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Abstract

In this paper we study the link between a bipolar decision structure called BLF
(bipolar leveled framework) and the qualitative decision theory based on possibility
theory. A BLF defines the set of possible decision principles that may be used in
order to evaluate the admissibility of a given candidate. A decision principle is
a rule that relates some observations about the candidate to a given goal that
the selection of this candidate may achieve or miss. The decision principles are
ordered according to the importance of the goal they support. Oppositions to
decision principles are also described in the BLF under the form of observations
that contradict the realization of the decision principle. In order to show that this
rich and visual framework is well founded we show how the notions defined in the
BLF can be translated in terms of qualitative decision theory.

1 Introduction

One of the main challenges in the design of an intelligent system is to produce a tool able to
help people to make decisions. As recalled in [13] decision analysis is a process requiring first
to formulate the decision goals, then to identify the attributes that characterize the potential
alternatives and then decide. A standard way [10] to make this decision is to use a utility function
that evaluates the quality of each decision hence that helps to select the one that has the best
utility. This utility function should take into account uncertainty and the multi-criteria aspects
of the problem.

In the context of optimization under uncertainty, maximizing utility is equivalently seen as
minimizing cost, there are three classical criteria [9]: expected cost minimization, risk minimiza-
tion and chance constraints. Expected cost minimization is the most popular approach, it consists
in choosing the decision that minimizes the mathematical expectation of the cost. In the discrete
case, the mathematical expectation is the sum of the possible costs weighted with their respective
probabilities. Considering the decision process that minimizes the mathematical expectation, if
we repeat this process on a large enough set of worlds then it will generally tend to have a cost



approaching this expectation. However, applying this method on only one situation can lead to
have an effective cost far from the expectation. The two other approaches do not aggregate prob-
ability and utility, they manage them separately. Risk minimization [9] consists in minimizing the
probability that a cost is greater than a threshold and Chance constraints approach [5] minimizes
the cost that can appear with a given probability level. Those approaches have been extended
to the case of possibility distributions and this in a quantitative context. This paper extends the
latter approach (optimizing the utility under a given uncertainty threshold) to the case of bipolar
qualitative decision problems. Moreover, our proposal shows that chance constraints approach is
related to defeasible reasoning.

In the decision domain and more generally when dealing with uncertainty, it is convenient to
have both a compact and exception tolerant representation of information. It is the case for default
rules [11, 12] that allow us to express general principles concisely (i.e., without making explicit
all the possible exceptions). They also allow us to derive a conclusion in presence of incomplete
knowledge with the ability to revise it when more precise information is known (specificity principle
[12]). In our context, the use of default rules is convenient to express general decision principles
that may admit exceptions. Moreover, [12] has established that a default rule “generally if a then
b” corresponds to a translation in terms of constraints under a possibility distribution such that the
worlds where a∧ b holds are strictly more possible than those where a∧¬b holds. This translation
together with the use of utility levels will allow us to relate our framework to qualitative decision
theory.

In this paper we study a new representation framework for decision making, called Bipolar
Leveled Framework (BLF), which was first introduced in [1]. Indeed, it is often the case that
people evaluate possible alternatives considering positive and negative aspects separately [4]. The
BLF is a bipolar structure that enables the decision maker to visualize the attributes and goals
that are involved in the decision problem, together with their links and their importance levels. The
structure is bipolar in the sense that the goals are either positive (i.e., it is desirable to achieve that
goal) or negative (i.e., it leads to a dreaded situation). Informally, a BLF may be viewed as a kind
of qualitative utility function with some extra features: 1) the defeasible links between attributes
and goals are made explicit into what we call “decision principles”, 2) an opposition to a decision
principle, called “inhibitor”, is represented by an arc directed towards it, 3) the importance levels
of decision principles are represented by the height of their position in the structure. The aim of
this paper is to establish the link between BLFs and utility/uncertainty measures. More precisely,
we give a possibilistic reading of a BLF and conversely show how to build a BLF from a standard
qualitative decision problem.

Like a utility function, the BLF is a declarative representation with which a set of decisions
should be justified. The BLF can be established either by one person or by a group of people in
order to achieve a collaborative consensual decision. Moreover as it is often the case in practice,
the aim of the decision with a BLF is not necessarily to select a best candidate (e.g., having a
highest expected utility) but rather to ensure a choice of a convenient one, since maybe the best
candidate is not convenient at all (if all the candidates are bad). In this paper, the notion of
convenience is captured by the introduction of “admissibility statuses”. Then the use of a BLF
focuses on deciding whether a candidate is “admissible” or not: this is well adapted for “take
it or leave it” decisions when decision makers can accept more than one candidate or when the
flow of candidates is continuous over time and they want to stop the selection process at the first
acceptable candidate.



2 BLF: a structure encoding decision criteria

We consider a set C of candidates1 about which some information is available and two languages
LF (a propositional language based on a vocabulary VF ) representing information about some
features that are believed to hold for a candidate and LG (another propositional language based
on a distinct vocabulary VG) representing information about the achievement of some goals when a
candidate is selected. In the propositional languages used here, the logical connectors “or”, “and”,
“not” are denoted respectively by ∨, ∧, and ¬. A literal is a propositional symbol x or its negation
¬x, the set of literals of LG are denoted by LITG. Classical inference, logical equivalence and
contradiction are denoted respectively by |=, ≡, ⊥. We propose two distinct languages in order
to clearly differentiate beliefs (coming from observations) from desires (goals to be achieved when
selecting a candidate). In the following we denote by K a set of formulas representing features that
are believed to hold: hence K ⊆ LF is the available information. Using the inference operator |=,
the fact that a formula ϕ ∈ LF holds2 in K is written K |= ϕ.

The BLF is a structure that contains two kinds of information: decision principles and in-
hibitors. A decision principle can be viewed as a defeasible reason enabling to reach a conclusion
about the achievement of a goal. More precisely, a decision principle is a pair (ϕ, g), it represents
the default rule meaning that “if the formula ϕ is believed to hold for a candidate then the goal
g is a priori believed to be achieved by selecting this candidate”:

Definition 1 (decision principle (DP)) A decision principle p is a pair (ϕ, g) ∈ LF × LITG,
where ϕ is the reason and g the conclusion of p. P denotes the set of decision principles.

Depending on whether the achievement of its goal is wished or dreaded, a decision principle
may have either a positive or a negative polarity. Moreover some decision principles are more
important than others because their goal is more important. The decision principles are totally
ordered accordingly.

Definition 2 (polarity and importance) A function pol : VG → {⊕,⊖} gives the polarity of
a goal g ∈ VG, this function is extended to goal literals by pol(¬g) = −pol(g) with −⊕ = ⊖ and
−⊕ = ⊖. Decision principles are polarized accordingly: pol(ϕ, g) = pol(g). The set of positive
and negative goals are abbreviated ⊕ and ⊖ respectively: ⊕ = {g ∈ LITG : pol(g) = ⊕} and
⊖ = {g ∈ LITG : pol(g) = ⊖}.

LITG is totally ordered by the relation � (“less or equally important than”). Decision principles
are ordered accordingly: (ϕ, g) � (ψ, g′) iff g � g′.

The polarities and the relative importances of the goals in VG are supposed to be given by the
decision maker, e.g., he may want to avoid to select an expensive hotel (hence “expensive hotel”
can be a negative goal), while selecting a hotel where it is possible to swim can be a positive goal,
moreover he may give more importance to swim than to pay less.

A decision principle (ϕ, g) is a defeasible piece of information because sometimes there may
exist some reason ϕ′ to believe that it does not apply in the situation, this reason is called an
inhibitor.

The fact that ϕ′ inhibits a decision principle (ϕ, g) is interpreted as follows: “when the decision
maker only knows ϕ ∧ ϕ′ then he is no longer certain that g is achieved”. In that case, the
inhibition is represented with an arc towards the decision principle. The decision principles and
their inhibitors are supposed to be given by the decision maker. An interpretation in terms of
possibility theory is described in Section 3.

We are now in position to define the structure BLF.

1Candidates are also called alternatives in the literature.
2The agent’s knowledge K being considered to be certain, we write “ϕ holds” instead of “ϕ is believed to hold”.



Definition 3 (BLF) Given a set of goals VG , a BLF is a triplet (P,R, pol,�) where P is a set
of decision principles ordered3 accordingly to their goals by � and with a polarity built on pol as
defined in Definition 2, R ⊆ (LF × P) is an inhibition relation.

The four elements of the BLF are supposed to be available prior to the decision and to be
settled for future decisions as if it was a kind of utility function. A graphical representation of a
BLF is given below, it is a tripartite graph represented in three columns, the DPs with a positive
level are situated on the left column, the inhibitors are in the middle, and the DPs with a negative
polarity are situated on the right. The more important (positive and negative) DPs are in the
higher part of the graph, equally important DPs are drawn at the same horizontal level. By
convention the highest positive level is at the top left of the figure and the lowest negative level is
at the top right. The height of the inhibitors is not significant only their existence is used.

Example 1 Let us imagine an agent who wants to find an inexpensive hotel in which he can
swim. This agent would also be happy to have free drinks but it is less important for him. It
means that the set of possible goals is VG = {swim, free drinks, expensive}, with pol(swim)
= pol(free drinks) = ⊕ and pol(expensive) = ⊖ and swim ≃ expensive ≺ free drinks. The
possible pieces of information concern the following attributes: VF = {pool, indoor pool, open bar,
four star, fine weather}. The agent considers the following principles: P = {p1 = (pool,
swim), p2 = (indoor pool, swim), p3 = (open bar, free drinks), p4 = (four star, expensive)}.
When the weather is not fine then the fact that there is a pool is not sufficient to ensure that
the agent can swim, it means that there is an inhibition on p1 by ¬fine weather, i.e. R =
{(¬fine weather, p1)}:

⊕ Inhib. ⊖

p1

¬fine weather
p2

p3

p4

Note that ¬fine weather only inhibits p1, even if the conclusion of p1 is the same as the conclusion
of p2 because with an indoor pool, bad weather is not a problem for swimming.

Example 2 Let us a consider the same BLF in which the decision maker in addition has expressed
that ¬swim has a negative utility but has lower importance than swim and free drinks, swim ≃
expensive ≺ free drinks ≺ ¬swim. He has also added a DP saying that if the weather is not
fine he will not swim p5 = (¬fine weather, ¬swim), this DP is inhibited by indoor pool:

⊕ Inhib. ⊖

p1

¬fine weather

indoor poolp2

p3

p4

p5

In this new example, we can see that it is different to have a decision principle with the negation
of a goal like ¬swim in p5 = (¬fine weather,¬swim) from having an inhibition ¬fine weather
towards a DP with the goal swim, here p1 = (pool, swim). In Example 1, the utility of ¬swim
was not considered while here ¬swim has a disutility (at a lower level).

3The equivalence relation associated to � is denoted ≃ (x ≃ y ⇔ x � y and y � x) and the strict order is
denoted ≺ ( x ≺ y ⇔ x � y and not y � x).



In the following, the BLF (P,R, pod,�) is set and we show how it can be used for analyzing
the acceptability of a candidate. First, we present the available information and the notion of
instantiated BLF, called valid-BLF.

Given a candidate c ∈ C , we consider that the knowledge of the decision maker about c has been
gathered in a knowledge base Kc with Kc ⊆ LF . Given a formula ϕ describing a configuration
of features (ϕ ∈ LF ), the decision maker can have three kinds of knowledge about c: ϕ holds for
candidate c (i.e., Kc |= ϕ), or not (Kc |= ¬ϕ) or the feature ϕ is unknown for c (Kc 6|= ϕ and
Kc 6|= ¬ϕ). When there is no ambiguity about the candidate c, Kc is denoted K.

Definition 4 (K-valid-BLF) Given a base K, a K-valid-BLF is a quadruplet (PK ,RK , pol,�)
where

• PK = {(ϕ, g) ∈ P, s.t. K |= ϕ} is the set of DPs in P whose reason ϕ holds in K, called
valid-DPs.

• RK = {(ϕ, p) ∈ R, s.t. K |= ϕ} is the set of valid inhibitions according to K.

When there is no ambiguity, we simply use “valid-BLF” instead of “K-valid-BLF”. The validity
of a DP only depends on the fact wether the features that constitute its reason ϕ hold or not, it
does not depend on its goal g since the link between the reasons and the goal is given in the BLF
(hence it is no longer questionable).

Example 1 (continued): The agent has information about a hotel situated in a place where
the weather will not be fine (¬fine weather) and that has a pool (reason of p1) and an open bar
(reason of p3). The valid-BLF corresponding to what is known about this hotel is:

⊕ Inhib. ⊖

p1

¬fine weather

p3

Example 2 (continued): With the same information (¬fine weather, pool, open bar), the
valid-BLF corresponding to what is known about the hotel in the case of the BLF of Example 2 is
the following:

⊕ Inhib. ⊖

p1

¬fine weather

p3
p5

Now in the valid-BLF the principles that are not inhibited are the ones that are going to be
trusted. A goal in VG is said to be “realized” if there is a valid-DP that is not inhibited by any
valid-inhibitor.

Definition 5 (realized goal) Let g be a goal in LITG, g is realized w.r.t. a K-valid-BLF (PK ,
RK , pol, �) iff ∃(ϕ, g) ∈ PK and (ϕ, g) not inhibited w.r.t. RK .
The set of realized goals is denoted R, the positive and negative realized goals are denoted by
R
⊕ = R ∩ ⊕ and R

⊖ = R ∩ ⊖ respectively.



Example 3 In Example 1, the conclusion of p3 is the only realized goal while in Example 2 both
conclusions of p3 and p5 are realized. To summarize, the first valid-BLF has one positive realized
goal, while the second valid-BLF has a positive and a negative realized goal.

Note that we have seen two ways to encode a situation: in the first one there is no explicit
mentioning of a disutility (i.e., utility to not reach the goal of swimming) while a DP with the
negation of the goal swimming is elaborated in the second case. In the first case a positive
conclusion may be drawn while in the second case the disutility is taken into account in terms of
a negative counterpoint to the other positive aspect (the presence of an open bar).

In Section 4.2 we will explain how to use a BLF in order to make a decision. The decision
consists in saying whether or not a candidate is admissible based on the goals that are realized in
its corresponding valid-BLF.

3 Interpreting BLF principles as possibilistic default rules

In this section we show how the levels of the decision principles of a BLF can be computed when
they are viewed as defeasible rules in a possibilistic setting, and we explain how inhibitions can
be defined according to this view.

3.1 Background on possibility theory and defaults

The use of possibility theory as a basis for qualitative decision theory was introduced by Dubois
and Prade (see [7]). The idea is to define the expected pay-off u(x) of a situation x. In this theory,
it is supposed that there exists a linear ordering over the situations which gives a preference
relation � over situations s.t. x � y iff u(x) ≥ u(y). When situations are not precisely known, the
belief state about what is the actual situation is represented by a possibility distribution π. The
theory of possibility was introduced by Zadeh [16] and was further developed by Dubois and Prade
in [6]. It is well adapted for representing partial ignorance and it is qualitative in the sense that
a possibility distribution π defined on a set of situations X takes its values on a valuation scale
V where max, min and order-reversing operations are defined. However, it is usual to use some
numbers for representing this scale without losing the qualitative aspect (since the exact values of
the numbers are not meaningful, it is only their order in the scale that is taken into account). The
usual convention is to set supV = 1 and infV = 0. Writing π(x) ≤ π(x′) means that it is at least
as plausible for x′ to be the actual situation as for x to be it. π(x) = 0 means that it is impossible
that x is the actual situation, while π(x) = 1 means that x being the actual situation is seen as
unsurprising or normal. The state of total ignorance is represented by a possibility distribution
where any situation is totally possible (∀x, π(x) = 1). The conditional possibility measure denoted
Π(ϕ|ψ) is the possibility that ϕ holds in the worlds where ψ holds. It is related to the conditional
possibility distribution as follows: Π(ϕ|ψ) = maxω|=ϕ π(x|ψ).

In [8], two possibilistic utility measures are described and justified: the optimistic and pes-
simistic ones. The authors show that the utility of a decision d can be evaluated by combining the
plausibilities π(x) of the states x in which d is made and the utility u(d(x)) of the possible resulting
state d(x) after d, where u(d(x)) represents the satisfaction to be in the precise situation d(x) (it is
equal to the membership degree to the fuzzy set of preferred situations). The pessimistic criterion
has been first introduced by Whalen [14] and leads to a pessimistic utility level of a decision d

defined as follows: upes(d) = infx∈X max(1−π(x), u(d(x))). The optimistic criterion has been first
proposed by Yager [15] and is defined by: uop(d) = supx∈X min(π(x), u(d(x))).

In possibilistic decision theory, the scales for possibilities and utilities are the same, hence,
commensurable. In our proposal the commensurability of the two scales is not required: we do



not aggregate possibilities and utilities, we rather use a kind of chance constraint approach in
which they are dealt with separately.

We also need to recall some basics about handling defeasible rules in a possibilistic setting.
Indeed a decision principle (DP) represents a defeasible reason to believe that some goal is achieved.
It is a compact way to express a general rule without mentioning every exception to it. In a BLF
the exceptions to a decision principle will be inhibitors. The notion of “valid-BLF” is what makes
a BLF suitable for reasoning with incomplete information since what is known validates some DP
and inhibitors while if there is no information about some reasons of a particular DP or about an
inhibitor then it will not be present in the valid-BLF. Hence it is possible to reason with a BLF
even if we have an incomplete description of the world. This is why BLF decision principles are
closely related to default rules.

A default rule a b translates, in the possibility theory framework, into the constraint Π(a∧
b) > Π(a ∧ ¬b) which expresses that having b true is strictly more possible than having it false
when a is true [12]. Here Π is a possibility measure that evaluates how unsurprising a formula
is, where Π(ϕ) = 0 means that ϕ is bound to be false. The necessity measure is its dual defined
by N(ϕ) = 1 − Π(¬ϕ): N(ϕ) = 1 means that ϕ is bound to be true. The definition of N
from a possibility distribution π is given by: N(ϕ) = minω|=¬ϕ(1 − π(ω)), it expresses that a
formula is all the more necessary as its counter models are less plausible. Note that the constraint
Π(a ∧ b) > Π(a ∧ ¬b) is equivalent to N(a ∧ b) > 0. Hence, if we know a and we search for
a conclusion which satisfies the constraint N() > 0 then a solution is b. In this sense, decision
principles are related to chance constraints in quantitative optimization problem.

3.2 From possibilistic default rules to constraints on inhibitions and on

goal importances in a BLF

Let us first denote u(g) ∈ [0, 1] the satisfaction degree associated with a goal g which is an
evaluation of how “happy” the decision maker is when the goal g is achieved (u is also used to
express the utility of a world with u(ω) = maxg:ω|=g u(g)). The importance of a DP is only defined
from the importance of its goal (see Definition 2) hence can be based on the satisfaction degree
associated to it. The DP (ϕ, g) itself is viewed as a default rule ϕ g and induces some constraints
on the possibility measure Π as recalled in Section 3.1.

Definition 6 (Π-DP)
Given a possibility measure Π, a Π-DP p = (ϕ, g) is s.t. Π(ϕ ∧ g) > Π(ϕ ∧ ¬g).

We should now define the inhibition relation corresponding to this interpretation of decision
principles. The case that a formula ϕ′ inhibits a DP (ϕ, g) is translated by the fact that the default
rule ϕ g no longer holds in presence of ϕ∧ϕ′, i.e., N(ϕ∧ϕ′∧g) = 0. Note that, in the selection
process, taking into account only the default rules that hold is equivalent to taking into account
only the non-inhibited DP. It is in agreement with the notion of realized goal since realized goals
should appear in the conclusion of a non-inhibited default rule, in other words, a realized goal is
supported by a default rule that holds.

Definition 7 (Π− inhibition) Given a possibility measure Π, a relation R ⊆ LF × (LF , LITG)
is a Π− inhibition iff for any (ϕ′, (ϕ, g)) ∈ R,

• ϕ ∧ ϕ′ 6|= ⊥ and

• Π(ϕ ∧ ϕ′ ∧ ¬g) ≥ Π(ϕ ∧ ϕ′ ∧ g).



3.3 Example

In this section we illustrate the construction of a BLF in a context where there are solely three
positive goals associated to the decision problem. Note that the process is the same in the case of
several positive and negative goals. This process is only presented for explanation purposes, in an
application context the BLF is supposed to be directly given by the decision maker.

Let us consider that the language LF contains only three features, p (for pool), ip (for indoor
pool), fw (for fine weather), describing possible observations that may be made about a hotel.
Note that we suppose that the hotel has at most one swimming-pool either indoor or outdoor,
hence ¬ip means outdoor pool only and ip means indoor pool only. We can dispose of a possibility
distribution over the possible worlds (here the possible hotels). There are eight possible worlds
in which the goal of swimming is either achievable or not. We distinguish three sub goals: swim
outside under sunshine (s1), swim without being cold when I get out of the water (s2) and swim
anyhow (s3) with the respective utilities u(s1) = 1, u(s2) = 0.8, u(s3) = 0.2, meaning that a
world where s1 (resp. s2 and s3) is achieved has a utility of at least 1 (resp. at least 0.8 and at
least 0.2):

World ω Description Achieved goals Utility u(ω)

ω1 (p, ip, fw) {s2, s3} 0.8
ω2 (p, ip,¬fw) {s2, s3} 0.8
ω3 (p,¬ip, fw) {s1, s2, s3} 1
ω4 (p,¬ip,¬fw) {s3} 0.2
ω5 (¬p, ip, fw) impossible /
ω6 (¬p, ip,¬fw) impossible /
ω7 (¬p,¬ip, fw) ∅ 0
ω8 (¬p,¬ip,¬fw) ∅ 0

Table 1: Possible worlds with the achieved goals

Note that the worlds ω5 and ω6 are not possible since it would mean that the hotel has both
no pool and an indoor pool. The possibility distribution π over the possible worlds should be in
accordance with the following constraints on the possibility measure Π (that are supposed to be
given): Π(ip|p) = 0.5, Π(¬ip|p) = 1, Π(p) = 1, Π(¬p) = 0.8, Π(fw) = 1, Π(¬fw) = 0.6.

From this information about the preferences and the uncertainty of the worlds we are going to
define a BLF. In the first step, we build the decision principles with reasons ϕ containing only one
known feature. In order to do so, we need to compute a possibility distribution π over each world
under the knowledge of each feature given the constraints on Π. For instance, if we know that p
holds, i.e., the hotel has a pool then the most normal world is ω3 (π(ω3) = 1 and ω3 concerns a
hotel that has a pool not in-door and situated in a place where the weather is fine), it is possible
but less normal (π(ω4) = 0.6) that the hotel is in a place where the weather is not fine (ω4),
the hotel may have an indoor pool but it is less natural (π(ω1|p) = 0.5 and π(ω2|p) = 0.5), the
hotels corresponding to ω7 and ω8 are impossible given that the hotel has a pool. The possibility
distribution is entirely given in Table 2.

From Table 1 we can identify 3 importance levels in the BLF since there are 3 different degrees
of satisfaction 1, 0.8, 0.2. For each level, we can build the BLF decision principles using Definition
6.

Let us show how to compute the DPs that are the most important (corresponding to a goal of
utility 1): only the world ω3 has a utility of 1 (achievement of goal s1). Moreover Table 1 contains
all the formulas ϕ that can be built from the literals of LF (only conjunctions are considered).
Looking at the first line (i.e., ϕ = p) we check if π(ω3|p) > π(ω′|p), ∀ω′ 6= ω3, here it is the case



ω ω1 ω2 ω3 ω4 ω7 ω8

ϕ π(ω|ϕ)

p 0.5 0.5 1 0.6
¬p 1 0.6
ip 1 0.6
¬ip 1 0.6 1 0.6
fw 0.5 1 0.8
¬fw 0.5 1 0.8

p ∧ ¬ip 1 0.6
p ∧ fw 0.5 1
p ∧ ¬fw 0.5 1
¬p ∧ ¬ip 1 0.6
¬p ∧ fw 1
¬p ∧ ¬fw 1
ip ∧ fw 1
ip ∧ ¬fw 1
¬ip ∧ fw 1 0.8
¬ip ∧ ¬fw 1 0.8

p ∧ ¬ip ∧ fw 1
p ∧ ¬ip ∧ ¬fw 1

Table 2: Possibility distribution of worlds given ϕ

since π(ω3|p) = 1 and the most possible world different from ω3 is ω4 with π(ω4|p) = 0.6 in this
world ω4 s1 is not achieved. Hence Π(p ∧ s1) > Π(p ∧ ¬s1). Thus we create the Π-DP : (p, s1)
with the greatest importance. s1 is not achievable in any other world than ω3 hence we have 2
possible inhibitors, namely ip and ¬fw.

Now, the goal s1 (with utility 1) could also be explained by ¬ip which also holds in ω3. We
set ϕ = ¬ip and check if Π(¬ip∧ s1) is strictly greater than Π(¬ip∧¬s1), however they are equal.
Hence (¬ip, s1) is not a Π-DP. With the same method, the reader can check that (fw, s1) can be
created as a Π-DP with the greatest importance, it has two inhibitors ¬p and ip.

We do the same for the utility level 0.8: the goal s2 is true for the world ω1, ω2 and ω3 hence we
obtain two Π-DPs: (p, s2) and (fw, s2). They admit the same inhibitors than (p, s1) and (fw, s1).
However it is not necessary to create them since the goal s1 is better than s2. But considering a
utility level of 0.8 leads us to create (ip,s2) which does not have any inhibitor.

For the last level of utility, the level of s3, we can define the Π-DP (p, s3) with no inhibitor
(unlike the Π-DP (p, s1) that has the same reason but two inhibitions). In other words if I only
know that p holds, I have at least a satisfaction of 0.2 and at most of 1. We have also the Π-DP
(¬fw, s3) inhibited by ¬ip and ¬p. The BLF obtained is described below:

This section has brought two main results:

• Each concept of a BLF can be explained w.r.t. possibility distributions and utilities, giving
a uni-vocal interpretation to the whole BLF. This could enable a large community of people
to use this formalism.

• From a possibility distribution on worlds and utility measures on some goals, we have shown
how to build the associated BLF.

The non-inhibited DPs assure that it is strictly more possible to achieve their goal than to fail
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(p, s1) (fw, s1)

¬p

(ip, s2)

¬ip

¬fw
ip

(¬fw, s3)(p, s3)

them, this is why the decision process described in the next section is based only on the realized
goals (i.e., goals that appear in a non-inhibited DP).

4 Deciding w.r.t. a BLF

In Section 4.2, we are going to define admissibility notions of candidates based on their correspond-
ing valid BLF. These admissibility notions are useful in the context of “take or leave” decisions
where the aim is not to compare all the candidates. It is particularly adapted when we do not
have knowledge about the whole set of possible candidates. Nevertheless even if a BLF is not built
for comparing candidates directly, it enables us to assign them admissibility statuses which can
be compared. In Section 4.3, we are going to study the link between these admissibility statuses
and the multi-criteria decision rules of [3] recalled in Section 4.1.

4.1 Comparing candidates

We first have to define the levels of goals. We start by attributing levels to the goals starting from
the least important ones that are assigned a level 1 and stepping by one each time the importance
grows.

Definition 8 (levels of goals) Given a set of goals G ⊆ LITG and the relation � on G, the
levels of G are defined by induction:

• G1 = {g ∈ G : ∄g′ ∈ G s.t. g′ ≺ g}

• Gi+1 = {g ∈ G : ∄g′ ∈ G \ (
⋃i

k=1
Gk) s.t. g

′ ≺ g}

The decision rules defined in [3] by Bonnefon et al. for comparing candidates are recalled
below:

Definition 9 (order of magnitude) Given a ranking � and a set of goals G ⊆ LITG the order
of magnitude of G is OM(G) = maxg∈G{λ : g ∈ Gλ} and OM(∅) = 0.

Definition 10 (decision rules of Bonnefon et al.) Given two candidates c and c′ with their
associated realized goals R and R

′, Pareto, Bipolar Possibility and Bipolar Leximin dominance
relations (respectively denoted �Pareto, �BiPoss and �BiLexi) are defined by:

• c �Pareto c
′ iff OM(R⊕) ≥ OM(R′⊕) and OM(R⊖) ≤ OM(R′⊖)

• c �BiPoss c
′ iff OM(R⊕ ∪ R

′⊖) ≥ OM(R⊖ ∪ R
′⊕)



• c �BiLexi c
′ iff |R⊕δ | ≥ |R′⊕δ | and |R⊖δ | ≤ |R′⊖δ |

where δ = argmaxλ{|R
⊕
λ | 6= |R′⊕λ | or |R⊖λ | 6= |R′⊖λ |}

where �r stands for “is r-preferred to”.

As stated in the introduction, the aim of the use of a BLF is more about deciding whether
to select a given candidate or not than about comparing two candidates. However we are going
to show that our typology is in accordance with the classical bipolar decision rules of Definition
10, in the sense that e.g., a necessarily admissible candidate is preferred or equal to any other
candidate w.r.t. Pareto Dominance, Bipolar Possibility relation and Bipolar leximin..

4.2 Admissibility statuses of candidates

The admissibility status of a candidate c is computed from a BLF and a knowledge base Kc

describing what is known about c, its corresponding Kc-valid-BLF should be denoted 〈PKc
, RKc

,
pol, � 〉. However, when there is no ambiguity about the knowledge available, PKc

is denoted P
and RKc

is abbreviated to R.

Definition 11 (admissibility status) Given a candidate c ∈ C , Kc the knowledge about c and
a Kc-valid-BLF 〈P,R, pol,�〉, we let M = OM(R). The status of c is:
- necessarily admissible if R⊕M 6= ∅ and R

⊖
M = ∅

- possibly admissible if R⊕M 6= ∅
- indifferent if R = ∅
- possibly inadmissible if R⊖M 6= ∅
- necessarily inadmissible if R⊖M 6= ∅ and R

⊕
M = ∅

- controversial if R⊕M 6= ∅ and R
⊖
M 6= ∅

We respectively denote by Nad, Πad, Id, Π¬ad, N¬ad and Ct the set of necessarily admissible,
possibly admissible, indifferent, possibly inadmissible, necessarily inadmissible and controversial
candidates.

In other words, a necessarily admissible candidate is supported by positive principles with
goals of maximum importance that are realized (i.e., uninhibited) and all the negative goals of
the same importance do not hold. A possibly admissible candidate has at least one uninhibited
positive principle of maximum importance in its favor. An indifferent candidate4 is not concerned
by any uninhibited principle (nor positive nor negative), while a controversial candidate is both
supported and criticized by uninhibited DPs of maximum importance.

Example 4 The candidate described by the decision principles given in the valid-BLF of Ex.
1(continued) is necessarily admissible, since at the most important level where there are realized
goals (here at level 1) we have a positive realized goal (the DP p3 concluding free drinks) and
no negative realized goal. The agent can admit this hotel because he had not specified that the
impossibility to swim is a negative goal. It is also the case for Example 2 since the goal to have
free drinks has a higher importance than the negative goal ¬swim.

The definition of admissibility statuses is related to possibility theory [7], where necessarily
(resp. possibly) admissible could be understood as it is certain (resp. possible) that the candidate
is admissible. The indifferent case is linked to a lack of uninhibited (positive or negative) principles
concerning a candidate, thus an impossibility to decide. However it is not related to a standard

4Note that the indifference definition uses R and not RM .



definition of possibilistic ignorance about the admissibility of a candidate, which rather corresponds
to a controversial candidate that is both possibly admissible and inadmissible.

The following proposition5 concerns the link between the sets of candidates that are necessarily
admissible, possibly admissible, controversial, indifferent, possibly inadmissible and necessarily
inadmissible :

Proposition 1 (Inclusion and Duality)

1. Nad = Πad \Π¬ad (hence Nad ⊆ Πad)

2. N¬ad = Π¬ad \Πad (hence N¬ad ⊆ Π¬ad)

3. Ct = Πad ∩Π¬ad

4. Id = C \ (Πad ∪Π¬ad)

5. Nad = C \ (Π¬ad ∪ Id)

6. N¬ad = C \ (Πad ∪ Id).

7. C = Id ∪Πad ∪Π¬ad = Id ∪ Ct ∪Nad ∪N¬ad

We define three sets of admissibility:

• S1 = Nad, in this set, the candidates are admissible with no doubt, there are uninhibited
principles about the candidates which are all positive.

• Since there are two ways to have doubts about a candidate, namely when she is indifferent
(Id) or controversial (Ct), we define two weaker sets:

– S2a = Nad ∪ Id (i.e., S2a = C \Π¬ad). In this set, we place candidates of S1 together
with those for which no uninhibited principle is available (neither positive nor negative),

– S2b = Nad ∪Ct (i.e., S2b = Πad ). It gathers S1 together with the candidates that are
concerned by negative uninhibited principle provided that they are also concerned at
least by one positive uninhibited principle.

• S2a ∪ S2b = Id ∪ Ct ∪Nad (i.e., Πad ∪ Id = C \N¬ad). It contains also S1.

4.3 From admissibility status to comparison

We show that our admissibility statuses are consistent with the multi-criteria decision rules of
[3]. For this purpose we should transform the problem of “take or leave” decision into a problem
of classical decision, i.e., it amounts to be able to select the best candidate(s) among a set of
candidates. Hence we are going to compare several candidates w.r.t. their admissibility statuses.
For this aim, given a BLF, we should compute for each candidate c its own valid-BLF according
to what we know about its features Kc (see Definition 4).

The following Theorem establishes the well-founded-ness of the admissibility sets S1, S2a and
S2b for the rules Pareto, Biposs and BiLexi. Indeed, these sets represent two levels of preference
that are consistent with the classical rules of qualitative decision. It is consistent in the sense
that if a candidate has been evaluated as admissible in S1 then a candidate not in this set cannot
be strictly preferred to it w.r.t. Pareto, Biposs or Bilexi, it is the same for a candidate in S2a

5All the proofs of this paper can be found in [2].



(and respectively S2b) compared to a candidate outside of this set. Moreover candidates in S2a or
S2b cannot be preferred w.r.t. Pareto, Biposs or Bilexi to candidates in S1. Lastly, the sets S2a
and S2b are not distinguishable with the classical preference rules since indifferent candidates are
equally preferred to controversial ones.

Theorem 1
- For all c in Ad with Ad ∈ {S1, S2a, S2b} and for all c′ in C \Ad: c′ ⊁r c, for all r in {Pareto,
BiPoss, BiLexi}
- For all c in S1 and for all c′ in S2a \ S1 or in S2b \ S1: c′ ⊁r c, for all r in {Pareto, BiPoss,
BiLexi}.
- S2a and S2b are indistinguishable w.r.t. {Pareto, BiPoss, BiLexi}.

Note that inside S1, Pareto, Biposs and BiLexi rules can help to refine the selection, i.e.,
among two necessarily admissible candidates one may be preferred to the other w.r.t. one of those
rules.

5 Concluding remarks

To sum up, this article has presented a new structure called BLF. A BLF gives a clear definition
of candidate admissibility conditions by taking advantage of the efficiency and simplicity of a
visual structure. The decision problem about the admissibility of a candidate is defined in terms
of the goals that will be achieved by this selection. The set of achieved goals is computed from
the decision principles that are applicable for this candidate. Indeed, a decision principle in a
BLF relates some attributes to a given goal, it expresses the defeasible knowledge that “selecting
a candidate having these attributes can lead to achieve this goal”. An inhibition of a decision
principle is an observation that forbids to apply it.

Moreover the decision principles which are given by the designer represent two estimations: on
the one hand a confidence level that the decision principle well applies (i.e., is not inhibited by any
observation) and on the other hand the importance of its goal. In this paper we focus particularly
on the goal levels in order to show the links between a BLF and a symbolic utility measure under
uncertainty since we show that a BLF may help to handle the risk (disutility under a threshold
of necessity) associated to the decision to select a given candidate.

This study has shown first that it is possible to define a BLF on the basis of possibility
distributions about the possible worlds and with utility measures about a given goal. Moreover
these results highlights that the BLF has two main benefits:

• The compactness of the representation: The use of default rules is a way to represent com-
pactly information without mentioning exceptions. Note that specificity is embedded in the
inhibitions, e.g., it is not necessary to precise that an indoor pool is a pool inside of the DP.

• The handling of incomplete information: It is possible to reason when the value of a given
feature is unknown. Moreover, the BLF allows us to discriminate the features that are
meaningful w.r.t. the decision, e.g., in the case where we only know that the hotel has a
pool we can already make a decision. Note that with more information about the indoor pool,
a more robust decision can be made.
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