
HAL Id: hal-01712543
https://hal.science/hal-01712543v1

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Accurate Surface Normal Integration on
Non-Rectangular Domains

Martin Bähr, Michael Breuss, Yvain Quéau, Ali Sharifi Boroujerdi, Jean-Denis
Durou

To cite this version:
Martin Bähr, Michael Breuss, Yvain Quéau, Ali Sharifi Boroujerdi, Jean-Denis Durou. Fast and
Accurate Surface Normal Integration on Non-Rectangular Domains. Computational Visual Media,
2017, vol. 3 (n° 2), pp. 107-129. �10.1007/s41095-016-0075-z�. �hal-01712543�

https://hal.science/hal-01712543v1
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.1007/s41095-016-0075-z
URL : https://doi.org/10.1007/s41095-016-0075-z

To cite this version : Bähr, Martin and Breuss, Michael and Quéau, Yvain and
Boroujerdi, Ali Sharifi and Durou, Jean-Denis Fast and Accurate Surface
Normal Integration on Non-Rectangular Domains. (2017) Computational
Visual Media, vol. 3 (n° 2). pp. 107-129. ISSN 2096-0433

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18856

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Fast and accurate surface normal integration on
non-rectangular domains

Martin Bähr1, Michael Breuß1 (), Yvain Quéau2, Ali Sharifi Boroujerdi1, and Jean-Denis
Durou3

Abstract The integration of surface normals for the

purpose of computing the shape of a surface in 3D

space is a classic problem in computer vision. However,

even nowadays it is still a challenging task to devise a

method that is flexible enough to work on non-trivial

computational domains with high accuracy, robustness,

and computational efficiency. By uniting a classic

approach for surface normal integration with modern

computational techniques, we construct a solver that

fulfils these requirements. Building upon the Poisson

integration model, we use an iterative Krylov subspace

solver as a core step in tackling the task. While such

a method can be very efficient, it may only show its

full potential when combined with suitable numerical

preconditioning and problem-specific initialisation. We

perform a thorough numerical study in order to

identify an appropriate preconditioner for this purpose.

To provide suitable initialisation, we compute this

initial state using a recently developed fast marching

integrator. Detailed numerical experiments illustrate

the benefits of this novel combination. In addition, we

show on real-world photometric stereo datasets that the

developed numerical framework is flexible enough to

tackle modern computer vision applications.

Keywords surface normal integration; Poisson

integration; conjugate gradient method;

1 Brandenburg Technical University, Institute for

Mathematics, Chair for Applied Mathematics, Platz

der Deutschen Einheit 1, 03046 Cottbus, Germany.

E-mail: M. Bähr, martin.baehr@b-tu.de; M. Breuß,

michael.breuss@b-tu.de (); A. S. Boroujerdi, ali.

sharifiboroujerdi@b-tu.de.

2 Technical University Munich, 85748 Garching, Germany.

E-mail: yvain.queau@tum.de.

3 Université de Toulouse, IRIT, UMR CNRS 5505,

Toulouse, France. E-mail: durou@irit.fr.

preconditioning; fast marching method;

Krylov subspace methods; photometric

stereo; 3D reconstruction

1 Introduction

The integration of surface normals is a fundamental

task in computer vision. Classic examples of

processes where this technique is often applied

are image editing [1], shape from shading as

analysed by Horn [2], and photometric stereo (PS)

for which we refer to the pioneering work of

Woodham [3]. Modern applications of PS include

facial recognition [4], industrial product quality

control [5], object preservation in digital heritage [6],

and new utilities with potential use in the video

(game) industry and robotics [7], among many

others.

In this paper we consider surface normal

integration in the context of the PS problem, which

serves as a role model for potential applications.

The task of PS is to compute the 3D surface of an

object from multiple images of the same scene under

different illumination conditions. The standard PS

method for reconstructing an unknown surface has

two stages. In a first step, the surface is represented

as a field of surface normals, or equivalently, a

corresponding gradient field. In a subsequent step

this is integrated to obtain the depth of the surface.

To handle the integration step, many different

approaches and methods have been developed

during recent decades. However, despite all these

developments there is still the need for approaches

that combine a high accuracy reconstruction with

robustness against noise and outliers, and reasonable

computational efficiency for working with high-

resolution cameras and corresponding imagery.

Computational issues. Let us briefly elaborate

on the demands on an ideal integrator. As discussed,

e.g., in Ref. [8], a practical issue is robustness with

respect to noise and outliers. Since computer vision

processes such as PS rely on simplified assumptions

that often do not hold for realistic illumination and

surface reflectance, artefacts may often arise when

estimating surface normals from real-world input

images. Therefore, the determined depth gradient

field is not noise-free and may also contain outliers.

These may strongly influence the integration process.

Secondly, objects to be reconstructed in 3D are

typically in the centre of a photographed scene.

Therefore, they only form part of each input

image. The sharp gradient usually representing

the transition from foreground to background is a

difficult feature for most surface normal integrators

and generally influences the estimated shape of the

object of interest. Because of this it is desirable

to consider only image segments that represent the

object of interest and not the background. Although

similar difficulties (sharp gradients) also arise for

discontinuous surfaces that may appear at self-

occlusions of an object [9], we do not tackle this

issue in the present article. Instead, we neglect

self-occlusion and focus on reconstructing a smooth

surface on the (possibly non-rectangular) subset of

the image domain representing the object of interest.

Related to this point, another important aspect is

the computational time and cost saving that can be

achieved by the concomitant decrease in the number

of elements of the computational domain. For

reasons of both reconstruction quality and efficiency,

an ideal solver for surface normal integration should

thus work on non-rectangular domains.

Finally, to capture ever more detail in 3D

reconstruction, camera technology evolves and the

resolution of images tends to increase continually.

This means, the integrator has to work accurately

and quickly for various sizes of input images,

including images of size at least 1000 × 1000 pixels.

Consequently, the computational efficiency of a

solver is a key requirement for many possible modern

and future applications.

To summarise, one can identify the desirable

properties of robustness with respect to noise and

outliers, ability to work on non-rectangular domains,

and efficiency of the method: one aims for an

accurate solution using reasonable computational

resources (such as time and memory).

Related work. Many methods taking into

account the abovementioned issues individually have

been developed to solve the problem of surface

normal integration during recent decades.

According to Klette and Schlüns [10], such

methods can be classified as local and global

integration methods.

The most basic local method, also referred to

as direct line-integration scheme [11–13], is based

on the line integral technique and the fact that

a closed path on a continuous surface should be

zero. These methods are in general quite fast,

but due to their local nature, the reconstructed

solution depends on the integration path. Another

more recent local approach for normal integration

is based on an eikonal-type equation, which can be

solved by applying the computationally efficient fast

marching (FM) method [14–16]. However, a common

disadvantage of all local approaches is sensitivity

with regard to noise and discontinuities, which lead

to error accumulation in the reconstruction.

In order to minimise error accumulation, it is

preferable to adopt a global approach based on the

calculus of variations. Horn and Brooks [2] proposed

the classic and most natural variational method

for the intended task by casting the corresponding

functional in a form that results in a least-squares

approximation. The necessary optimality condition

represented by the Euler–Lagrange equation of the

classic functional is given by the Poisson equation,

which is an elliptic partial differential equation.

This approach to surface normal integration is often

called Poisson integration. The practical task arising

amounts to solving the linear system of equations

that corresponds to the discretised Poisson equation.

Direct methods for solving the latter system, as

for instance Cholesky factorisation, can be fast, but

this type of solver may use a substantial amount of

memory and appears to be rather impractical for

images of larger than 1000×1000 pixels. Moreover, if

based on matrix factorisation, the factorisation itself

is relatively expensive to compute. Generally, direct

methods offer an extremely highly accurate result,

but one must pay a high computational price. In

contrast, iterative methods are not naturally noted

for extremely high accuracy but are very fast when

computing approximate solutions. They require less

memory and are thus inherently more attractive

candidates for this application, but involve some

non-trivial aspects (see later) which make them less

straightforward to use.

An alternative approach to solving the least-

squares functional was introduced by Frankot and

Chellappa [17]. The main idea is to transform

the problem to the frequency domain where a

solution can be computed in linear time through

the fast Fourier transform, if periodic boundary

conditions are assumed. The latter unfavourable

condition can be resolved by use of the discrete

cosine transform (DCT) as shown by Simchony et

al. [18]. However, these methods remain limited to

rectangular domains. To apply these methods on

non-rectangular domains requires introducing zero-

padding in the gradient field which may lead to an

unwanted bias in the solution. Some conceptually

related basis function approaches include the use

of wavelets [19] and shapelets [20]. The method of

Frankot and Chelappa was enhanced by Wei and

Klette [21] to improve its accuracy and robustness to

noise. Another approach was proposed by Karaçali

and Snyder [22] who make use of additional adaptive

smoothing for noise reduction.

Among all of the mentioned global techniques,

variational methods offer a high robustness with

respect to noise and outliers. Therefore, many

extensions have been developed in modern works [9,

23–28]. Agrawal et al. [23] use anisotropic instead

of isotropic weights for the gradients during

integration. Durou et al. [9] give a numerical

study of several functionals, in particular with non-

quadratic and non-convex regularisations. To reduce

the influence of outliers, the L1 norm has also

become an important regularisation instrument [25,

26]. In Ref. [24] the extension to Lp minimisation

with 0 < p < 1 is presented. Two other recent

works are Ref. [27] where the use of alternative

optimisation schemes is explored and Ref. [28]

where the proposed formulation leads to the task

of solving a Sylvester equation. Nevertheless, these

methods have some drawbacks. By the application of

additional regularisation as in Refs. [9, 23–27], depth

reconstruction becomes quite time-consuming and

the correct setting of parameters is more difficult,

while the approach of Harker and O’Leary [28] is

only efficient for rectangular domains Ω.

Summarizing the achievements of previous works,

the problem of surface normal integration on non-

rectangular domains has not yet been perfectly

solved. The main challenge is still to find a balance

between quality and time needed to generate the

result. One should take into account that to achieve

better quality in 3D object reconstruction, the

resolution of images tends to increase continually,

and so computational efficiency is surely a key

requirement for many potential current and future

applications.

Our contributions. To balance the aspects of

quality, robustness, and computational efficiency, we

go back to the powerful classic approach of Horn

and Brooks as the variational framework has the

benefit of high modeling flexibility. In detail, our

contributions when extending this classic path of

research are:

1. Building upon a recent conference paper where

we compared several Krylov subspace methods

for surface normal integration [29], we investigate

the use of the preconditioned conjugate

gradient (PCG) method for performing Poisson

integration over non-trivial computational

domains. While such methods constitute

advanced yet standard methods in numerical

computing [30, 31], they are not yet standard

tools in image processing, computer vision, and

graphics. To be more precise, we propose

to employ the conjugate gradient (CG)

scheme as the iterative solver and we explore

modern variations of incomplete Cholesky

(IC) decomposition for preconditioning. The

thorough numerical investigation here represents

a significant extension of our conference paper.

2. For computing a good initialisation for the PCG

solver, we employ a recent FM integrator [15]

already mentioned above. Its main advantages

are its flexibility for use with non-trivial domains

coupled with low computational requirements.

While we proposed this means of initialisation

already in Ref. [29], our numerical extensions

mean that the conclusion we draw in this paper

is much sharper.

3. We prove experimentally that our resulting,

combined novel method unites the advantages of

flexibility and robustness of variational methods

with low computational time and low memory

requirements.

4. We propose a simple yet effective modification for

gradient fields containing severe outliers, for use

with Poisson integration methods.
The abovementioned building blocks of our

method represent a pragmatic choice among current

tools for numerical computing. Moreover, as

demonstrated by our new integration model that is

specifically designed for tackling data with outliers,

our numerical approach can be readily adapted

to other Poisson-based integration models. This,

together with the well-engineered algorithm for our

application, i.e., FM initialisation and fine-tuned

algorithmic parameters, makes our method a unique,

efficient, and flexible procedure.

2 Surface normal integration

The mathematical set-up of surface normal

integration (SNI) can be described as follows.

We assume that for a domain Ω, a normal field n :=

n(x, y) = [n1(x, y), n2(x, y), n3(x, y)]
T

is given for

each grid point (x, y) ∈ Ω. The task is to recover a

surface S, which can be represented as a depth map

v(x, y) over (x, y) ∈ Ω, such that n is the normal

field of v. Assuming orthographic projection 1©, the

normal field n of a surface at (x, y, v(x, y)) ∈ R
3 can

be written as

n(x, y) :=
[−vx, −vy, 1]

T

√

‖∇v‖2 + 1
(1)

with vx := ∂v/∂x, vy := ∂v/∂y, and ∇v := [vx, vy]
T

.

Moreover, the components of n are given by partial

derivatives of v:

(vx, vy) =

(

−
n1

n3

, −
n2

n3

)

= (p, q) (2)

where we think of p and q as given data.

In this section, we present the building blocks

of our new algorithm in two steps, first the fast

marching integrator, and afterwards the iterative

Poisson solver relying on the conjugate gradient

method supplemented by (modified) incomplete

Cholesky preconditioning. When presenting Poisson

integration, we also demonstrate the flexibility of the

resulting discrete computational model by a novel

adaptation for handling data with outliers.

1©The perspective integration problem can be formulated in a similar

way, using the change of variable v = log v [32].

A detailed description of the fast marching

integrator can be found in Refs. [15, 16], and the

presentation of the components of the CG scheme

can be found in literature on Krylov subspace solvers,

e.g., Ref. [31]. We still summarize the algorithms

in some detail here because there are important

parameters that need to be set and some choices

to make: since the efficiency of integrators depends

largely on such practical implementation details, our

explanations provide additional value beyond a plain

description of the methods.

While our discretisation of the Poisson equation is

a standard one, we deal with non-trivial boundary

conditions in our application, necessitating a

thorough description. The construction of our

non-standard numerical boundary conditions, which

is often overlooked in the literature, is another

technical contribution to the field.

2.1 Fast marching integrator

We recall for the convenience of the reader some

relevant developments from Refs. [14–16], which

showed that it is possible to tackle the problem of

surface normal integration via the following PDE-

based model in w = v + λf :

‖∇w‖ =
√

(p + λfx)2 + (q + λfy)2 (3)

where λ > 0 and f : R2 → R are user-defined. Using

PDE (3) we do not compute the depth function

v directly, but instead we solve in a first step

for a function w. This means, to obtain v one

has to solve the eikonal-type equation for w, in

which ∇v = (p, q) and ∇f are known, and recover

v in a second step from the computed w by

subtracting the known function f . The intermediate

step of considering a new function w is necessary for

successful application of the FM method, in order

to avoid local minima and ensure that any initial

point can be considered [14]. It turns out that a

natural candidate for f is the squared Euclidean

distance function with its minimum in the centre of

the domain (x0, y0) = (0, 0), i.e.,

f := f(x, y) = x2 + y2 (4)

Other choices for f are also possible [16]. As

boundary condition we may employ w(0, 0) = 0.

After computation of w we easily compute the sought

depth map v via v = w − λf . Let us note that the

FM integrator requires parameter λ to be tuned, but

it is not a crucial choice as any large number λ ≫ 0

will work [15] 1©.

Numerical upwinding. A crucial issue for

the FM integrator is correct discretisation of the

derivatives of f in Eq. (3). In order to obtain

a stable method, an upwind discretisation of the

partial derivatives of f is required:

fx :=
[

max
(fi,j − fi−1,j

∆x
,
fi,j − fi+1,j

∆x
, 0

)]2

(5)

and analogously for fy, for grid widths ∆x and ∆y.

Making use of the same discretisation for the

components of ∇w, one obtains a quadratic equation

that must be solved for every pixel except at

the initial pixel (0, 0) where some depth value is

prescribed.

Let us note that the initial point can be chosen

in practice anywhere, i.e., there is no restriction to

(0, 0).

Non-convex domains. If the above method is

used without modification over non-convex domains,

the FM integrator fails to reconstruct the solution.

The reason is that the original, unmodified squared

Euclidean distance does not yield a meaningful

distance from the starting point to pixels which

are not connected by a direct line lying within the

integration domain. In other words, the unmodified

scheme just works over convex domains.

To overcome the problem, a suitable distance

which calculates the shortest path from the starting

point to every point on the computational domain is

necessary. To this end, the use of a geodesic distance

function d is advocated [15]. We proceed as follows,

relying on similar ideas to those in, e.g., Ref. [33] for

path planning. In a first step we solve an eikonal

equation ‖∇d‖ = 1 over all the points of the domain

with d := 0 at the chosen start point. This can of

course be done again with the FM method. Then, in

a second step we are able to compute the depth map

v. Therefore, we use Eq. (3) for w, with the squared

geodesic distance function d instead of f and using

Eq. (5). Afterwards we recover v via v = w − λd.

Fast marching algorithm. The idea of FM

goes back to Refs. [34–36]. For a comprehensive

introduction see Ref. [37]. The benefit of FM is its

relatively low complexity of O(n log n) where n is the

number of points in the computational domain 2©.

Let us briefly describe the FM strategy. The

1©In our experiments, we used the value λ = 105.

2©When using the untidy priority queue structure [38] the complexity

may even be lowered to O(n).

principle behind FM is that information advances

from smaller values of w to larger values of w, thus

visiting each point of the computational domain just

once. To this end, one may employ three disjoint

sets of nodes as discussed in detail in Refs. [37, 39]:

{s1} accepted nodes, {s2} trial nodes, and {s3} far

nodes. The values wi,j for set {s1} are considered

known and will not be changed. A member wi,j in

set {s2} is always at a neighbour of an accepted node.

This is the set where the computation actually takes

place and the values of wi,j can still change. Set

{s3} contains those nodes wi,j where an approximate

solution has not yet been computed as these are not

in a neighbourhood of a member of {s1}.

The FM algorithm iterates the following procedure

until all nodes are accepted:

(a) Find the grid point A in {s2} with the smallest

value and move it to {s1}.

(b) Place all neighbours of A into {s2} if not already

there and compute the arrival time for all of

them, if they are not already in {s1}.

(c) If the set {s2} is not empty, return to (a).
For initialisation, one may start by putting the

node at (0, 0) into set {s1}; it bears the boundary

condition of the PDE (3).

An efficient implementation amounts to storing

the nodes in {s2} in a heap data structure, so the

smallest element in step (a) can be chosen as quickly

as possible.

2.2 Poisson integration

The first part of this section is dedicated to modeling.

We first briefly review the classic variational

approach to the Poisson integration (PI) problem [2,

18, 27, 28, 32]. The handling of extremely noisy data

motivates modifications of the underlying energy

functional (6), e.g., see Ref. [27]. By proposing a new

model dealing with outliers, we demonstrate that the

Poisson integration framework is flexible enough to

deal with such modern approaches.

The second part is devoted to the numerics. We

propose a dedicated, and somewhat non-standard,

discretisation for our application.

Classic Poisson integration model. In order

to recover the surface it is common to minimise

the least-squares error between the input and the

gradient field of v by minimising:

J(v) =

∫∫

Ω

‖∇v − g‖2 dx dy

=

∫∫

Ω

[

(vx − p)2 + (vy − q)2
]

dxdy (6)

where g = [p, q]
T

.

A minimiser v of Eq. (6) must satisfy the

associated Euler–Lagrange equation which is

equivalent to the following Poisson equation:

∆v = div(p, q) = px + qy (7)

that is usually complemented by (natural) Neumann

boundary conditions (∇v − g) · µ = 0, where the

vector µ is normal to ∂Ω. In this case, uniqueness of

the solution is guaranteed, apart from an additional

constant. Thus, one recovers the shape but not

absolute depth (as in FM integration).

A modified PDE for normal fields with

outliers. We now demonstrate by giving an example

that the PI framework is flexible enough to also deal

with gradient fields featuring strong outliers. To

this end, we propose a simple, yet effective way to

modify the PI model in order to limit the influence of

outliers. Other variations for different applications,

e.g., self-occlusions [9, 27], are of course also possible.

Let us briefly recall that the classic model in

Eq. (6) which leads to the Poisson equation in Eq. (7)

is based on a simple least-squares approach. At

locations (x, y) corresponding to outliers, the values

p(x, y) and q(x, y) are not reliable, and one would

prefer to limit the influence of such corrupt data.

Therefore, we modify the Poisson equation in

Eq. (7) by introducing a space-dependent fidelity

term ν := ν(x, y) by

∆v = ∇ ·

(

1

1 + ν
. [p, q]

T

)

(8)

Let us note that a similar strategy, namely to

introduce modeling improvements in a PDE that is

originally the Euler–Lagrange equation of an energy

functional, instead of modifying it, is occasionally

employed in computer vision: see, e.g., Ref. [40].

However, we do not tinker here with the core of

the PDE, i.e., the Laplace operator ∆, but merely

include preprocessing by modifying the right hand

side of the Poisson equation.

The key to effective preprocessing is of course

to consider the role of ν so that it smooths the

surface only at locations where the input gradient

is unreliable. Thus, we seek a function ν(x, y) which

is close to zero if the input gradient is reliable, and

takes high values if it is not.

The integrability term

I(x, y) := py − qx = ∇ · [−q, p]
T

(9)

should vanish if the surface is C2-smooth. This

argument was used in Ref. [27] to suggest an

integrability-based weighted least-squares functional

able to recover discontinuity jumps, which generally

correspond to a high absolute value of integrability.

Since integrability not only indicates the location

of discontinuities, but also that of the outliers, we

suggest use of this integrability term to find a smooth

surface explaining a corrupted gradient. To do so,

we use the following choice for our regularisation

parameter:

ν(x, y) = exp
(

I(x, y)2
)

− 1 (10)

for which the desired properties (i) vanish when

integrability is low (reliable gradients), and (ii) take

a high value when integrability is high (outliers).

Putting Eqs. (9) and (10) in Eq. (8), our new

model amounts to solving the following equation:

∆v =∇ ·

(

1

1 + exp
(

(py − qx)2
)

− 1
[p, q]

T

)

=∇ ·

[

p

exp
(

(py − qx)2
) ,

q

exp
(

(py − qx)2
)

]T

=:∇ · [p̄, q̄]T (11)

which is another Poisson equation, where the right

hand side can be computed a priori from the input

gradient.

Let us clarify explicitly that the meaning of

Eq. (11) is to replace the vector of given data [p, q]T

describing the normal field by a modified version

[p̄, q̄]T as defined in Eq. (11).

In addition, we emphasise that all methods for SNI

based on such a Poisson equation are straightforward

to adapt: it suffices to replace (p, q) by (p, q). The

algorithmic complexity of all of such approaches

remains exactly the same. The practical validity

of this simple new model and its benefit of better

numerics are demonstrated in Section 4.

In the main part of our paper, for simplicity

of presentation, we will simply consider the classic

model in Eq. (7) and come back to the proposed

modification in Section 4.5.

Discretisation of the Poisson equation. A

useful standard numerical approach to solving the

Poisson PDE as in Eqs. (7) or (11) makes use of finite

differences. Often, div(p, q) and ∆v = vxx + vyy are

approximated by central differences. For simplicity,

we suppose that the grid size is ∆x = ∆y = 1

as common practice in image processing. Then, a

suitable discrete version of the Laplacian is given in

stencil notation by

∆v(xi, yj) ≈

1

1 -4 1

1

· vi,j (12)

so the divergence is given by

div(pi,j , qi,j) ≈
1

2
-1 0 1 ·pi,j+

1

2

1

0

-1

·qi,j (13)

where the measured gradient g = [p, q]
T

. Making

use of Eqs. (12) and (13) to discretize Eq. (7) leads

to

− 4vi,j + (vi+1,j + vi−1,j + vi,j+1 + vi,j−1)

=
pi+1,j − pi−1,j + qi,j+1 − qi,j−1

2
(14)

which corresponds to a linear system Ax = b, where

the vectors x and b are obtained by stacking the

unknown values vi,j and the given data, respectively.

The matrix A contains the coefficients arising by

discretizing the Laplace operator ∆.

We employ in all experiments here the above

discretisation, as it is very simple and gives high

quality results. While other discretisations, e.g., of

higher order, are of course possible [28], let us

note that this requires one to change the parameter

settings we propose for the method. One would

also have to adapt the dedicated numerical boundary

conditions.

Non-standard numerical boundary

conditions. At this point it should be noted that

the stencils in Eqs. (12), (13), and the subsequent

equation Eq. (14) are only valid for inner points of

the computational domain. Indeed, when pixel (i, j)

is located near the border of Ω, some of the four

neighbour values {vi+1,j , vi−1,j , vi,j+1, vi,j−1} in

Eq. (14) refer to depths outside Ω. The same holds

for the data values {pi+1,j , pi−1,j , qi,j+1, qi,j−1}:

some of these values are unknown when (i, j) is near

the border. To handle this, a numerical boundary

condition must be invoked.

Using empirical Dirichlet (e.g., using the discrete

sine transform [18]) or homogeneous Neumann

boundary conditions [23] may result in biased

3D reconstructions near the border. The so-called

“natural” condition (∇v − g) · µ = 0 [2] is preferred,

because it is the only one which is justified.

Let us emphasise that it is not a trivial

task to define suitable boundary conditions for

{pi+1,j , pi−1,j , qi,j+1, qi,j−1}. As we opt for a

common strategy for discretising values of p, q, v, we

employ the following non-standard procedure which

has turned out to be preferable in experimental

evaluations. Whenever p, q, v values outside Ω are

involved in Eq. (14), we discretise this boundary

condition using the mean of forward and backward

first-order finite differences. This allows us to express

the values outside Ω in terms of values inside Ω.

To clarify this idea, we distinguish the boundaries

according to the number of missing neighbours.

When only one neighbour is missing. There are

four types of boundary pixels having exactly one of

the four neighbours outside Ω (lower, upper, right,

and left borders respectively). Let us first consider

the case of a “lower boundary”, i.e., a pixel (i, j) ∈

Ω such that (i − 1, j), (i + 1, j), (i, j + 1) ∈ Ω3 but

(i, j − 1) /∈ Ω. Then, Eq. (14) involves the undefined

quantities vi,j−1 and qi,j−1. However, on one hand,

discretisation of the natural boundary condition at

pixel (i, j − 1) by forward differences provides the

following equation:

vi,j − vi,j−1 = qi,j−1 (15)

On the other hand the natural boundary condition

can be also discretised at pixel (i, j) by backward

differences, leading to

vi,j − vi,j−1 = qi,j (16)

Taking the mean of these forward and backward

discretisations, we obtain:

vi,j − vi,j−1 =
qi,j−1 + qi,j

2
(17)

Now, plugging Eq. (17) into Eq. (14), the undefined

quantities actually vanish, and one obtains:

− 3vi,j + (vi+1,j + vi−1,j + vi,j+1)

=
pi+1,j − pi−1,j + qi,j+1 + qi,j

2
(18)

In other words, the stencil for the Laplacian is

replaced by

∆v(xi, yj) ≈

1

1 -3 1 · vi,j

and that for the divergence by

div(pi,j , qi,j) ≈
1

2
-1 0 1 ·pi,j +

1

2

1

1

0

·qi,j (19)

The corresponding stencils for upper, left, and right

borders are obtained by straightforward adaptations

of this procedure.

When two neighbours are missing. Boundary

pixels having exactly two neighbours outside Ω are

either “corners” (e.g., (i, j − 1) and (i + 1, j) inside

Ω, but (i − 1, j) and (i, j + 1) outside Ω) or “lines”

(e.g., (i − 1, j) and (i + 1, j) inside Ω, but (i, j − 1)

and (i, j + 1) outside Ω). For “lines”, the natural

boundary condition must be discretised four times

(both forward and backward, on the two locations

of missing data). Applying a similar rationale as in

the previous case, we obtain the following stencils for

“vertical” lines:

∆v(xi, yj) ≈

1

-2

1

· vi,j

and

div(pi,j , qi,j) ≈
1

2
0 0 0 ·pi,j +

1

2

1

0

-1

·qi,j (20)

A straightforward adaptation provides the stencils

for the “horizontal” lines. Applying the same

procedure for corners, we obtain, for instance for the

“top-left” corner:

∆v(xi, yj) ≈ -2 1

1

· vi,j

and

div(pi,j , qi,j) ≈
1

2
0 1 1 ·pi,j +

1

2

0

-1

-1

·qi,j (21)

Again, it is straightforward to find the other three

discretisations for the other corner types.

When three neighbours are missing. In this last

case, we discretise the boundary condition six times

(forward and backward, for each missing neighbour).

Most quantities actually vanish. For instance, for the

case where only the right neighbour (i+1, j) is inside

Ω, we obtain the following stencils:

∆v(xi, yj) ≈ -1 1 · vi,j

and

div(pi,j , qi,j) ≈
1

2
0 1 1 ·pi,j +

1

2

0

0

0

· qi,j (22)

In the end, we obtain explicit stencils for all fourteen

types of boundary pixels. Let us emphasise that,

apart from 4-connectivity, we make no assumption

about the shape of Ω.

Summarising the discretisation. The

discretisation procedure defines a sparse linear

system of equations Ax = b. Incorporating Neumann

boundary conditions, the matrix A is symmetric,

positive semidefinite, diagonal dominant and its null

space contains the vector e := [1, . . . , 1]T. In other

words, A is a rank-1 deficient, singular matrix.

2.3 Iterative Krylov subspace methods

As indicated, in consequence of enormous memory

costs, application of a direct solver to deal with the

above linear system appears to be impractical for

large images. Therefore, we propose an iterative

solver to handle this problem.

Krylov subspace solvers are a modern class of

iterative solvers designed for use with large sparse

linear systems; for a detailed exposition see,

e.g., Refs. [31, 41]. The main idea behind the

Krylov approach is to search for an approximate

solution of Ax = b, where A ∈ R
n×n is a large

regular sparse matrix and b ∈ R
n, in a suitable

low-dimensional (affine) subspace of R
n that is

constructed iteratively.

This construction is in general not directly visible

in the formulation of a Krylov subspace method, as

these are often described in terms of a reformulation

where Ax = b is solved as an optimisation task.

An important example is given by the classic

conjugate gradient (CG) method of Hestenes and

Stiefel [42] which is still an adequate iterative solver

for problems involving sparse symmetric matrices of

the kind in Eq. (14) 1©.

Conjugate gradient method. As it is of special

importance for this work, let us briefly recall some

properties of the CG method; a more technical,

complete exposition can be found in many textbooks

on numerical computing (see, e.g., Refs. [31, 41, 43,

44]).

Note that a useful implementation of CG is given

in MATLAB. However, some knowledge of the

technique is useful in order to understand some of

its properties. Moreover, it is crucial for effective

application of the CG method to be aware of its

critical parameters. We now aim to make clear the

relevant points.

1©While in general also positive definiteness is required, this point is

more delicate. We comment later on the applicability in our case.

The CG method requires a symmetric and positive

definite matrix A ∈ R
n×n. In its construction it

combines the gradient descent method with the

method of conjugate directions. It can be derived

from making use of the fact that, for such a matrix,

the solution of Ax = b is exactly the minimum of the

function:

F (x) =
1

2
〈x, Ax〉2 − 〈b, x〉2 (23)

since

∇F (x) = 0 ⇔ Ax = b (24)

here, 〈·, ·〉2 means the Euclidean scalar product.

Let us now denote the kth Krylov subspace by Kk.

Then, Kk := Kk(A, r0) is a subspace of Rn defined

by

Kk := span
(

r0, Ar0, A2r0, . . . , Ak−1r0

)

(25)

This means Kk is generated from an initial residual

vector r0 = b−Ax0 by successive multiplications by

the system matrix A.

Let us briefly highlight some important theoretical

considerations. The nature of an iterative Krylov

subspace method is that the computed approximate

solution xk is in x0 + Kk(A, r0), i.e., it is determined

by the kth Krylov subspace. Here, the index k is also

the kth iteration of the iterative scheme.

For the CG method, one can show that the

approximate solutions xk are optimal in the sense

that they minimise the so-called energy norm of the

error vector. Thus, if x∗ is a solution of the system

Ax = b, that xk minimises ||x∗ − xk||A for the A-

norm ||y||A :=
√

yTAy. Note again that xk must

lie in the kth Krylov subspace. In other words,

the CG method gives in the kth iteration the best

solution available in the generated subspace. Since

the dimension of the Krylov subspace increases in

each step of the iteration, theoretical convergence

is achieved at the latest after the nth step of the

method if the solution is in R
n.

Practical issues. A useful observation on Krylov

subspace methods is that they can obviously benefit

from a good educated guess of the solution for use

as the initial iterate x0. Therefore, we consider x0

as an important open parameter of the method that

should be addressed in a suitable way.

Moreover, an iterative method also requires the

user to set a tolerance defining the stopping criterion:

if the norm of the relative residual is below the

tolerance, the algorithm stops.

However, there is a priori no means to say in

which regime the tolerance has to be chosen. This

is one of the issues that make reliable and efficient

application of the method less than straightforward.

It is one of the aims of our experiments to determine

a reasonable tolerance for our application.

While our presentation of the CG method relates

to ideal theoretical properties, in practice, numerical

rounding errors appear and very large systems

may suffer from severe convergence problems.

Thus, preconditioning is recommended to ensure all

beneficial properties of the algorithm, along with

fast convergence. However, as it turns out, it

requires a thorough study to identify the most useful

parameters in the preconditioning method.

Let us note that the CG method is applicable even

though our matrix A is just positive semidefinite.

The positive definiteness is useful for avoiding

division by zero within the CG algorithm. If A

is positive semidefinite, theoretically it may happen

that one needs to restart the scheme using a different

initialisation. In practice this situation rarely occurs.

Preconditioning. The basic idea of

preconditioning is to multiply the original system

Ax = b on the left by a matrix P such that

P approximates A−1. The modified system

PAx = Pb is in general better conditioned and

much more efficient to solve. For sparse A, typical

preconditioners are defined over the same sparse

structure of entries of A.

When dealing with symmetric matrices as in our

case, incomplete Cholesky (IC) decomposition [45]

is often used to construct a common and very

efficient preconditioner for the CG method [46–48].

As a consequence of Ref. [29] we study here the

application of the IC preconditioner and its modified

version MIC.

Let us briefly describe the underlying ideas. The

complete decomposition of A is given by A = LLT +

F. If the lower triangular matrix L is allowed to have

non-zero entries anywhere in the lower matrix, then

F is the zero matrix and the decomposition is the

standard Cholesky decomposition. However, in the

context of sparse systems only the structure of entries

in A is used in defining L, so that the factorisation

will be incomplete. Thus, in our case the lower

triangular matrix L keeps the same non-zero pattern

as that of the lower triangular part of A. The general

form of the preconditioning then amounts to the

transformation from Ax = b to Apxp = bp with

Ap = L−1AL−T , xp = L−T x, and bp = L−1b (26)

Practical issues. Let us identify another

important computational parameter. The approach

mentioned of taking the existing pattern in A as

the sparsity pattern of L is often called IC(0). If

one extends the sparsity pattern of L by additional

non-zero elements (usually in the vicinity of existing

entries) then the closeness between the product LLT

and A may be potentially improved. This procedure

is often called a numerical fill-in strategy IC(τ),

with drop tolerance, where the parameter τ > 0

describes a dropping criterion [31]. The approach

can be described as follows: new fill-ins are accepted

only if the elements are greater than a local drop

tolerance τ . It turns out that the corresponding

PCG method is applicable for positive semidefinite

matrices [49, 50].

When dealing with a discretised elliptic PDE as in

Eqs. (7) or (8), the modified IC (MIC) factorisation

can lead to an even better preconditioner. For an

overview of MIC see Refs. [43, 48]. The idea behind

the modification is to force the preconditioner to

have the same row sums as the original matrix A.

This can be accomplished by adding dropped fill-ins

to the diagonal. The latter is known as MIC(0) and

can be combined with the drop tolerance strategy to

MIC(τ). We note that MIC can lead to possible pivot

breakdowns. This problem can be circumvented

by a global diagonal shift applied to A prior

to determining the incomplete factorisation [51].

Therefore, the factorisation 1© of Ã = A + α diag(A)

is performed, where α > 0 and diag(A) is the

diagonal part of A. Note that the diagonal part of

A never contains a zero value.

Adding fill-ins may obviously lead to a better

preconditioner and a potentially better convergence

rate. On the other hand, it becomes computationally

more expensive to compute the preconditioner itself.

Thus, there is a trade-off between speed and the

improved convergence rate, an important issue upon

which we will elaborate for our application.

2.4 On the FM-PCG normal integrator

Due to its local nature, the reconstructions computed

by FM often have a lower quality compared to

results of global approaches. On the other hand,

the empowering effect of preconditioning the Poisson

integration may still not suffice to achieve a high

1©We denote the combined methods of MIC(τ) and the shifted

incomplete Cholesky version as MIC(τ, α).

efficiency. The basic idea we follow now is that if

one starts the PCG with a proper initialisation x0

obtained by FM integration, instead of the standard

case x0 = 0, the PCG normal integrator could benefit

from a significant speed-up. This idea, together

with dedicated numerical evaluation using a well-

engineered choice of computational parameters for

the numerical PCG solver, is the core of our proposed

method.

In the following, we first given the important

building blocks and parameters of our algorithm, in

Section 3. It will become evident how the individual

methods perform and how they compare.

After that we will show in Section 4 that our

proposed FM-PCG normal integrator in which

suitable building blocks are put together is highly

competitive, and in many instances superior to

the state-of-the-art methods for surface normal

integration.

3 Numerical evaluation

We now demonstrate relevant properties of

several state-of-the-art methods for surface

normal integration. For this purpose, we give

a careful evaluation regarding the accuracy of the

reconstruction, the influence of boundary conditions,

flexibility to handle non-rectangular domains,

robustness to noisy data, and computational

efficiency—the main challenges for an advanced

surface normal integrator. On the technical side, we

note that the experiments were conducted on a i7

processor at 2.9 GHz.

Test datasets. To evaluate the proposed

surface normal integrators, we provide examples

of applications in gradient-domain image

reconstruction (PET imaging, Poisson image

editing) and surface-from-gradient (photometric

stereo). Gradients of the “Phantom” and “Lena”

images were constructed using finite differences,

while both the surface and the gradient of the

“Peaks”, “Sombrero”, and “Vase” datasets are

analytically known, preventing any bias due to finite

difference approximations.

We note that our test datasets demonstrate

fundamental issues that one may typically find in

gradient fields obtained from real-world problems:

sharp gradients (“Phantom”), rapidly fluctuating

gradients oriented in all grid directions in textured

areas (“Lena”), and smoothly varying gradient fields

(“Peaks”). The gradient field of the “Vase” dataset

has a non-trivial computational domain.

3.1 Existing integration methods

Fast and accurate surface normal integrators are

not abundant. For a meaningful assessment we

compare our novel FM-PCG approach with the fast

Fourier transform (FFT) method of Frankot and

Chellappa [17] and the discrete cosine transform

(DCT) extended by Simchony et al. [18] which

are two of the most popular methods in use.

Furthermore, we include the recent method of Harker

and O’Leary [28] which relies on the formulation of

the integration problem as a Sylvester equation. It is

helpful to consider in a first step the building blocks

of our approach, i.e., FM and CG-based Poisson

integration separately. Hence, we also include in our

comparison the FM method from Ref. [15]. As for

Poisson integration, only Jacobi [9, 32] and Gauss–

Seidel [27] iterations have been employed so far, so

we consider Ref. [42] as a reference for CG-Poisson

integration.

To highlight the differences between the methods,

we start by comparing their algorithmic complexity,

the type of admissible boundary conditions they

admit, and the permissible the computational

domain Ω: see Table 1. Algorithmic complexity is

an indicator for the speed of a solver, while the

admissible boundary conditions and the handling of

non-rectangular domains influence its accuracy. The

ability to handle non-rectangular domains improves

also its computational efficiency.

The findings in Table 1 already indicate the

potential usefulness of a mixture of FM and CG-

Table 1 Comparison of five existing fast and accurate surface

normal integration methods based on three criteria: their algorithmic

complexity w.r.t. the number n of pixels inside the computational

domain Ω (the lower the better), the type of boundary condition

(BC) they use (free boundaries are expected to reduce bias), and

the permitted shape of Ω (handling non-rectangular domains can be

important for accuracy and algorithmic speed)

Method Ref. Complexity BC Non-rect.

FFT [17] n log n Periodic No

DCT [18] n log n Free No

FM [15] n log n Free Yes

Sylvester [28] n
3

2

1©

Free No

CG-Poisson [42] n
3

2©

Free Yes

1©Assuming Ω is square. For rectangular domains of size nr × nc, the

complexity is O(n3
c
).

2©Without using preconditioning techniques.

Poisson approaches as both are free of constraints

in the last two criteria and so their combination

may lead to a reasonably computationally efficient

Poisson solver. Although other methods have their

strengths in algorithmic complexity and in the

application of boundary conditions (apart from

FFT), we see that the flexible handling of domains

is a fundamental task and a key requirement of an

ideal solver for surface normal integration.

3.2 Stopping criterion for CG-Poisson

Amongst the considered methods, the Poisson solver

(conjugate gradient method), where solving the

discrete Poisson equation Eq. (7) corresponds to a

linear system Ax = b, is the only iterative scheme.

As indicated in Section 2.3, a practical solution

can be reached quickly after a small number k of

iterations, but k cannot be predicted exactly. The

general stopping criterion for an iterative method

can be based on the relative residual (‖b−Ax‖)/‖b‖

which we analyse in this paragraph.

To guarantee the efficiency of the CG-Poisson

solver it is necessary to define the number k

of iterations depending on the quality of the

reconstruction in the iterative process. To tackle

this issue we compared the MSE 3© and the relative

residual during each CG iteration. As the solution

of the linear system Eq. (14) is not unique, an

additive ambiguity v Ô→ v + c, c ∈ R in the

integration problem (c is the “integration constant”)

occurs. Therefore, in each numerical experiment we

chose the additive constant c which minimises the

MSE, for fair comparison. To determine a proper

relative residual, we considered the datasets “Lena”,

“Peaks”, “Phantom”, “Sombrero”, and “Vase” on

rectangular and non-rectangular domains. All test

cases showed results similar to the graphs in Fig. 1

for the reconstruction of the “Sombrero” surface (see

Fig. 2).

In this experiment the iterative solver CG-Poisson

was stopped when the relative residual was lower

than 10−6. However, it can be seen clearly that after

around iteration 250, the quality measured by the

MSE cannot be improved and therefore using more

than 400 iterations is redundant. This numerical

steady state of the MSE and therefore of the residual

occurs when the relative residual is between 10−3

3©The mean squared error (MSE) is used to quantify the error of the

reconstruction. We employed it to estimate the amount of the error

contained in the reconstruction compared to the original.

Fig. 1 MSE vs. relative residual during CG iterations, for the

“Sombrero” dataset. Although arbitrary relative accuracy can be

reached, it is not useful to go beyond a 10−3 residual, since

such refinements have very small impact on the quality of the

reconstruction, as shown by the MSE graph. Similar results were

obtained for all datasets used in this paper. Hence, we set as stopping

criterion a 10−4 relative residual, which can be considered as “safe”.

Fig. 2 “Sombrero” surface (256 × 256) used in this experiment,

whose gradient can be calculated analytically. Note that the depth

values are periodic on the boundaries.

and 10−4, so we use the suitable and “safe” stopping

criterion of 10−4 in subsequent experiments.

3.3 Accuracy of the solvers

First we analyse the general quality of the methods

listed in Table 1 for the “Sombrero” dataset over a

domain of size 256×256. In this example the gradient

can be calculated analytically and furthermore the

boundary conditions are periodic. Table 1 makes it

obvious that all methods have no restrictions and

consequently no discrimination.

Basically all methods provide a satisfactory

reconstruction, and only FM produces a less

accurate solution: see Figs. 3 and 4. This can be

seen more easily in Table 2, where the values of

the measurements 1© of MSE and SSIM and the

CPU time (in second) are given. The accuracy of

all methods is similar, although the solution for

FM, with 1.16 for MSE and 0.98 for SSIM, is slightly

worse.In contrast the CPU time varies strongly, and

1©We tested the two common measurements MSE and SSIM. A

superior reconstruction has value closer to zero for MSE and a value

closer to one for SSIM. The structural similarity (SSIM) index is a

method for predicting the perceived quality of an image, see Ref.

[52].

Ground truth FFT [17]

DCT [18] FM [15]

Sylvester [28] CG-Poisson [42]

Fig. 3 Results on the “Sombrero” dataset (cf. Table 2).

0

0.5

1

Ground truth FFT [17]

0

0.5

1

0

0.5

1

1.5

2

2.5

DCT [18] FM [15]

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

Sylvester [28] CG-Poisson [42]

Fig. 4 Absolute errors for the “Sombrero” dataset between the

ground truth and the numerical result of each method; see Table 2.

Note the different scales of the plots. To highlight the differences

between all methods we use three different scales. The absolute error

map of FM has its own scale due to the fact that the MSE and the

maximum error differ compared to the other methods. For FFT and

DCT, Sylvester and CG respectively, which have similar values for

the MSE and the maximum error, we used the same scale to point

out the differences.

Table 2 Results on the “Sombrero” dataset (256 × 256).

As expected, all methods provide reasonably accurate solutions.

However, the FM result is slightly less accurate: this is due to error

accumulation by the local nature of FM, while the other methods are

global. The reconstructed surfaces are shown in Fig. 3

Method MSE (px) SSIM CPU (s)

FFT [17] 0.01 1.00 < 0.01

DCT [18] 0.04 1.00 0.01

FM [15] 1.00 0.98 0.07

Sylvester [28] 1.8 × 10−4 1.00 0.18

CG-Poisson [42] 4.6 × 10−5 1.00 1.06

in this case FFT and DCT, which need around 0.01 s,

are unbeatable. The time for FM and Sylvester is

in a reasonable range, and only the standard CG-

Poisson taking around 1.06 s being too slow and

inefficient. For problems of surface reconstruction

under these conditions, the choice of a solver is fairly

easy: the frequency domain methods FFT and DCT

are best.

3.4 Influence of boundary conditions

The handling of boundary conditions is a necessary

issue which cannot be ignored. As we will

show, different boundary conditions lead to

surface reconstructions of different accuracy. The

assumption of Dirichlet, periodic or homogeneous

Neumann boundary conditions is often not justified

and may even be unrealistic in some applications.

A better choice is to use “natural” boundary

conditions [2] of Neumann type.

The behaviour of the discussed solvers for

unjustified boundary conditions, particularly for

FFT, is illustrated by the “Peaks” dataset in Figs.

5 and 6 and the associated Table 3. Almost all

methods provide good reconstructions; the FM result

is also acceptable. Only FFT, with 7.19 for MSE and

0.96 for SSIM, is strongly inferior and unusable for

this real surface, as its accuracy is too low.

Our results show that FFT-based methods

enforcing periodic boundary conditions can be

discarded from the list of candidates for an ideal

Table 3 Results on the “Peaks” dataset (128 × 128). Methods

enforcing periodic BC fail to provide a good reconstruction. The

reconstructed surfaces are shown in Fig. 5

Method MSE (px) SSIM CPU (s)

FFT [17] 7.19 0.96 < 0.01

DCT [18] 0.09 1.00 < 0.01

FM [15] 0.80 0.99 0.03

Sylvester [28] 0.02 1.00 0.05

CG-Poisson [42] 0.02 1.00 0.29

Ground truth FFT [17]

DCT [18] FM [15]

Sylvester [28] CG-Poisson [42]

Fig. 5 Results on the “Peaks” dataset (see Table 3).

solver. Once again CG-Poisson is a very accurate

integrator, but DCT and Sylvester are much faster

and provide useful results. However, we may point

out again in advance that enforcing the domain

Ω to be rectangular may lead to difficulties w.r.t.

the transition from foreground to background of an

object.

3.5 Influence of noisy data

A key point in many applications is the question

of the influence of noise on the quality of the

reconstructions provided by different methods.

Usually, the correctness of the given data, without

noise, cannot be guaranteed. Therefore, it is essential

to have a robust surface normal integrator with

respect to noisy data.

To study the influence of noise, we should

consider a dataset which, apart from noise, is

perfect. Based on this aspect, a very reasonable

test example is the “Sombrero” dataset; see Fig. 2.

The advantage of “Sombrero” is that the gradient

of this object is known analytically, not just

approximately. Furthermore, the computational

domain Ω is rectangular and the boundary conditions

are periodic. For this test we added Gaussian noise

with a standard deviation σ varying from 0% to 20%

0

2

4

6

8

Ground truth FFT [17]

0

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

2.5

DCT [18] FM [15]

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Sylvester [28] CG-Poisson [42]

Fig. 6 Absolute errors for the “Peaks” dataset between the ground

truth and the numerical result of each method; see Table 3. Note the

different scales of the plots. To highlight the differences between all

methods we consider three different scales. The absolute error maps

of FFT and FM have their own scales due to the fact that the MSE

and the maximum error are very different in contrast to the other

methods. For DCT, Sylvester, and CG, which have similar values for

the MSE and the maximum error, we used the same scale to point

out the differences.

of ‖[p, q]T‖∞ to the known gradients 1©.

The graph in Fig. 7, which compares the MSE

versus the standard deviation of Gaussian noise,

indicates the robustness of the tested methods. The

best performance is achieved by FFT, DCT, and CG-

Poisson, even for strong noisy data with a standard

deviation of 20%.

The results of Sylvester are similar, but the

method suffers from weaknesses in examples with

noise of higher standard deviation, i.e., larger than

10%.

As the FM integrator accumulates errors during

front propagation, we observe, as expected, for

highly noisy data this integrator is no longer a useful

choice.

To conclude, if the accuracy of the given data is

not known then FFT, DCT, and CG-Poisson are the

safest integrators.

1©In the context of photometric stereo, it would be more realistic to

add noise to the input images rather than to the gradients [53].

Nevertheless, evaluating the robustness of integrators given noisy

gradients remains useful in order to compare their intrinsic

properties.

0 5 10 15 20

σ (%)

0

5

10

15

M
S

E
 (

p
x
)

FFT

DCT

FM

Sylvester

CG-Poisson

Fig. 7 MSE as a function of the standard deviation of a Gaussian

noise, expressed as percentage of the maximal amplitude of the

gradient, added to the gradient. FFT, DCT, and CG-Poisson

methods provide the best results for different levels of Gaussian noise.

The Sylvester method leads to reasonable results for a noise level

lower than 10%. Since the FM approach propagates information in a

single pass, it obviously also propagates errors, resulting in reduced

robustness compared to all other approaches.

3.6 Handling non-rectangular domains

In this experiment we consider the situation when

the gradient values are only known on a non-

rectangular part of the grid. Applying methods

needing rectangular grids [17, 18, 28] requires

empirically fixing the values [p, q] := [0, 0] outside

Ω (see Fig. 8), inducing a bias.

This can be explained as follows: filling the

gradient with null values outside Ω creates

discontinuities between the foreground and

background, preventing one from obtaining

reasonable results, since all solvers considered

here are intended to reconstruct smooth surfaces.

This problem is illustrated in Figs. 9 and 10 for the

“Vase” dataset; Table 4 gives corresponding values

for MSE and SSIM.

The methods can be classified into two groups.

In contrast to FM and CG-Poisson, FFT, DCT,

and Sylvester methods, which cannot handle flexible

Fig. 8 Mask for the “Vase” dataset. The gradient values are only

known on a non-rectangular part Ω of the grid, represented by the

white region. The FM and the CG-Poisson integrators can handle

easily any form of domain Ω. In contrast FFT, DCT, and Sylvester

rely on a rectangular domain and therefore the values [p, q] := [0, 0]

need to be fixed outside Ω, in the black region.

Ground truth FFT [17] DCT [18]

FM [15] Sylvester [28] CG-Poisson [42]

Fig. 9 Results on the “Vase” dataset; see Table 4.

0

2

4

6

8

10

Ground truth FFT [17]

0

2

4

6

8

10

0

2

4

6

8

10

DCT [18] FM [15]

0

2

4

6

8

10

0

0.5

1

1.5

Sylvester [28] CG-Poisson [42]

Fig. 10 Absolute errors for the “Vase” dataset between the ground

truth and the numerical result of each method; see Table 4. Note the

different scales of the plots. To highlight the differences between all

methods we use two different scales. The absolute error maps of FFT,

DCT, Sylvester, and FM have the same scale due as their maximum

errors are very close. For CG we use a different scale to point out the

differences.

domains, provide inaccurate reconstructions which

are not useful. The non-applicability of these

methods is a considerable problem, since real-

world input images for 3D reconstruction are

typically located within a photographed scene. This

requires the flexibility to tackle non-rectangular

Table 4 Results on the “Vase” dataset (320 × 320). Methods

dedicated to rectangular domains are clearly biased if Ω is not

rectangular. The corresponding reconstructed surfaces are shown in

Fig. 9

Method MSE (px) SSIM CPU (s)

FFT [17] 5.71 0.99 0.01

DCT [18] 5.69 0.99 0.02

FM [15] 0.71 1.00 0.15

Sylvester [28] 5.99 0.98 0.36

CG-Poisson [42] 0.01 1.00 0.52

domains, while providing accurate (and efficient)

reconstruction.

This experiment shows that all methods except

FM and CG-Poisson are not applicable as an

ideal, high-quality normal integrator for many

applications.

Let us note that we also have shown that FM

and CG-Poisson have complementary properties and

disadvantages: the former is fast but inaccurate,

and the latter is slow but accurate. This clearly

motivates the combination of FM as initialisation,

and a Krylov-based Poisson solver: these should

combine to give a fast and accurate solver.

3.7 Summary of the evaluation

In the previous experiments we tested different

scenarios which arise in real-world applications. It

was found that boundary conditions and noisy data

may have a strong effect on 3D reconstruction. If

rectangular domains can be considered, the DCT

method seems to be a realistic choice of a normal

integrator followed by Sylvester and CG-Poisson.

In fact the first is unbeatably fast. However, the

importance of handling non-rectangular domains,

which is a practical issue in many industrial

applications, cannot be underestimated. This

situation leads to inaccuracies in the reconstructions

of DCT and Sylvester methods. In this context FM

and CG-Poisson methods achieve better results.

One can observe a certain lack of robustness

w.r.t. noise of the FM integrator, especially along

directions not aligned with the grid structure: see

also the results in Ref. [29]. This is because of the

causality concept behind the FM scheme; errors that

once appear are transported over the computational

domain. This is not the case using Poisson

reconstruction, which is a global approach and

includes a regularising mechanism via the underlying

least squares model.

Due to the possibly non-rectangular nature of

the domains we aim to tackle, we cannot use fast

Poisson solvers as, e.g., in Ref. [18] to solve the

discrete Poisson equations numerically. Instead, we

explicitly construct linear systems and solve them

using the CG solver as often done by practitioners.

Nevertheless, the unmodified CG-Poisson solver is

still quite inefficient.

4 Accelerating CG-Poisson

Let us now demonstrate the advantages of the

proposed FM-PCG approach compared to other

state-of-the-art methods. In doing so, we give a

careful evaluation of all the components of our novel

algorithm.

4.1 Preconditioned CG-Poisson

In a first step we analyse the behaviour of the CG

solver when applying an additional preconditioner

intended to improve the condition number and

convergence speed w.r.t. the number k of iterations,

thus reducing time to reach the stopping criterion.

As examples of actual preconditioners, we

examined 1© IC(τ) and MIC(τ, α) for the test dataset

“Phantom” (see Fig. 11) for different input sizes.

It was observed that MIC(τ, α∗) beats IC(τ) if we

used α∗ = 10−3 for the global diagonal shift 2©. In

1©As pivot breakdowns for MIC(τ) are possible, we considered

the shifted MIC version MIC(τ, α). All methods are predefined

functions in MATLAB.

2©This is an experimentally determined value.

Fig. 11 “Phantom” image used in this experiment. Its gradient

is unknown, so we approximate it numerically by first-order forward

differences. We used this dataset for comparing preconditioners, for

different image sizes, from 64 × 64 to 4096 × 4096.

the following, for simplicity we write MIC(τ)∗ for

MIC(τ, α∗) 3©. The results for MIC(0)∗, without a

fill-in strategy, are shown in Table 5 (third column)

and demonstrate its usefulness compared to the non-

preconditioned CG-Poisson (second column). By

using MIC(0)∗ we save many iterations, greatly

reducing the time taken: for example one can save

around 2700 iterations and thus more than 1250 s

for an image of size 4096 × 4096.

Now we show how useful a fill-in strategy can be.

In columns four to eight we tested different fill-in

strategies from MIC(10−1)∗ to MIC(10−5)∗. A closer

examination of Table 5 shows that MIC(10−3)∗

provides the best balance between the time needed

to compute the preconditioner and the time needed

to apply PCG. As an example, again for the image

of size 4096 × 4096, we can reduce the number of

iterations from 247 to 80, taking around 170 s instead

of 290 s.

Thus, the application of preconditioning, here

shifted MIC, seems to be useful in accelerating the

CG-Poisson integrator, but it is not sufficient to be

competitive with common fast methods. However,

we will see that with proper initialisation, this

standard preconditioner can already be considered

to be as efficient.

4.2 Appropriate initialisation

The suggested preconditioned CG-Poisson (PCG-

Poisson) method is not widely known in computer

vision, although this practical method is surely not

new and commonly used in numerical computing.

However, we propose a novel scheme for the surface

normal integration (SNI) task, using an appropriate

3© If the value τ in MIC(τ)∗ tends to zero then the preconditioned

matrix is more dense, with more non-zero elements. As a

consequence, the preconditioner is better; however it costs more

time to compute the preconditioner itself.

Table 5 Number of iterations and CPU time required to reach a 10−4 relative residual for the conjugate gradient algorithm, using the shifted

modified incomplete Cholesky (MIC) preconditioner (α∗ = 10−3) with different drop tolerances and different “Phantom” sizes. The 10−3 drop

tolerance is the one which provides the fastest results. Using a larger drop tolerance allows a reduced number of required iterations, but the

time used for computing the preconditioner dramatically increases. Note that we were unable to compute the preconditioner MIC(10−5)∗ for

the 40962 dataset, because 32 GB of memory was insufficient

Size
No precond. MIC(0)∗ MIC(10−1)∗ MIC(10−2)∗ MIC(10−3)∗ MIC(10−4)∗ MIC(10−5)∗

It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s)

642 131 0.04 19 0.01 19 0.01 10 0.01 5 0.01 4 0.01 4 0.02

1282 236 0.14 29 0.05 29 0.05 15 0.04 9 0.04 6 0.06 7 0.12

2562 432 0.86 40 0.30 40 0.26 23 0.21 11 0.18 7 0.25 11 0.53

5122 604 4.75 70 1.43 70 1.50 28 0.88 18 0.89 13 1.22 14 2.29

10242 1059 35.55 91 7.38 91 7.52 49 5.15 30 5.02 19 5.96 24 11.83

20482 1718 233.49 160 49.89 160 49.89 79 31.29 49 28.76 34 35.09 39 65.06

40962 2969 1577.81 247 290.93 247 290.54 134 196.1 80 171.44 41 173.5 N/A N/A

initialisation to decrease the number of iterations

and reduce the run time cost. Our proposed method

consists of two steps: in a first step the FM solution

is computed in a fast and efficient way; after that,

the Krylov-based technique with shifted modified

incomplete Cholesky (MIC) is applied.

To show the effect of the new FM initialisation,

the test for the “Phantom” dataset was repeated

and evaluated anew; see Table 6. Starting from

the FM solution, which needs comparatively short

computation time (see Table 7) even for large images,

gives a dramatic speed-up.

A closer look at Tables 5 and 6 shows a significant

difference, even without a fill-in strategy (compare

both third columns). At first, let us consider the

case without preconditioner: starting with the trivial

solution leads to a constant increase in iterations

(factor around 1.7) as the image size increases

concomitantly. In contrast the number of iterations

increases very slowly when using FM initialisation.

The effect of this phenomenon is a notable, strong

time cost reduction for large data: for 512 × 512

images, we can save more than 2 s (from 4.75 to

2.48 s), and for 4096 × 4096 images the time can be

reduced from 1578 to 233 s.

Using additional preconditioning leads to similar

results. Testing anew MIC(τ)∗ with MIC(10−1)∗

to MIC(10−5)∗ shows once more that MIC(10−3)∗

provides the best results; see Table 6. Using FM

initialisation greatly reduces the required iterations

to reach the stopping criterion and therefore the

combination of FM and shifted MIC leads to fast

reconstructions. In the case of an image of size

4096 × 4096, the novel approach, including the time

taken to perform FM performing of 21.79 s (see Table

7), saves around 100 s (from 171 to 74 s) and 71

iterations compared with the trivial initialisation and

MIC(10−3)∗.

Finally, using the novel approach instead of the

standard CG-Poisson solver leads to a significant

speed-up; see Table 8. Without considering

the computation of the FM initialisation, the

construction of the system and the preconditioner,

the time to purely solve the system is vastly

reduced from 1552 to 19 s. The findings of this

experiment show impressively that choosing FM as

Table 6 Number of iterations and CPU time for applying the PCG algorithm, starting from the FM solution rather than from the trivial

state. The indicated CPU time includes the time for computing the FM initialisation. Using FM as an initial guess saves many computations:

the time to solve the 40962 problem is reduced from 26 min (with neither FM initialisation nor preconditioning, see second column in Table 5,

to 1 min (with FM initialisation and preconditioning, see column 6)

Size
No precond. MIC(0)∗ MIC(10−1)∗ MIC(10−2)∗ MIC(10−3)∗ MIC(10−4)∗ MIC(10−5)∗

It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s) It. CPU (s)

642 119 0.05 16 0.02 16 0.02 8 0.02 4 0.02 3 0.02 3 0.04

1282 210 0.17 25 0.10 25 0.10 13 0.09 7 0.09 5 0.12 6 0.16

2562 240 0.74 35 0.32 35 0.31 15 0.24 7 0.23 5 0.30 6 0.54

5122 281 2.48 36 1.18 36 1.21 15 0.92 9 0.93 5 1.07 6 2.22

10242 316 12.80 40 5.19 40 5.20 18 4.06 9 3.97 5 4.92 8 9.28

20482 339 55.44 45 23.14 45 23.28 19 13.08 9 17.12 5 21.47 8 39.91

40962 349 232.95 46 98.70 46 99.30 19 76.34 9 74.04 5 107.24 N/A N/A

Table 7 CPU time to perform FM on the “Phantom” dataset of

different sizes

Size 642 1282 2562 5122 10242 20482 40962

CPU (s) < 0.01 0.03 0.08 0.28 1.20 5.14 21.79

Table 8 Division of CPU time between system construction,

preconditioning and system resolution, for the 40962 example.

Knowing that the system and the preconditioner can often be pre-

computed, this makes even more obvious the gain one can expect

by choosing an appropriate initialisation such as the FM result. CG

refers to the resolution of the system by conjugate gradient, and +CG

to accelerated resolution by using FM initialisation (time does not

include the 21.79 s required for FM)

Syst. constr. Precond. CG +CG

No precond. 25.85 0 1551.96 185.31

MIC(10−3)∗ 25.85 7.50 138.09 18.90

initialisation accelerates the method greatly when

it comes to standard preconditioners like (shifted

modified) incomplete Cholesky. Thus, we believe

that our novel FM-PCG method with shifted MIC

preconditioning is a relevant contribution to the field

of fast and accurate surface normal integrators.

4.3 Evaluation of the FM-PCG solver

To clarify the strength of our proposed FM-PCG

solver against the standard FFT and DCT solvers

and the “Sylvester” method of Harker and O’Leary,

we use MSE to evaluate the reconstructions of

the datasets “Phantom”, “Lena”, “Peaks”, and

“Vase” on rectangular and non-rectangular domains.

At first we examine the “Phantom”, “Lena”,

and “Peaks” datasets on a rectangular domain

in Tables 9–11. All examples contain the natural

boundary equation; “Phantom” and “Lena” have

sharp gradients and are more realistic.

It should be clear that FFT and DCT are

the fastest methods, but the quality of FFT

is inadequate and the results are unusable.

Furthermore, it can be seen that the FM-PCG

solver is the best integrator for sharp gradients (see

Table 10).

Finally, the method with the best speed–quality

balance on rectangular domains is probably DCT,

Table 9 Results on the “Phantom” dataset (1024 × 1024)

Method MSE (px) CPU (s)

FFT [17] 138.6 0.06

DCT [18] 127.31 0.13

FM [15] 163.13 1.20

Sylvester [28] 169.41 5.78

FM-PCG 127.89 4.23

Table 10 Results on the “Lena” dataset (512 × 512)

Method MSE (px) CPU (s)

FFT [17] 402.37 0.02

DCT [18] 132.08 0.03

FM [15] 509.15 0.28

Sylvester [28] 113.92 0.71

FM-PCG 94.07 1.24

Table 11 Results on the “Peaks” dataset (128 × 128)

Method MSE (px) CPU (s)

FFT [17] 7.19 < 0.01

DCT [18] 0.09 < 0.01

FM [15] 0.8 0.03

Sylvester [28] 0.01 0.07

FM-PCG 0.02 0.07

followed by Sylvester and our proposed FM-PCG

solver. However, as already mentioned, simple

rectangular domains are quite unrealistic in many

applications in science and industry. Hence, we

analyse in Tables 12–15 the results on flexible

domains, as shown in Fig. 12. The given CPU time

includes FM initialisation.

All experiments show the expected behaviour of

the employed methods. The FM-PCG solution has

by far the best quality. It is even faster than the

Sylvester method. An assessment in relation to the

best balance of speed versus quality is not easy and

depends on the exact application. If speed is of

secondary importance then the best choice is FM-

PCG, otherwise DCT.

4.4 Real-world photometric stereo data

The previous examples are rather simple. For this

reason we consider a more realistic real-world

application in photometric stereo, which definitely

contains noisy data. We used the “Scholar”

(a) (b)

Fig. 12 Masks for the “Phantom”, “Lena”, “Peaks”, and “Vase”

datasets. It should be noted that FM and CG-Poisson work only

on the Ω represented by the white regions. By contrast, FFT,

DCT, and Sylvester work on the whole rectangular domain. (a) The

synthetic mask used for “Phantom”, “Lena”, and “Peaks” datasets.

(b) Realistic mask for the “Vase” dataset.

Table 12 Results on the “Phantom” dataset for the non-rectangular

domain in Fig. 12(a)

Method MSE (px) CPU (s)

FFT [17] 351.72 0.06

DCT [18] 309.72 0.14

FM [15] 162.43 0.70

Sylvester [28] 348.98 5.54

FM-PCG 131.02 2.06

Table 13 Results on the “Lena” dataset for the non-rectangular

domain in Fig. 12(a)

Method MSE (px) CPU (s)

FFT [17] 199.59 0.01

DCT [18] 149.00 0.03

FM [15] 444.02 0.19

Sylvester [28] 175.82 0.70

FM-PCG 123.64 0.65

Table 14 Results on the “Peaks” dataset for the non-rectangular

domain in Fig. 12(a)

Method MSE (px) CPU (s)

FFT [17] 15.69 < 0.01

DCT [18] 7.23 < 0.01

FM [15] 0.86 0.01

Sylvester [28] 7.20 0.06

FM-PCG 0.03 0.03

Table 15 Results on the “Vase” dataset for the non-rectangular

domain in Fig. 12(b)

Method MSE (px) CPU (s)

FFT [17] 5.71 0.01

DCT [18] 5.69 0.02

FM [15] 0.71 0.06

Sylvester [28] 5.99 0.38

FM-PCG 0.03 0.14

dataset 1©, which consists of 20 images of a

Lambertian surface, taken from the same angle

of view but under 20 known, non-coplanar lightings

(see Fig. 13).

The normals and the albedo were calculated

using the classical photometric stereo approach of

Woodham [3]. Then, we integrated the normals using

the different solvers. Eventually, we a posteriori

recomputed the normals by finite differences from

the recovered depth map, before “reprojecting” the

images using the estimated shape and albedo. By

comparing the initial images with the reprojected

ones, we obtain two criteria (MSE and SSIM)

for evaluating the methods on each image. The

results shown in Table 16 are the mean of the 20

1©http://vision.seas.harvard.edu/qsfs/Data.html

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 13 Application to photometric stereo (PS). (a)–(c) Three

images (among 20), of size 1070×1070, acquired from the same point

of view but under different lightings. After estimating the surface

normals by PS, we integrated them by (d) FM, before (e) refining this

initial guess by PCG iterations. The full integration process required

a few seconds. (f)–(g) MSE (in pixel) of the reprojected images,

computed from the surface estimated by (f) FM and (g) FM-PCG.

(blue is 0, and red is > 1000). Due to the local nature of FM, radial

propagation of errors is visible. After correction by CG, such artefacts

are eliminated. Remaining bias is due to shadows. These results are

experimentally compared with existing methods in Table 16.

Table 16 Results on the PS dataset. Our method (initialisation

by FM, then refinement by PCG from this initial guess) provides the

most accurate results. We show the CPU time, as well as the mean

MSE and SSIM for the 20 reprojected images

Method MSE (px) SSIM CPU (s)

FFT [17] 365.43 0.86 0.09

DCT [18] 330.55 0.87 0.15

FM [15] 582.65 0.78 0.45

Sylvester [28] 377.68 0.74 5.81

FM-PCG 286.69 0.88 6.25

corresponding values.

Once again FM-PCG is the most accurate

integrator and is as fast as the Sylvester method.

Nevertheless, the fast computational time of DCT

was unbeatable.

4.5 Handling outliers

Let us now consider the case of standard

photometric stereo applied to surfaces whose

reflectance incorporates an additive non-Lambertian

component (specularities). As can be seen from

Fig. 14 and Table 17, all the integration methods

we consider here are by their nature highly sensitive

to outliers.

In order to handle such outliers, we replace

the classic PI model in Eq. (7) by the modified

model in Eq. (11). As already pointed out, all the

methods relying on the Poisson equation can be

adapted to this model. Therefore, we can employ

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 14 (a)–(c) Three (out of 12) real-world images, of size 320 ×

320, of a photometric stereo dataset. The eyes of the owl are highly

specular. This induces a bias in the reconstructions, as shown in the

reconstructions using (d) FM or (e) the proposed FM-PCG integrator.

(f)–(g) The corresponding MSE of the reprojected images shows that

the bias is very localized (blue is 0, and red is > 1000).

Table 17 Results on the specular PS dataset (see Fig. 14). All

methods present a similar systematic bias due to outliers located on

the specular points

Method MSE (px) SSIM CPU (s)

FFT [17] 66.68 0.92 < 0.01

DCT [18] 46.16 0.95 0.01

FM [15] 94.25 0.90 0.09

Sylvester [28] 928.69 0.55 0.30

FM-PCG 40.48 0.96 0.24

here the FFT [17], DCT [18], and our new FM-

PCG methods. We found that using these modified

inputs for the other SNI methods, such as FM [15]

and Sylvester [28], also yields improved results.

Hence, our improved model can be considered as

a generic improvement for use with existing SNI

methods, enforcing robustness w.r.t. outliers. This

is illustrated in Fig. 15 and Table 18.

5 Conclusions and perspectives

We demonstrated the properties of the proposed

FM-PCG surface normal integrator. It combines

all the efficiency benefits of FM, Krylov-based

and preconditioning components while retaining

the robustness and accuracy of the underlying

variational approach.

All of the desirable properties in Section 4,

including especially the flexibility to handle non-

trivial domains are met by the proposed method.

(a) (b)

(c) (d)

Fig. 15 Results of (a) improved FM and (b) improved FM-PCG

methods introducing a smoothness constraint on the outliers. The

corresponding MSE maps (c) and (d) show that errors due to the

outliers are much reduced.

Table 18 Results of the improved methods on the same dataset as

in Table 17. All MSE are significantly reduced

Method MSE (px) SSIM CPU (s)

FFT [17] 17.26 0.95 < 0.01

DCT [18] 14.79 0.96 0.01

FM [15] 34.47 0.91 0.09

Sylvester [28] 21.93 0.88 0.31

FM-PCG 10.41 0.96 0.27

It is clear that the proposed new integration

scheme generates the most accurate reconstructions

independently of the underlying conditions. The

computational costs are very low and in most cases

the method is faster than the recent Sylvester

method of Harker and O’Leary. Only DCT is much

faster, but DCT results are of low quality when the

computational domain is not rectangular.

Therefore, the FM-PCG integrator is a good choice

for applications which require accurate and robust

3D reconstruction at relatively low computational

cost.

Nonetheless, our integration method remains

limited to smooth surfaces. Studying the impact

of appropriate preconditioning and initialisation on

iterative methods which allow depth discontinuities,

as for instance Refs. [9, 27], is an interesting

problem. We are considering extending our study

to multi-view normal field integration [54] to be an

exciting avenue, which would allow the recovery of

a full 3D shape, instead of a depth map.

References

[1] Pérez, P.; Gangnet, M.; Blake, A. Poisson image

editing. ACM Transactions on Graphics Vol. 22, No.

3, 313–318, 2003.
[2] Horn, B. K. P.; Brooks, M. J. The variational approach

to shape from shading. Computer Vision, Graphics

and Image Processing Vol. 33, No. 2, 174–208, 1986.
[3] Woodham, R. J. Photometric method for determining

surface orientation from multiple images. Optical

Engineering Vol. 19, No. 1, 191139, 1980.
[4] Zafeiriou, S.; Atkinson, G. A.; Hansen, M. F.; Smith,

W. A. P.; Argyriou, V.; Petrou, M.; Smith, M.

L.; Smith, L. N. Face recognition and verification

using photometric stereo: The photoface database and

a comprehensive evaluation. IEEE Transactions on

Information Forensics and Security Vol. 8, No. 1, 121–

135, 2013.
[5] Smith, M. L.; Stamp, R. J. Automated inspection of

textured ceramic tiles. Computers in Industry Vol. 43,

No. 1, 73–82, 2000.
[6] Esteban, C. H.; Vogiatzis, G.; Cipolla, R. Multiview

photometric stereo. IEEE Transactions on Pattern

Analysis and Machine Intelligence Vol. 30, No. 3, 548–

554, 2008.
[7] Haque, S. M.; Chatterjee, A.; Govindu, V. M.

High quality photometric reconstruction using a depth

camera. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2275–2282,

2014.
[8] Harker, M.; O’Leary, P. Least squares surface

reconstruction from measured gradient fields. In:

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 1–7, 2008.
[9] Durou, J.-D.; Aujol, J.-F.; Courteille, F. Integrating

the normal field of a surface in the presence of

discontinuities. In: Energy Minimization Methods in

Computer Vision and Pattern Recognition. Cremers,

D.; Boykov, Y.; Blake, A.; Schmidt, F. R. Eds.

Springer Berlin Heidelberg, 261–273, 2009.
[10] Klette, R.; Schlüns, K. Height data from gradient

fields. In: Proceedings of SPIE 2908, Machine Vision

Applications, Architectures, and Systems Integration

V, 204–215, 1996.
[11] Coleman Jr., E. N.; Jain, R. Obtaining 3-dimensional

shape of textured and specular surfaces using

foursource photometry. Computer Graphics and Image

Processing Vol. 18, No. 4, 309–328, 1982.
[12] Wu, Z.; Li, L. A line-integration based method

for depth recovery from surface normals. Computer

Vision, Graphics and Image Processing Vol. 43, No.

1, 53–66, 1988.
[13] Robles-Kelly, A.; Hancock, E. R. A graph-

spectral method for surface height recovery. Pattern

Recognition Vol. 38, No. 8, 1167–1186, 2005.
[14] Ho, J.; Lim, J.; Yang, M. H.; Kriegmann, D.

Integrating surface normal vectors using fast marching

method. In: Computer Vision–ECCV 2006. Leonardis,

A.; Bischof, H.; Pinz, A. Eds. Springer Berlin

Heidelberg, 239–250, 2006.
[15] Galliani, S.; Breuß, M.; Ju, Y. C. Fast and robust

surface normal integration by a discrete eikonal

equation. In: Proceedings of the 23rd British Machine

Vision Conference, 2012.
[16] Bähr, M.; Breuß, M. An improved eikonal method for

surface normal integration. In: Pattern Recognition.

Gall, J.; Gehler, P.; Leibe, B. Eds. Springer

International Publishing, 274–284, 2015.
[17] Frankot, R. T.; Chellappa, R. A method for enforcing

integrability in shape from shading algorithms.

IEEE Transactions on Pattern Analysis and Machine

Intelligence Vol. 10, No. 4, 439–451, 1988.
[18] Simchony, T.; Chellappa, R.; Shao, M. Direct

analytical methods for solving Poisson equations in

computer vision problems. IEEE Transactions on

Pattern Analysis and Machine Intelligence Vol. 12, No.

5, 435–446, 1990.
[19] Wei, T.; Klette, R. A wavelet-based algorithm for

height from gradients. In: Robot Vision. Klette, R.;

Peleg, S.; Sommer, G. Eds. Springer Berlin Heidelberg,

84–90, 2001.
[20] Kovesi, P. Shapelets correlated with surface normals

produce surfaces. In: Proceedings of the 10th IEEE

International Conference on Computer Vision, Vol. 2,

994–1001, 2005.
[21] Wei, T.; Klette, R. Depth recovery from noisy gradient

vector fields using regularization. In: Computer

Analysis of Images and Patterns. Petkov, N.;

Westenberg, M. A. Eds. Springer Berlin Heidelberg,

116–123, 2003.

[22] Karaçali, B.; Snyder, W. Noise reduction in

surface reconstruction from a given gradient field.

International Journal on Computer Vision Vol. 60, No.

1, 25–44, 2004.
[23] Agrawal, A.; Raskar, R.; Chellappa, R. What is the

range of surface reconstructions from a gradient field?

In: Computer Vision–ECCV 2006. Leonardis, A.;

Bischof, H.; Pinz, A. Eds. Springer Berlin Heidelberg,

578–591, 2006.
[24] Badri, H.; Yahia, H. M.; Aboutajdine, D.

Robust surface reconstruction via triple sparsity. In:

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2283–2290, 2014.
[25] Du, Z.; Robles-Kelly, A.; Lu, F. Robust surface

reconstruction from gradient field using the L1 norm.

In: Proceedings of the 9th Biennial Conference of

the Australian Pattern Recognition Society on Digital

Image Computing Techniques and Applications, 203–

209, 2007.
[26] Reddy, D.; Agrawal, A. K.; Chellappa, R. Enforcing

integrability by error correction using l1-minimization.

In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2350–2357, 2009.
[27] Quéau, Y.; Durou, J.-D. Edge-preserving integration

of a normal field: Weighted least squares, TV and L1

approaches. In: Scale Space and Variational Methods

in Computer Vision. Aujol, J.-F.; Nikolova, M.;

Papadakis, N. Eds. Springer International Publishing

576–588, 2015.
[28] Harker, M.; O’Leary, P. Regularized reconstruction of

a surface from its measured gradient field. Journal of

Mathematical Imaging and Vision Vol. 51, No. 1, 46–

70, 2015.
[29] Breuß, M.; Quéau, Y.; Bähr, M.; Durou, J.-D. Highly

efficient surface normal integration. In: Proceedings of

the 20th Conference on Scientific Computing, 204–213,

2016.
[30] Meister, A. Comparison of different Krylov subspace

methods embedded in an implicit finite volume scheme

for the computation of viscous and inviscid flow

fields on unstructured grids. Journal of Computational

Physics Vol. 140, No. 2, 311–345, 1998.
[31] Saad, Y. Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics, 2003.
[32] Durou, J.-D.; Courteille, F. Integration of a normal

field without boundary condition. In: Proceedings

of the 1st International Workshop on Photometric

Analysis for Computer Vision, 2007.
[33] Kimmel, R.; Sethian, J. A. Optimal algorithm for

shape from shading and path planning. Journal of

Mathematical Imaging and Vision Vol. 14, No. 3, 237–

244, 2001.
[34] Tsitsiklis, J. N. Efficient algorithms for globally

optimal trajectories. IEEE Transactions on Automatic

Control Vol. 40, No. 9, 1528–1538, 1995.
[35] Sethian, J. A. A fast marching level set method for

monotonically advancing fronts. Proceedings of the

National Academy of Sciences of the United States of

America Vol. 93, No. 4, 1591–1595, 1996.
[36] Helmsen, J. J.; Puckett, E. G.; Colella, P.; Dorr,

M. Two new methods for simulating photolithography

development in 3D. In: Proceedings of SPIE 2726,

Optical Microlithography IX, 253–261, 1996.
[37] Sethian, J. A. Level Set Methods and Fast Marching

Methods: Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and

Materials Science. Cambridge University Press, 1999.
[38] Yatziv, L.; Bartesaghi, A.; Sapiro, G. O(N)

implementation of the fast marching algorithm.

Journal of Computational Physics Vol. 212, No. 2,

393–399, 2006.
[39] Cacace, S.; Cristiani, E.; Falcone, M. Can local

single-pass methods solve any stationary Hamilton–

Jacobi–Bellman equation? SIAM Journal on Scientific

Computing Vol. 36, No. 2, A570–A587, 2014.
[40] Zimmer, H.; Bruhn, A.; Valgaerts, L.; Breuß, M.;

Weickert, J.; Rosenhahn, B.; Seidel, H.-P. PDE-

based anisotropic disparity-driven stereo vision. In:

Proceddings of the 13th International Fall Workshop

Vision, Modeling, and Visualization, 263–272, 2008.
[41] Meister, A. Numerik Linearer Gleichungssysteme.

Eine Einführung in Moderne Verfahren. Springer

Spektrum, 2014.
[42] Hestenes, M. R.; Stiefel, E. Methods of conjugate

gradients for solving linear systems. Journal of

Research of the National Bureau of Standards Vol. 6,

No. 49, 46–70, 1952.
[43] Meurant, G. Computer Solution of Large Linear

Systems. Elsevier Science, 1999.
[44] Meurant, G. The Lanczos and Conjugate Gradient

Algorithms: From Theory to Finite Precision

Computations. Society for Industrial and Applied

Mathematics, 2006.
[45] Golub, G. H.; van Loan, C. F. Matrix Computation,

3rd edn. Johns Hopkins, 1996.
[46] Meijerink, J. A.; van der Vorst, H. A. An

iterative solution method for linear systems of which

the coefficient matrix is a symmetric M -matrix.

Mathematics of Computation Vol. 31, No. 137, 148–

162, 1977.
[47] Kershaw, D. S. The incomplete Cholesky-conjugate

gradient method for the iterative solution of systems

of linear equations. Journal of Computational Physics

Vol. 26, No. 1, 43–65, 1978.
[48] Benzi, M. Preconditioning techniques for large linear

systems: A survey. Journal of Computational Physics

Vol. 182, No. 2, 418–477, 2002.
[49] Kaasschieter, E. F. Preconditioned conjugate

gradients for solving singular systems. Journal of

Computational and Applied Mathematics Vol. 24, Nos.

1–2, 265–275, 1988.
[50] Tang, J. M.; Vuik, C. Acceleration of preconditioned

Krylov solvers for bubbly flow problems. In: Parallel

Processing and Applied Mathematics. Wyrzykowski,

R.; Dongarra, J.; Karczewski, K.; Wasniewski, J. Eds.

Springer Berlin Heidelberg, 1323–1332, 2008.
[51] Manteuffel, T. A. An incomplete factorization

technique for positive definite linear systems.

Mathematics of Computation Vol. 34, No. 150,

473–497, 1980.

[52] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli,

E. P. Image quality assessment: From error visibility

to structural similarity. IEEE Transactions on Image

Processing Vol. 13, No. 4, 600–612, 2004.
[53] Noakes, L.; Kozera, R. Nonlinearities and noise

reduction in 3-source photometric stereo. Journal of

Mathematical Imaging and Vision Vol. 18, No. 2, 119–

127, 2003.
[54] Chang, J. Y.; Lee, K. M.; Lee, S. U. Multiview

normal field integration using level set methods. In:

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 1–8, 2007.

Martin Bähr is a Ph.D. student

in mathematics at the Brandenburg

Technical University in Germany. He

received his master degree in applied

mathematics at the same university

in 2013. Since 2013, he works in

the applied mathematics group with a

scientific focus on mathematical image

processing. His research interests include partial differential

equations and numerical methods for image processing and

computer vision.

Michael Breuß received his doctorate

degree in mathematics from the

University of Hamburg in 2001, and

the habilitation in mathematics from

the Technical University in Brunswick

in 2006. For several years, he had

been a member of the mathematical

image analysis group in Saarbrücken,

Germany. Since 2016, he is professor for applied

mathematics at the Brandenburg Technical University in

Cottbus, Germany. His research interests are mainly in

mathematical image processing and 3D vision, and include

in particular numerical methods.

Yvain Quéau is a postdoctoral

researcher at Technical University

Munich. He received his Ph.D.

degree in computer science from INP-

ENSEEIHT, Université de Toulouse,

in 2015. His research interests include

3D-reconstruction by photometric

techniques (shape-from-shading and

photometric stereo), as well as variational methods for

solving computer vision and image processing problems.

Ali Sharifi Boroujerdi is a Ph.D.

student at the Brandenburg Technical

University in Germany. After being a

bachelor of software engineering, he

received his master degree in software

engineering in 2013. His research

interests include dynamic programming

techniques as well as the field of

artificial intelligence in general, especially deep learning,

reinforcement learning, and big data analysis.

Jean-Denis Durou received his

Ph.D. degree in computer science from

the Université Paris Sud-Orsay in

1993, and the “Habilitation à Diriger

les Recherches” from the Université

Toulouse III-Paul Sabatier in 2007.

He is an assistant professor at the

Université Toulouse III since 1994, and

a member of the VORTEX team at the IRIT Laboratory.

His main research interest is 3D-vision. He is more

specifically interested in photometric 3D-reconstruction,

i.e., shape-from-shading and photometric stereo.

Open Access The articles published in this journal

are distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits

unrestricted use, distribution, and reproduction in any

medium, provided you give appropriate credit to the

original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were

made.

Other papers from this open access journal are available free

of charge from http://www.springer.com/journal/41095.

To submit a manuscript, please go to https://www.

editorialmanager.com/cvmj.

