 
We multiply the length of the sequence that we’ve 

obtained from the previous step by a random number 
between 1 and the length of the longest initial action divided 
by the length of the shortest one. 

We also add a small random error that changes the 
position of the joints and that may result from an unknown 
joint position caused by a miscalculation, an error in 
captured data as shown in III.B, or a hidden joint that does 
not appear in the Kinect’s field. 

5) Generating the action 
After obtaining the sequence of points, the action is 

generated by simple proportionality between the frames and 
the points. Finally, the 3D coordinates are calculated by 
using rotation matrices. 

D. Recognizing the actions with the Adaboost 

Our aim in this paper is to develop the simulator, 
therefore, we choose the Adaboost as a training algorithm. It 
is a simple algorithm to implement and observe and has 
proven to have given significantly positive results for face 
recognition. Moreover, we choose the Adaboost for its 
boosting capabilities which selects the most discriminate 
features out of its input, considering that an action can be 
described with features that are specific to it. 

Also, every action can be translated by the movement of 
specific joints. Therefore, we choose to run a separate 
Adaboost algorithm on each joint. This method was used 
previously in [11] and described as early and late fusion 
Adaboost. 

Thus, we compute our features from each joint, then 
calculate a confidence coefficient and use it as an input to a 
high level Adaboost for final classification. The advantage of 
our method is that we consider a very developed set of 
features. 

1) Features: 
Since we do not perform any profound study on the 

features, we use a great number of simple features as an 
input of the Adaboost calculated from both coordinates and 
joint angles. For obvious reasons, we normalize the distance 
between the Shoulder Center and Hip Center.  

All the features are stated in Table I. 

2) Joints as Mid-level features  
Since the Kinect gives us each of the joint position's 

coordinates separately, we calculate a set of features for each 



joint. We then input each joint’s low-level features in a 
separate Adaboost (Lower Level Classifier LLC).  

We calculate a confidence coefficient (cc) similar to the 
one stated in [11] by first calculating the distance between 
the feature value and the threshold which separates the 
positive and negative feature values during the Adaboost 
decision for each action. 

|| threasholduefeatureVald i

With d’ the distance of the currently tested action 

Finally, we obtain the cc as follows: 

If  )(' ii dUpBounddd  

))(/()'( iii ddUpBoundddcc

Else If )(' ii dLowBounddd  

))(/())('( iii dLowBoundddLowBounddcc

Else   cc=0
 

The confidence coefficient multiplied by the binary result 
of LLC testing is considered as a Mid-level feature and is 
used as an input for the Higher Level Classifier (HLC).  

Consequently, the HLC will choose which joint defines 
the action the best. This procedure is shown in Fig. 3 

 
Fig. 3. Adaboost late fusion 

The usage of the late fusion method permits the Adaboost 
to test each joint by itself and improve its classification 
instead of working only on the features.  

TABLE I.  FEATURES USED AS INPUT OF THE LOW LEVEL 

ADABOOST CLASSIFIER 

Feature name Variations and comments 

Velocity Mean max min 

Acceleration Mean max min 

Signed velocity Mean max min 

Feature name Variations and comments 

Signed acceleration Mean max min 

Min  

Max  

Mean  

Distance for each joint 

according to previous joint  

Mean max min, standard 

deviation 

Local maxima Min mean 

Local minima Max mean 

Extrema 

Mean max min 

Deviation  

Standard deviation 

FFT coefficients 
We consider only the 1/3 of the 

smallest Action 

a.
 Calculated features for training and as an input of the Adaboost LLC 

3) Training data 
Since the Adaboost is a binary classification algorithm, 

we train all actions, one against another, and then display the 
results of false positive and false negative that we obtain in 
Table III.  

We input 200 negative and 200 positive samples to train 
the Adaboost. Compared to the original dataset which is 
composed of some actions that have been captured  and 
others that we took from MSRC-12 dataset, we count 39 
MSRC-12 Start (flap hands in air), 39 MSRC-12 crouch, 11 
tennis backhand drive, 10 tennis forehand, 4 raise hand in air 
and 8 hand wave. The results from the captured dataset are 
displayed in Table III. 

4) Performances 
We must also note that during the process of our 

algorithm, we are not working in real-time for calculating the 
features for each action; it takes on average 10 seconds on a 
2.0 GHZ CPU to convert an action of approximately 100 
frames to our set of features except for the MSRC-12 action 
dataset, which contains sequences of 1200 frames and more, 
requiring 20 minutes for processing each. After generating 
the features, finding the action type has a negligible time. It 
would be interesting to point out that during the learning of 
the LLC the algorithm can be launched in parallel since we 
are working on each joint by itself. Therefore, the learning 
process is a lot faster than a simple sequential Adaboost 

5) Results 
We test our dataset using 38 MSRC-12 start and crouch, 

10 hand wave, 15 right shoulder up, 11 Tennis forehand and 
11 Tennis backhand. We state the False Positive (FP) and 
False Negative (FN) results in Table III. 

We note an improvement in the results as shown in Table 
III, especially for complicated gestures like tennis forehand 
drive and tennis backhand drive. Nevertheless, the False 
Negative classification increases when evaluating the 
MSRC-12 Crouch gesture, this is due to the limits of the 
simulator as explained in III.C.5 

6) Limits of the Simulator 
When simulating actions from very long ones, we note 

that the resulting actions are not very “Humanlike”. So, we 

 



ask 3 persons to identify 3 samples, chosen randomly from 
each simulated set after miming the action and stating its 
name. We obtain the results in Table II where we note, for 
each person, the number of actions that are identified 
correctly over the total number of presented actions  

Problems occur when simulating from the MSRC-12 
dataset because the gestures are repeated multiple times in 
the same action and at unknown frame positions. Hence, the 
DTW will not be able to perform a proper alignment of the 
local maxima and minima. The DTW fails to align very 
different sequences in size and content. 

Nevertheless, after running the simulator on the MSRC-
12 database which contains very large sets of data, the 
Adaboost identifies the initially captured actions. 

We also note that the tennis backhand drive was 
confused 5 times with the push object to right which 
explains the low average from the tennis captured data. 

IV. CONCLUSION 

In this paper, we introduced a method to generate 
simulated actions since there are not enough available, in 
particular, labeled skeleton joint data captured from a Kinect 
device. We have applied a late fusion Adaboost algorithm on 
joint data using very simple features. After running some 
tests, the results are satisfying; however, we aim to develop 
the late fusion algorithm to be able to recognize more 
complicated action sequences with overlaying gestures. To 
this end, we will have to segment the sequences and focus on 
the classification by developing the Adaboost, and work in 
depth on the discriminatory features. In addition, we will 
compare the results from the Adaboost to those from 
commonly used algorithms such as the SVM while enlarging 
our datasets. 

 

TABLE II.  VISUAL RESULTS FOR THE SIMULATED SAMPLES  

Action 
Original 

dataset 
Person 1 Person 2 Person 3 Avg. (%) 

Raise both arms to 

the sides 
MSRC-12 1/3 1/3 1/3 33 

Crouch MSRC-12 3/3 3/3 3/3 100 

Push object with 

right hand to the 

right 

MSRC-12 2/3 1/3 0/3 33 

Wear Goggles MSRC-12 1/3 1/3 1/3 33 

Wave hands in air MSRC-12 2/3 3/3 3/3 89 

Walk MoCap BVH 3/3 3/3 3/3 100 

Kick MoCap BVH 3/3 1/3 2/3 67 

Shoulders up Captured 3/3 3/3 3/3 100 

Tennis backhand 

drive 
Captured 2/3 2/3 2/3 67 

Tennis forehand 

drive 
Captured 3/3 2/3 2/3 78 

Surrender Captured 3/3 3/3 2/3 89 

Hand Wave Captured 3/3 3/3 3/3 100 

b.
 1/3: 1 action identified correctly from 3 actions. 

c.
 Avg: the average of the positive result from Person 1, 2 and 3 

 

TABLE III.  FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) RESULTS 

 MSRC-12 start 

(flap hands in 

air) 

MSRC-12 

crouch 

Tennis 

forehand 

drive 

Tennis 

backhand 

Right shoulder 

up 

Right hand 

wave 

 FP FN FP FN FP FN FP FN FP FN FP FN 

Captured 8.9% 12.6% 4.4% 3% 11.3% 23% 20.5% 1% 7.6% 26% 2% 4.3% 

Simulated 5.1% 2.1% 3.5% 8.6% 2.6% 1% 8% 2% 2.8% 6% 3% 4.5% 
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