
HAL Id: hal-01712556
https://hal.science/hal-01712556v1

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating actions for learning
Philippe Saade, Philippe Joly, Ali Awada

To cite this version:
Philippe Saade, Philippe Joly, Ali Awada. Simulating actions for learning. 11th International
IEEE Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics
(ECMSM 2013), Jun 2013, Toulouse, France. pp. 1-6. �hal-01712556�

https://hal.science/hal-01712556v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18863

The contribution was presented at ECMSM 2013
To link to this article URL : http://dx.doi.org/10.1109/ECMSM.2013.6648947

To cite this version : Saade, Philippe and Joly, Philippe and Awada, Ali
Simulating actions for learning. (2013) In: 11th International IEEE
Workshop of Electronics, Control, Measurement, Signals and their
application to Mechatronics (ECMSM 2013), 24 June 2013 - 26 June 2013
(Toulouse, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Simulating actions for learning

Philippe SAADE, Philippe JOLY

philippe.saade@irit.fr, philippe.joly@irit.fr

SAMOVA

UPS IRIT

118 route de Narbonne F-31062 Toulouse Cedex 9, France

Ali AWADA

Lebanese University

Hadath, Lebanon

al_awada@ul.edu.lb

Abstract—This paper presents a novel approach for

generating new actions to learn supervised algorithms such as

the Adaboost in the context of human action recognition.

Indeed, the learning process requires a large amount and

variety of data. Our motivation in this work is to reduce the

dependency on public databases and allow learning with small

sets of actions. We overcome the problem of non-

discriminatory action datasets for action recognition by

enlarging a set of actions performed by different persons in

different ways and captured by a Kinect. We present a way to

enlarge the originally captured dataset from a Kinect device or

from simply annotated data. This is done by combining the

extrema of the action sequences into intervals, creating

random points within them, and adding certain variables to

discriminate the samples. These actions are learned and tested

with a late fusion Adaboost using simple features and a strong

classifier for each joint. Finally, a confidence coefficient is

calculated and used as input of a higher level Adaboost

classifier.

Keywords—Action Recognition; Simulating actions; Late

fusion Adaboost

I. INTRODUCTION

The recent emergence of the Kinect, a RGB and depth
infrared-based camera capturing technology, helped facilitate
and improve the study of human action recognition. In
addition to its RGB-D capability, it provides a framework for
finding 20 landmarks on the human skeleton and an Active
Appearance Model (AAM) face recognition, as well as
speech recognition.

Its usage rapidly spread across many fields: in health
where it was used as a monitoring system in senior homes
[1], security, health [2] [3] and of course gaming [4].
Furthermore, researchers benefitted of this technology to
solve the problem of action recognition; they used the
captured data as features by running them through
algorithms such as Support Vector Model (SVM) [5], bag-
of-features and Adaboost.

Of course, all of these require a large and discriminative
action dataset for the training phase. Therefore, the same
action should be performed by multiple persons in very
different ways. Yet, the available online databases do not
contain enough samples for each action and there is also the
problem of asking people to perform a gesture or giving

them instructions to perform actions they are not familiar
with (e.g. not everyone will know how to perform a tennis
smash for instance).

In this paper, we present a training model from simulated
actions generated from a limited number of initially captured
ones. These simulated actions are expected to be relevant to
train a two-level Adaboost algorithm with Mid-Level
features extracted from the 20 joints of the human body.

II. RELATED WORK

Using video data, algorithms such as the SVM with the
bag-of-features, are very common for recognizing actions; as
an example in [6], both algorithms were used on a YouTube
dataset with the Actlets features... Also, we state the use of
the 3D Joint Angles [7] of a human body as features for
training a Hidden Markov Model or even simpler algorithms
as the Multidimensional Dynamic Time Wrapping MD-
DTW for aligning extracted features from each time instance
[8]. Other studies have considered the depth data captured
from a Kinect and results have been compared in the
framework of the HARL international campaign [9].

The usage of the Adaboost algorithm in this contribution
was inspired by previous work on face and action
recognition. It showed good results with the well-known
Viola Jones algorithm [10] and has proved to be a promising
algorithm for its application on images with Mid-Level
features for action recognition [11].

The Kinect has improved the accuracy and speed of
tracking a person’s location. Consequently, it is very easy to
work with skeleton data; a C# code was posted online as
Open Source for a DTW algorithm that aligns 3D
coordinates from the Kinect’s Joints and labels simple
gestures [12]. This method is very simple and its learning
phase does not require a lot of training data as opposed to the
algorithms stated above which require much larger action
datasets.

Many databases have been made available for public use
for actions that have been captured by the Microsoft Kinect
like the MSRC-12 database [13], which contains 12 gestures
performed by 30 people. So far, the actions are simple:
crouch, lift both arms, move hand, wear goggles, kick... The
MSRC-12 database has been analyzed in [14] using a Hidden
Markov Model and it has been stated that it is the largest one

that can be found. There are other databases available like
the MoCap BVH [15] [16] which contains captured actions
from 40 infrared sensors that follow white spots located on a
person wearing black. The recorded data is converted into
BVH files with flawless joint angles data. One of the other
databases available is the MSR [16] which has a very large
set of actions where some of them are performed numerous
times. These actions are not very different since they have
been performed by a maximum of 12 persons for the largest
database. We also state the UMD-Telluride Kinect Dataset
[17], the G3D gaming action dataset [18] and the Cornell
Activity Dataset 60 [19]; however, the actions are captured
by at most 4 subjects.

III. METHOD

Our approach consists of capturing the data from the
Kinect, calculating the joint angles for simulation and finally
testing the resulting simulated actions with a late fusion
Adaboost.

A. Microsoft Kinect

This infrared-based camera uses RGB-D data to
recognize the positions of the following 20 joints: Hip
Center, Spine, Shoulder Center, Head, Shoulder Left, Elbow
Left, Hand Left, Wrist Left, Shoulder Right, Elbow Right,
Hand Right, Wrist Right, Hip Left, Knee Left, Ankle Left,
Foot Left, Hip Right, Knee Right, Ankle Right and Foot
Right. All this data is collected using the Microsoft Kinect
SDK which is an API available online for public usage.

B. Capture and analysis

By recording few actions from the Microsoft Kinect, we
simulate and add different variables to the initially captured
actions. To achieve this, we first test the Kinect to find if the
initial data generates a quantifiable error when tracking the
joints. This will be taken into account in the simulation
model.

To this end, we capture data from a mannequin for
approximately 10 minutes from which, 100 frames are
displayed in Fig. 1 and Fig. 2.

Fig. 1. 100 frames samples for captured Kinect Hip Center joint X

position from a manequin. This graph plots variations in the detected

hip position along the time. The scale of the vertical axis is the meter

Fig. 2. 100 frames samples for captured Kinect Hip Center joint Y

position from a manequin. This graph plots variations in the detected

hip position along the time. The scale of the vertical axis is the meter

We conclude that the error is quantified in millimeters
and sometimes less, and is therefore negligible. Yet, we
should take into consideration the joints which are not
tracked because they might be concealed or are located out
of the camera's viewpoint.

We will therefore add a small random error to the
generated action, later in the simulator.

C. Simulation algorithm

1) Calculating the angles
The 3D joint angles are expected to be more invariant

and more discriminant for an action then the coordinates. We
calculate them to be used as features to represent bone
orientations for the connected joints. In this phase, we use
the BVH angles from the MoCap database and also compute
them in our custom way by considering every bone rotation
from an initial body T position. Consequently, we obtain two
angles for each bone as in the following algorithm:

a) Move the joints to form a T position for the body

while conserving the length of each bone.

b) Calculate the angles (x, y, z) for each joint:

For each coordinate as i:

Calculate next vector

ntcurrentjoinextjoint iiniV

Calculate previous vector

ntcurrentjoiintpreviousjo iipiV

At T position (Unit Vector)

According to each orientation of the bone in T position,

If bone is vertical:

VVeSignedAngl pznyx ,

Calculate rotation Matrix Rx

RVV xnxnx'

VVeSignedAngl pynxz ,'

If bone is horizontal:

VVeSignedAngl pznxy ,

Calculate rotation Matrix Ry

RVV ynyny'

VVeSignedAngl pynyz ,'

2) Aligning the local minima and local maxima of the

action

a) Joint Angles with DTW

Let k={ x, y, z} the joint angles as calculated from (1)

For every action coordinate sequence Aik, we find the set
of local minima and maxima and form another sequence Sik.
This step is supposed to reduce dependencies to the gesture
dynamicity.

We choose a reference action R randomly.

We align all the sequences Sik with R by applying the
DTW algorithm. As a result, we obtain a sequence of
intervals.

We join all of these intervals according to the frame
number of the reference action’s extrema, and obtain a final
sequence of intervals Iik

3) Choosing the points
We triple the size of every Iik to increase the diversity of

the actions’ angles as following:

)]LB(I -) UB(I*2),UB(I-)LB(I*[2=I ikikikikik

Where LB(I) and UB(I) are respectively the lower and
the upper bounds of the interval I.

This step is a parameter that we choose arbitrarily to add
the diversity. The more the Iik is big, the more the simulated
action changes from the initially captured ones.

Then, the points are chosen arbitrary by one of the
following three methods:

i. For the first frame,

We choose an angle Kr as reference.

We get a random point inside an Iik for Kr.

We calculate the rest of the K angles proportionally.

We find the rest of the frames’ angles the same way.

ii. We choose randomly the first point P0 (as in (i)) in
Ii, then, to improve the action’s smoothness, we
calculate the rest of the points proportionally to
the previous interval Ii-1.

iii. For each interval we calulate P from (i), P’ from (ii)
and average (i) and (ii) to smooth the action. We
calculate all the intervals the same way.

4) Adding the variables
We multiply the length of the sequence that we’ve

obtained from the previous step by a random number
between 1 and the length of the longest initial action divided
by the length of the shortest one.

We also add a small random error that changes the
position of the joints and that may result from an unknown
joint position caused by a miscalculation, an error in
captured data as shown in III.B, or a hidden joint that does
not appear in the Kinect’s field.

5) Generating the action
After obtaining the sequence of points, the action is

generated by simple proportionality between the frames and
the points. Finally, the 3D coordinates are calculated by
using rotation matrices.

D. Recognizing the actions with the Adaboost

Our aim in this paper is to develop the simulator,
therefore, we choose the Adaboost as a training algorithm. It
is a simple algorithm to implement and observe and has
proven to have given significantly positive results for face
recognition. Moreover, we choose the Adaboost for its
boosting capabilities which selects the most discriminate
features out of its input, considering that an action can be
described with features that are specific to it.

Also, every action can be translated by the movement of
specific joints. Therefore, we choose to run a separate
Adaboost algorithm on each joint. This method was used
previously in [11] and described as early and late fusion
Adaboost.

Thus, we compute our features from each joint, then
calculate a confidence coefficient and use it as an input to a
high level Adaboost for final classification. The advantage of
our method is that we consider a very developed set of
features.

1) Features:
Since we do not perform any profound study on the

features, we use a great number of simple features as an
input of the Adaboost calculated from both coordinates and
joint angles. For obvious reasons, we normalize the distance
between the Shoulder Center and Hip Center.

All the features are stated in Table I.

2) Joints as Mid-level features
Since the Kinect gives us each of the joint position's

coordinates separately, we calculate a set of features for each

joint. We then input each joint’s low-level features in a
separate Adaboost (Lower Level Classifier LLC).

We calculate a confidence coefficient (cc) similar to the
one stated in [11] by first calculating the distance between
the feature value and the threshold which separates the
positive and negative feature values during the Adaboost
decision for each action.

|| threasholduefeatureVald i

With d’ the distance of the currently tested action

Finally, we obtain the cc as follows:

If)(' ii dUpBounddd

))(/()'(iii ddUpBoundddcc

Else If)(' ii dLowBounddd

))(/())('(iii dLowBoundddLowBounddcc

Else cc=0

The confidence coefficient multiplied by the binary result
of LLC testing is considered as a Mid-level feature and is
used as an input for the Higher Level Classifier (HLC).

Consequently, the HLC will choose which joint defines
the action the best. This procedure is shown in Fig. 3

Fig. 3. Adaboost late fusion

The usage of the late fusion method permits the Adaboost
to test each joint by itself and improve its classification
instead of working only on the features.

TABLE I. FEATURES USED AS INPUT OF THE LOW LEVEL

ADABOOST CLASSIFIER

Feature name Variations and comments

Velocity Mean max min

Acceleration Mean max min

Signed velocity Mean max min

Feature name Variations and comments

Signed acceleration Mean max min

Min

Max

Mean

Distance for each joint

according to previous joint

Mean max min, standard

deviation

Local maxima Min mean

Local minima Max mean

Extrema

Mean max min

Deviation

Standard deviation

FFT coefficients
We consider only the 1/3 of the

smallest Action

a.
 Calculated features for training and as an input of the Adaboost LLC

3) Training data
Since the Adaboost is a binary classification algorithm,

we train all actions, one against another, and then display the
results of false positive and false negative that we obtain in
Table III.

We input 200 negative and 200 positive samples to train
the Adaboost. Compared to the original dataset which is
composed of some actions that have been captured and
others that we took from MSRC-12 dataset, we count 39
MSRC-12 Start (flap hands in air), 39 MSRC-12 crouch, 11
tennis backhand drive, 10 tennis forehand, 4 raise hand in air
and 8 hand wave. The results from the captured dataset are
displayed in Table III.

4) Performances
We must also note that during the process of our

algorithm, we are not working in real-time for calculating the
features for each action; it takes on average 10 seconds on a
2.0 GHZ CPU to convert an action of approximately 100
frames to our set of features except for the MSRC-12 action
dataset, which contains sequences of 1200 frames and more,
requiring 20 minutes for processing each. After generating
the features, finding the action type has a negligible time. It
would be interesting to point out that during the learning of
the LLC the algorithm can be launched in parallel since we
are working on each joint by itself. Therefore, the learning
process is a lot faster than a simple sequential Adaboost

5) Results
We test our dataset using 38 MSRC-12 start and crouch,

10 hand wave, 15 right shoulder up, 11 Tennis forehand and
11 Tennis backhand. We state the False Positive (FP) and
False Negative (FN) results in Table III.

We note an improvement in the results as shown in Table
III, especially for complicated gestures like tennis forehand
drive and tennis backhand drive. Nevertheless, the False
Negative classification increases when evaluating the
MSRC-12 Crouch gesture, this is due to the limits of the
simulator as explained in III.C.5

6) Limits of the Simulator
When simulating actions from very long ones, we note

that the resulting actions are not very “Humanlike”. So, we

ask 3 persons to identify 3 samples, chosen randomly from
each simulated set after miming the action and stating its
name. We obtain the results in Table II where we note, for
each person, the number of actions that are identified
correctly over the total number of presented actions

Problems occur when simulating from the MSRC-12
dataset because the gestures are repeated multiple times in
the same action and at unknown frame positions. Hence, the
DTW will not be able to perform a proper alignment of the
local maxima and minima. The DTW fails to align very
different sequences in size and content.

Nevertheless, after running the simulator on the MSRC-
12 database which contains very large sets of data, the
Adaboost identifies the initially captured actions.

We also note that the tennis backhand drive was
confused 5 times with the push object to right which
explains the low average from the tennis captured data.

IV. CONCLUSION

In this paper, we introduced a method to generate
simulated actions since there are not enough available, in
particular, labeled skeleton joint data captured from a Kinect
device. We have applied a late fusion Adaboost algorithm on
joint data using very simple features. After running some
tests, the results are satisfying; however, we aim to develop
the late fusion algorithm to be able to recognize more
complicated action sequences with overlaying gestures. To
this end, we will have to segment the sequences and focus on
the classification by developing the Adaboost, and work in
depth on the discriminatory features. In addition, we will
compare the results from the Adaboost to those from
commonly used algorithms such as the SVM while enlarging
our datasets.

TABLE II. VISUAL RESULTS FOR THE SIMULATED SAMPLES

Action
Original

dataset
Person 1 Person 2 Person 3 Avg. (%)

Raise both arms to

the sides
MSRC-12 1/3 1/3 1/3 33

Crouch MSRC-12 3/3 3/3 3/3 100

Push object with

right hand to the

right

MSRC-12 2/3 1/3 0/3 33

Wear Goggles MSRC-12 1/3 1/3 1/3 33

Wave hands in air MSRC-12 2/3 3/3 3/3 89

Walk MoCap BVH 3/3 3/3 3/3 100

Kick MoCap BVH 3/3 1/3 2/3 67

Shoulders up Captured 3/3 3/3 3/3 100

Tennis backhand

drive
Captured 2/3 2/3 2/3 67

Tennis forehand

drive
Captured 3/3 2/3 2/3 78

Surrender Captured 3/3 3/3 2/3 89

Hand Wave Captured 3/3 3/3 3/3 100

b.
 1/3: 1 action identified correctly from 3 actions.

c.
 Avg: the average of the positive result from Person 1, 2 and 3

TABLE III. FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) RESULTS

 MSRC-12 start

(flap hands in

air)

MSRC-12

crouch

Tennis

forehand

drive

Tennis

backhand

Right shoulder

up

Right hand

wave

 FP FN FP FN FP FN FP FN FP FN FP FN

Captured 8.9% 12.6% 4.4% 3% 11.3% 23% 20.5% 1% 7.6% 26% 2% 4.3%

Simulated 5.1% 2.1% 3.5% 8.6% 2.6% 1% 8% 2% 2.8% 6% 3% 4.5%

REFERENCES

[1] S. Winbaum, "Microsoft’s Kinect Technology Enters World of
Seniors," 12 12 2011. [Online]. Available:
http://www.retirementhomes.com/library/microsofts-kinect-
technology-enters-world-of-seniors-2/.

[2] Kinect for Windows Team, "Unique Cancer Treatment Center alex's
place Uses Kinect for Windows to Help Put Kids at Ease," Microsoft
Corporation, 15 11 2012. [Online]. Available:
http://blogs.msdn.com/b/kinectforwindows/archive/2012/11/15/uniqu
e-cancer-treatment-center-uses-kinect-for-windows-to-help-put-kids-
at-ease.aspx.

[3] C. C. Martin, D. C. Burkert, K. R. Choi, N. B. Wieczorek, P. M.
McGregor, R. A. Herrmann, and P. A. Beling, "Member, IEEE," in A
Real-time Ergonomic Monitoring System using the Microsoft Kinect,
Charlottesville, 2012.

[4] Kinect for Windows Team, "Build-A-Bear Selects Kinect for
Windows for "Store of the Future"," Microsoft Corporation, 13 12
2012. [Online]. Available:
http://blogs.msdn.com/b/kinectforwindows/archive/2012/12/13/build-
a-bear-selects-kinect-for-windows-for-quot-store-of-the-future-
quot.asp.

[5] C. Schuldt, I. Laptev, B. Caputo, Recognizing Human Actions: A
Local SVM Approach, Stockholm: Computational Vision and Active
Perception Laboratory, 2004.

[6] M. M. Ullah and I. Laptev, Actlets: A novel local representation for
human action recognition in video, France: INRIA - Willow Project,
Laboratoire d’Informatique, Ecole Normale Supérieure, 2012.

[7] Md. Z. Uddin, N. Duc Thang, J. T. Kim, and T-S. Kim, "Human
Activity Recognition Using Body Joint-Angle," ETRI, vol. 33, no. 4,
pp. 569-579, 2012.

[8] G.A. ten Holt, M.J.T. Reinders, E.A. Hendriks, Multi-Dimensional
Dynamic Time Warping for Gesture Recognition, Landbergstraat:
Delft University of Technology,, 2007.

[9] "ICPR - HARL 2012," LIRIS, INSA, CNRS, ICPR, 2012. [Online].
Available: http://liris.cnrs.fr/harl2012/.

[10] P. Viola, M. Jones, "Robust Real-time Object Detection," in Second
International workshop on statistical and computational theories of
vision – modeling, learning, computing, and sampling, Vancouver,
2001.

[11] A. Fathi and G. Mori, Action Recognition by Learning Mid-level
Motion Features, Burnaby: School of Computing Science Simon
Fraser University, 2008.

[12] G. Duncan, "Open source Kinect gesture recognition project, Kinect
DTW," 24 8 2011. [Online]. Available:
http://channel9.msdn.com/coding4fun/kinect/Open-source-Kinect-
gesture-recognition-project-Kinect-DTW.

[13] S. Fothergill and H. M. Mentis and P. Kohli and S. Nowozin,
"MSRC-12 Kinect gesture data set Microsoft Research Cambridge,"
ACM, 2012. [Online]. Available: http://research.microsoft.com/en-
us/um/cambridge/projects/msrc12/.

[14] P. Gomes, S-M. Morgens, S-R. Smith, Gesture Classification from
Kinect Data, Santa Cruz: CMPS242: Machine Learning, 2012.

[15] Carnegie Mellon University, "CMU Graphics Lab Motion Capture
Database," [Online]. Available: http://mocap.cs.cmu.edu/.

[16] Yuan, Z. Liu, Y. Wu, "MSR Action Recognition Datasets and
Codes," Microsoft Corporation, 6 2010. [Online]. Available:
http://research.microsoft.com/en-
us/um/people/zliu/actionrecorsrc/default.htm.

[17] "UMD-Telluride Kinect Dataset," [Online]. Available:
http://www.umiacs.umd.edu/research/POETICON/telluride_dataset/.

[18] "G3D: A Gaming Action Dataset," 28 5 2012. [Online]. Available:
http://dipersec.king.ac.uk/G3D/.

[19] "Personal Robotics," Cornell University, 2009. [Online]. Available:
http://pr.cs.cornell.edu/humanactivities/data.php#format.

