
HAL Id: hal-01712542
https://hal.science/hal-01712542

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Goals Approach: Agile Enterprise Driven Software
Development

Pedro Valente, Thiago Rocha Silva, Marco Winckler, Nunes Nuno

To cite this version:
Pedro Valente, Thiago Rocha Silva, Marco Winckler, Nunes Nuno. The Goals Approach: Agile
Enterprise Driven Software Development. 25th International Conference on Information Systems
Development (ISD 2016), Aug 2016, Katowice, Poland. pp.1-6. �hal-01712542�

https://hal.science/hal-01712542
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18844

The contribution was presented at ISD 2016:
http://www.isd2016.ue.katowice.pl/

To cite this version : Valente, Pedro and Rocha Silva, Thiago and Winckler,
Marco Antonio and Nuno, Nunes The Goals Approach: Agile Enterprise
Driven Software Development. (2016) In: 25th International Conference on
Information Systems Development (ISD 2016), 24 August 2016 - 26 August
2016 (Katowice, Poland).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

P. Valente (*)

University of Madeira, Funchal, Portugal

e-mail: pvalente@uma.pt

T. Silva

Université Paul Sabatier, Toulouse, France

e-mail: rocha@irit.fr

M. Winckler

Université Paul Sabatier, Toulouse, France

e-mail: winckler@irit.fr

N. Nunes

Madeira Interactive Technologies Institute, Funchal, Portugal

e-mail: njn@uma.pt

The Goals Approach: Agile Enterprise Driven

Software Development

Pedro Valente, Thiago Silva, Marco Winckler and Nuno Nunes

Abstract. Continuous Business Process Improvement (BPI) is necessary in order to
maintain and develop the enterprise competitiveness. However, achieving a level of
software development performance that matches enterprise needs in terms of pro-
ducing noticeable results within small amounts of time is a persnickety task, mainly
because most available methods do not deliver full software architectures that can be
directly used for in-house software development without iterations between imple-
mentation and design, as produced specifications are too close to the user interface,
or too close to business regulations and domain modeling. Our approach applies a
method that structures business processes, business rules and domain concepts, and
uses this information in order to identify user tasks (use cases) and interaction spaces,
and by means of their detail, methodically specify the software architecture for a
particular BPI, bridging business and software using cross-consistent concepts. We
present a theoretical example, and the validation of our method.

Keywords: Enterprise Engineering · Software Engineering · Human-Computer In-
teraction · Enterprise Architecture · Software Architecture

1 Introduction

Software development within enterprises still lacks accuracy, and effectiveness is

still far from being achieved as project full-success rates are still as low as 30% [1],

and there is still a long bridge to cross until software development within enterprises

is achieved in a patterned way, and established as a consistent source of revenue

following investment within enterprises [2]. Nevertheless, the advances of Software

Engineering (SE) have at least taken us from a chaotic state of the practice [3], to a

more inspiring situation where enhanced executive management support, agile meth-

ods, and increased user involvement are appointed as factors for software project

success [4].

Our work is inspired by the need to improve software project success rates within

enterprises, where the establishment of a tool that enhances communication capabil-

ities between both Enterprise Engineering (EE) and Software Engineering (SE)

knowledge-based expertise can be seen as crucial for the effectiveness of the Soft-

ware Development Process (SDP) that may be applied. However, this enhancement

can only be achieved if a common framework of shared concepts of the business and

software domains is established and used to build the Information System, which

today can be seen an inherent part of the global enterprise system.

We present the Goals Approach, which focuses on tailored in-house development

of Information Systems for Small and Medium Enterprises, which is characterized

by needs of agility concerning the supportive SDP in order to allow the achievement

of tangible results in limited amounts of time and budget [5]. Goals defines a SDP

that applies a straightforward method that analyses the enterprise in a top-down pro-

cess in order to elaborate a business model, called as Enterprise Structure. And con-

tinues by detailing the Enterprise Structure components using cross-consistent con-

cepts in order to design the User Interface, the Business Logic and the Database,

including the Enterprise Structure as the back-bone of a final Software Architecture,

which can be used for in-house software development management.

Briefly, the Goals conceptual structure (back-bone Enterprise Structure compo-

nents are underlined) includes: the human interaction which is represented by means

of Business Processes, User Tasks, User Intentions and User Interactions; the User

Interface which is represented by Aggregation Spaces, Interaction Components, In-

teraction Objects, and Interaction Spaces; which (the last one) can also be used by its

Business Logic, which is composed by Business Rules, User Interface and Database

System Responsibilities; and the Database which is composed by Data Entities and

Fields.

This paper focuses on the validation of the cross-consistency of concepts that sup-

ports each component, and provides insight on how each can be implemented. The

related work to our approach is presented in Section 2, the Goals Approach SDP and

Structure are presented in Section 3. The method is presented in Sections 4 (Analysis

Phase) and 5 (Design Phase), the cross-consistency validation is presented in Section

6, and the conclusions and future work are presented in Sections 7 and 8.

2 Related Work

Considering enterprise-driven development in the EE domain, our approach is dis-

tinct from the DEMO-based GSDP [6] as it provides a structured user interface spec-

ification. e3Value [7], is a method which also relies on the GSDP, and models the

business for value adding the “value interface” inputs and outputs, yet, also not

providing a user interface elaboration solution. Still in EE, our approach can be com-

pared to Archimate [8] and BPMN [9] in the perspective that it provides an enterprise

and software structuring language. It is however different in the perspective that it

applies a method to specify a business model and derive a software architecture.

Our approach can be compared to the business-oriented ‘Management by projects’

[10], ITIL [11], and the SE’ SCRUM [12] and XP [13] methods, which also define

techniques and architecture for BPI, yet, none of these methods specifies the software

architectural pattern that should be used. Goals can be used by these methods for

software architectural specification, and in the cases of SCRUM and XP for the spec-

ification of architectural spikes regarding iterative implementation, matching agile

software architecture [14], as Goals further structures the enterprise business model.

Regarding the Human-Computer Interaction perspective, the closest solutions are

methods that settle for user interface conception based on user task and domain mod-

els [15, 16]. Our approach is different as it complementarily conceives the Business

Logic layer based on enterprise business regulations and coordination structures.

3 Software Development Process

Goals is an Enterprise-Driven Human-Centered Software Engineering (HCSE)

method that bridges enterprise requirements and software implementation by means

of a business model. It introduces the Interaction Space as the space that supports

both in-person and remote interaction whilst applying the same business regulations

and data concepts. The Interaction Space bridges the Business Processes and its User

Task’s human interaction, and establishes a relation with the Business Rule and Data

Entity concepts in order to architect the Enterprise Structure (the business model)

which is the back-bone of Software Architecture.

Goals was developed for over a decade of applying the HCSE Wisdom Approach

[17] in software practice in a SME. Wisdom provides the (original) definition of In-

teraction Space (IS) and the architectural technique that bridges human interaction

and system behavior (based on the IS), expressed by User Tasks and Business Rules

in the Enterprise Structure, and by User Interactions and System Responsibilities in

the Software Architecture. It uses DEMO [18], for the definition of Business Process

and Business Rule, Activity Modeling (AM) [19], for the cornerstone definition of

User Task. And uses Hydra [20], for the User Interface definition of Aggregation

Space, and BDD [21] for system behavior specification, both concerning the Soft-

ware Architecture elaboration.

The Goals Approach Software Development Process (SDP) integrates the Enterprise

Engineering (EE) and Human-Computer Interaction (HCI) perspectives in the pro-

cess of defining a Software Architecture for a given Business Process Improvement

(BPI) in two phases: the Analysis Phase which elaborates the Enterprise Structure,

and the Design Phase which elaborates the Software Architecture.

The Analysis Phase identifies Business Processes (BP) in Step 1, User Tasks (UT),

in Step 2, Interactions Spaces (IS) in Step 3, Business Rules (BR) in Step 4, and Data

Entities (DE) in Step 5, composing the Enterprise Structure. The Design Phase details

and complements the Enterprise Structure by means of a User-Centered Design

(UCD) perspective, specifying each UT by means of a Task Model (Step 6), designs

the User Interface (Step 7), and structures the Business Logic (Step 8) and the Data-

base (Step 9), finishing with the elaboration of a final Software Architecture (Step

10), given an MVC architectural pattern [22].

The process continues with the Implementation and Testing Phases (which detail

is out of the scope of the present paper), and uses the Software Architecture to guide

the software development, and the User Interface Design, Task Model and User Sto-

ries to guide the Information System test before deployment. Figure 1 illustrates the

SDP Analysis and Design Phases using a BPMN diagram [9], and each EE, HCI and

SE domain’s contribution and cooperation suggestions for each Step.

Fig. 1. Goals Software Development Process.

The Enterprise Structure is the Goals business model, and is composed of Business

Processes (BP) and its User Tasks (UT), which are Essential Use Cases [19]. Actors

communicate by means of Interaction Spaces (IS) when carrying on their UTs, which

apply Business Rules (BR) that represent business regulations which are applied over

used Data Entities (DE). Each component is identified in a top-down methodological

process, and its definition, origin and symbol is presented in Table 1.

Table 1. Enterprise Structure components definition, origin and symbol.

Component Definition Origin Symbol

Business Process

(BP)
A Set of UTs that lead to a Goal DEMO

User Task

(UT)
A Complete Task within a BP AM

Interaction Space

(IS)
The Space that supports a UT Wisdom

Business Rule

(BR)

A Restriction over DE’s Structural

Relations
DEMO

Data Entity

(DE)

Persistent Information about a

Business Concept
Wisdom

Briefly, the Software Architecture is composed by one Aggregation Space [20] per

UT, which is composed by Interaction Components and Interaction Objects that trig-

ger User Interface and Database System Responsibilities (SR), which architecturally

use the ISs, BRs and DEs associated to that UT ensuring traceability between busi-

ness and software. Each Software-Specific component is presented in Table 2.

Table 2. Software Architecture Software-Specific Components.

Component Definition Origin Symbol

Aggregation

Space (AS)
A User Interface Hydra

Interaction

Component (IS)
Tool of a User Interface Goals

Interaction

Object (IO)

A User Interface Object that triggers

SRs
Goals

User Interface

SR (UI SR)

A SR that provides support for User

Interface presentation
Goals

Database

SR (DB SR)
A SR that manages Data Entities Goals

4 Analysis Phase

The Analysis Phase defines a top-down methodological process that identifies and

relates each Enterprise Structure component in five Steps, which are presented in

Sections: 4.1 (Step 1 - Business Process Identification), 4.2 (Step 2 – User Task Iden-

tification); 4.3 (Step 3 – Interaction Space Identification); 4.4 (Step 4 – Business Rule

Identification); and 4.5 (Step 5 – Data Entity Identification).

4.1 Step 1 - Business Process Identification

Goals defines a Business Process (BP) as “A set of User Tasks that lead to a Goal”.

The Goal is the objective, and also names the BP. It is expressed as a unique set of

related enterprise business concepts (Data Entities) which support the BP execution,

and that will compose the enterprise domain model as will be presented in Step 5 –

Data Entity Identification. The relation between the BP and the set of managed busi-

ness concepts increases awareness on the problem begin solved, and also the com-

munication capability between project stakeholders by means of the in-depth of their

knowledge on the specific part of the enterprise that is being evolved. This facilitates

the BPI development, and in practical terms results in faster and more productive

project meetings, increasing the probability developing projects in fewer time.

The relation between BPs and Data Entities is useful to design the enterprise BP

Model, which relates BPs, Actors and Data Entities, increasing the perception on

how a BP uses and produces certain business concepts from a higher level, which is

useful for business management. We present the BP Model, by means of the appli-

cation of the Process Use Cases Model [23] adapted to the current Goals notation.

The meta-model and an example are presented in Figure 2.

Fig. 2. Business Process Model meta-model, and BP Model example.

Figure 2 presents the meta-model of the BP Model, in which it can be read that only

one actor can “Initiate” a BP, but an unlimited number of Actors can participate in

it, and also, that an unlimited number of Data Entities can be used and produced by

a BP. It also presents an example where Actor A initiates the BP, Actors B and C

participate in it, and the Data Entity A is used and the Data Entity B is produced.

4.2 Step 2 – User Task Identification

The User Task (UT) definition is derived from the concept of Essential Use Case

(EUC) [19], which defines a Use Case as a “complete and meaningful task (carried

out in relationship with a system)”. This definition is adapted to the enterprise context

based on the principle that the Business Process (BP) is a sequence of UTs, and that

each UT is carried out by a single Actor. Since a BP always has a limited number of

tasks, all UTs can be considered as meaningful, thus, we abandon the “meaningful”

term and define a UT as “A Complete User Task within a BP”. We also apply the

principle that an Actor (a user) never carries on two UTs consecutively and sepa-

rately, which is an axiom that aims user performance and software development ef-

ficiency by inducing the reduction of the articulatory distance of the UT i.e. the user’s

effort [24], and by suggesting that the necessary tools should be provided using as

little user interface implementation space as possible. If two UTs are consecutive,

then they can be merged in a single sequence of acts, expressed by a single UT,

leading to is completion in the same way.

The relations between UTs are what designs a BP. The consecutive relation is the

most common, as it supports the most common BP flow. Yet, it is not sufficient to

represent more complex services that must be available in different interaction points

(identified as touchpoints by the Service Design domain) which usually have back-

end support, and may be visited by the customer, but not necessarily and always in a

pre-defined order. This need for flexibility can be attained by the definition of con-

ditional relation, and thus, we further define it (the conditional relation), meaning

that the execution of a specific UT or BP path is conditioned to the will of the Actor.

This reflects the case when an enterprise suggests its customers the execution of a

given action in sequence of any other interaction but will never be sure that they will

follow the suggestion, and yet continues to provide the remaining service.

Fig. 3. User Task meta-model and example.

Figure 3 presents the meta-model of the UT, in which further defines that one

Actor can carry on many UTs and that a UT can also be carried out by many Actors

defining cooperative collaboration; one BP can have many UTs; one UT can belong

to many BPs; and UTs are related consecutively or conditionally. The example shows

the initial UT being triggered by Actor A and consecutive B and C UTs being carried

out by Actors B and C, and the response tasks, D and E (which path is conditional)

being carried out by Actors B and A respectively.

4.3 Step 3 – Interaction Space Identification

The Interaction Space (IS) definition is derived from Wisdom original concept of

Interaction Space, as a user interface space where the “user interacts with functions,

containers and information in order to carry on a task”. We adapt this concept to the

enterprise context by means of its generalization, in order to complementarily con-

sider the support of the UT in person, as in any of the cases (remote or in person),

the same Business Rules (BR) and Data Entities (DE) also apply. We (re)define the

IS extension as “The Space that supports a UT (with the same BRs and DEs)”. Hence,

one IS supports the interaction between two users in person or remotely while each

one carries on his own UT. Even if many UTs are carried by out many Actors in a

cooperative way, the UTs will still be different. If two Actors carry on the same UT

remotely, then they are performing cooperative work [25].

The identification of ISs is derived from the interaction between sequenced UTs,

in order to support one Actor request and other Actor response, as in any case the

same BRs and DEs apply. Figure 4 presents the meta-model that specifies that an IS

supports many UTs based on the interaction between Actors, with at least a consec-

utive relation and at most one conditional relation.

Fig. 4. Interaction Space meta-model and example.

The example shows the derivation of ISs in order to support the interaction between

Actors A and B, and Actors B and C, by means of ISs A (a Request IS) and B (a

Coordination IS) respectively, which is possible since the set of UTs A, B, D and E

are subject to the same BRs and DEs, and the same happens in the case of UTs B, C

and D. If another interaction between Actors A and B would occur (e.g. between

User Task E and F), then a new IS should be defined (e.g. C) in order to support that

interaction.

4.4 Step 4 – Business Rule Identification

The Business Rule (BR) definition is provided by DEMO notion of Action Rule,

which defines a structure of decision (using pseudo-code) that applies restrictions to

Object Classes concerning the execution of business Transactions. These restrictions

are paradigmatic relations (considering a semiotic association) which are applied to

the syntactic relations (also considering a semiotic definition) which exist between

Data Entities (DE), in order to produce a new valuable and more complex business

concept. Hence, we define BR as “A Restriction over DE’s Structural Relations”.

BRs represent regulations or explicitly defined requirements that should be elicited

in order to understand the restrictions which the user is subject to when carrying on

a UT, and do not represent collaboration impositions with other Actors, since these

rules are already expressed by the BP design.

Fig. 5. Business Rules meta-model and example.

The BRs are the grounding foundation of the Information System’ Business Logic,

as they are the only business-specific programmed class concerning this layer, the

middleware of the system. The Business Logic will also be complemented in Step 8

– Business Logic Structuring, with programmed parts responsible for presentation

and data management.

Figure 5 presents the meta-model, which defines that an IS can use many BRs,

and that a BR can be used by many ISs, and also defines that a BR can use one to

many DEs, and that a DE can be used by many BRs. The example shows that IS A

uses BRs A and B, and that IS B is used only by BR B. It also defines that BR A uses

DE A, and that BR B uses DEs A and B.

4.5 Step 5 – Data Entity Identification

The Data Entity (DE) definition is provided by Wisdom as a class of “Persistent In-

formation about a Business Concept”. This means that persistency will be maintained

by the Information System, and that it will enclose meaningful concepts which are

recognized within the enterprise by those who have knowledge about it. DEs are

related between each other, allowing a simple representation of reality which is made

available by means of a Database application. Those "meanings" enclose attributes.

In terms of common database objects, DEs are expressed as tables, and attributes are

expressed by fields [26]. DEs are related between each other by means of semiotic

syntactic relations, which are expressed in Goals using a UML association [27], also

implying the definition of multiplicity between the related DEs. Multiplicity will typ-

ically be of one-to-many or many-to-many. The definition of a specific multiplicity

(e.g. 1 to 5) is uncommon, and should be expressed by a BR due its volatility (as it

will eventually change). The definition of relations of one-to-one is also uncommon

as in those cases the DEs meanings can usually be conciliated in a single DE.

As mentioned in Step 1 - Business Process Identification, the identification of DEs

should be carried along the BP design and consequential Steps, so that the analyst

develops a well-defined notion of the concepts involved in the BPI under analysis.

In the current Step, the DEs only need to be identified and related to the BRs in order

to compose the Enterprise Structure, the final artefact of the Analysis Phase, as illus-

trated in Figure 6, with the DEs as the support of the Enterprise Structure.

Fig. 6. Enterprise Structure meta-model and example.

The Enterprise Structure presented in Figure 6 is composed by every identified com-

ponent until this moment and also by their relation to other components, with no

changes. It represents a relation which is representative of the enterprise in terms of

a logic that relates Business Processes (BP), User Tasks (UT), Interaction Spaces

(IS), Business Rules (BR) and Data Entities (DE) in terms of dependency and func-

tional specification. It can be used in order to identify the implications of changing

the enterprise in terms of its impact in the software structure, since, changing BPs,

UTs or BRs, which is common in the business management domain, will inevitably

change the underlying information system to which the 3 lower levels layers (IS, BR

and DE) are an inherent part, as they are also part of the Software Architecture.

5 Design Phase

The Design Phase details and complements the Enterprise Structure with new soft-

ware-specific components that build-up the Software Architecture in a top-down

methodological process in five Steps, which are presented in Sections: 5.1 (Step 6 –

Task Model), 5.2 (Step 7 – User Interface Design), 5.3 (Step 8 – Business Logic

Structuring), 5.4 (Step 9 - Database Structuring), and 5.5 (Step 10 – Software Archi-

tecture Composition).

5.1 Step 6 – Task Model

The Task Model details User Tasks (UT) in order to obtain information to carry on

the User Interface design, which happens in Step 7 – User Interface Design. The Task

Model follows the technique applied in the Wisdom method in order to specify the

UT in terms of User Intentions (steps that the user takes to complete the task) and

System Responsibilities (that provide the necessary information), following a tradi-

tional decomposition of an Essential Use Case (EUC) [19].

The decomposition of the UT in terms of User Intentions is carried out by means

of the Concur Task Trees (CTT) technique [28]. CTT defines the User Intentions in

the perspective of what the user wishes to do in order to obtain what the wants from

the system and complete his UT. Each User Intention has an associated System Re-

sponsibility (SR) that provides the necessary information to an Interactive Compo-

nent that supports user interaction. The SR is a programmed class which is part of

the Information System’ Business Logic.

The Task Model is represented using an Unified Modeling Language (UML) Ac-

tivity Diagram [27], defining the flow of User Intentions that lead to the accomplish-

ment of the UT. Each User Intention uses an Interaction Component that in its turn

uses a SR. These are User Interface SRs. The last User Intentions always leads to

SRs that manage information, which are Database SRs. In the case when new Data

Entities are identified by means of the Task Model elaboration, then they must also

be represented in the DE’s structure, a design task that will be specified in Step 9 -

Database Structuring.

Fig. 7. Task Model’s meta-model and example.

Figure 7 presents the meta-model of the Task Model, where it can be read that a UT

has many User Intentions, which have up to n initial User Interactions, and up to m

last User Interactions that use m+n Interaction Components (which compose the Ag-

gregation Space that will support the UT). Each Interaction Component supports one

User Intention, and uses one User Interface SR or one Database SR. The example

shows the decomposition of UT A of the designed BP, which has two initial User

Intentions (A and B) and one final (C). User Intentions A and B relate to User Inter-

face SRs A and B, and User Intention C relates to Database SR A, meaning that the

UT can be carried out by means of 3 interactions, which are supported by 3 System

Responsibilities and 3 Interaction Components.

5.2 Step 7 – User Interface Design

The User Interface Design is carried out by means of the application of the Behavior

Driven Development (BDD) method [21] that further specifies each User Intention,

and also frames it in terms of used Aggregation Spaces (AS), specifying the naviga-

tion between User Tasks (UT). BDD is an agile software development method that

describes the system behavior based on a User-Centered Design (UCD) perspective,

producing pseudo-code for User Interface specification. BDD specifies User Stories

for a system feature (a UT) which is used within a certain scenario (the Aggregation

Space), resulting in specific behavior which is generated by the system in the User

Interface. The pseudo-code has the following syntax.

Given [State] When [Interaction] Then [System Behavior]

Where [State] represents the actual the state of the system (which identifies the Ag-

gregation Space where the UT occurs); [Interaction] is a flow of User Interactions;

and, [System Behavior] is the expected outcome that triggers User Interface and Da-

tabase System Responsibilities by means of Interaction Objects. BDD also specifies

the Data Entities (DE) Fields used in each User Interaction. This specification facil-

itates the mapping between Systems Responsibilities and DEs that occurs in Step 8

– Business Logic Structuring, and the completion of the Database specification that

happens in Step 9 - Database Structuring. BDD’s User Stories are represented by an

UML Activity Diagram, and use the pseudo-code which is presented in Table 3.

Table 3. Relation between BDD’ pseudo code syntax and Software Architecture’ components.

BDD pseudo-code Goals Component

Feature 'Feature' User Task 'Feature'

Scenario 'Scenario' User Intention 'Scenario'

Click, Choose, Set User Intentions 'Click' or 'Set'

Display 'Page' or Go to 'Page' User Interface SR 'Display Page' + AS 'Page'

Field Data Entity Field

[Then] (last) System Responsibilities

Figure 8 presents the User Interaction meta-model and an example of a User Story

that specifies each Task Model’ User Intentions in terms of Interaction Objects that

match the already identified Interaction Components (IC) and SRs when there is only

one User Interaction. And that divide in distinct Interaction Objects when there is

more than one User Interaction, as in the case of User Interface SRs B.1 and B.2 that

support two Interaction Objects (for “Type” and “Choose”) of IC B.

Fig. 8. User Interaction meta-model and example.

Figure 9 shows a representation of the User Interface which defines that the Aggre-

gation Space A uses ICs A, B and C, which trigger the User Interface SRs A, B.1 and

B.2, and Database System Responsibility A by means of the Interaction Objects pre-

sented in the User Interface. The relation with Interaction Space A is inherited from

the Enterprise Structure.

Fig. 9. User Interface Design example.

5.3 Step 8 – Business Logic Structuring

The Business Logic Structuring is carried out by defining the relations that each Sys-

tem Responsibility (SR) and Business Rules (BR) has to Data Entities (DE), since

the relation with the User Interface components is already established at this stage.

Figure 10 shows the manual mapping that was done between SRs and DEs. BR A

is inherited from the Enterprise Architecture, as also is its relation with DE A. User

Interface SR A has been mapped to DE A, and it is assumed that Field A and B

identified in Step 7, belong to DE B, which is the reason why User Interface SRs B.1

and B.2 are related to DE B. By means of the analysis of the semantic of the Database

SR A, it is assumed that there was a decision to relate it to both DEs A and B.

Fig. 10. Business Logic Structure example.

5.4 Step 9 - Database Structuring

The Database Structuring is now possible since all Data Entities (DE) are identified.

Two DEs (A and B) have been identified, and DE B provides information for Fields

A and B. We assume for purposes of example that DE A can only related to a single

record in DE B, yet, on the contrary, any record in DE B can be related to many

records in DE A. Figure 11 presents the Database Structure.

Fig. 11. Database Structure example.

5.5 Step 10 – Software Architecture Composition

The composition of the Software Architecture is carried out by relating in a single

diagram every component identified by means of the execution of Steps 1 to 9, in-

cluding the Business Process and User Tasks, and the hybrid Enterprise Structure

and Software Architecture components of: Interaction Space, Business Rule and

Data Entity, as well as the Software-Specific components.

Fig. 12. Software Architecture example.

Figure 12 presents the specified Software Architecture, in which the User Task (UT)

A is now supported by Aggregation Space A and the underlying software structure,

whilst UTs B, D and E are still not automated, reason why they are directly related

to Interaction Space (IS) A. UT C and IS B and Business Rule B are not represented.

The Software Architecture can be used in order to specify implementation respon-

sibilities for a software development team and implementation priority. Priority will

usually be from bottom-to-up, since the upper objects use the bottom ones. Applying

the technique to the example architecture, the precedence of implementation would

be: DE B (since it will be used in), DE A, Business Rule A, Database SR A, User

Interface SRs B.1 and B.2, and only then User Interface SR A. Interaction Compo-

nents A, B and C can follow any order, and once Interaction Space A and Business

Rule A are developed, the Aggregation Space A can be implemented and tested.

6 Research Method and Validation

The research method of our approach was based on the question of if it would be

possible to establish a relation between enterprise valuable concepts and the imple-

mentation of a supporting system. And by placing the hypothesis that it is possible if

a cross-consistent definition of concepts is established between the business concepts

that specify human interaction, and from them, derive the components of the archi-

tecture of a software system respecting specified business regulations. The cross-

consistency between concepts is formalized by means of the application of the Cross-

Consistency Assessment (CCA) [29] method to the Software Architecture compo-

nents. Complementarily, we also use the CCA relation of concepts for purposes of

architectural specification aiming software development clarification by means of

providing implementation options insight.

The Software Architecture includes the five defined Software-Specific compo-

nents (as previously presented in Table 2): Aggregation Space (AS), Interaction

Component (IC), Interaction Object (IO), User Interface System Responsibility

(UISR) and Database System Responsibility (DBSR); and the three hybrid Enterprise

Structure components (which were also previously presented in Table 1): Interaction

Space (IS); Business Rule (BR) and Data Entity (DE). Concerning software devel-

opment, each component assumes distinct implementation options, as follows:

· Aggregation Space (AS). A User Interface, a Web Page that includes other Web

Pages (Interaction Components), including an HTML presentation template [20].

· Interaction Component (IC). User Interaction for presentation and interaction

support. A web Page, including an HTML template and a configuration artefact.

· Interaction Object (IO). A User Interface object that allows interaction. An

HTML element e.g. Text Field; Checkbox; Radio Button: Dropdown List; Button.

· User Interface SR (UI SR). Programmed routine that supplies a recordset to be

used in one or more ICs. An SQL Server Stored Procedure, View, or JAVA pro-

grammed class.

· Database SR (DB SR). Programmed routine that receives a recordset and saves

it in the Database. An SQL Server Stored Procedure or JAVA programmed class.

· Interaction Space (IS). Programmed routine that can be invoked by any Soft-

ware-Specific component in order to validate the data received in the User Inter-

face, and sent to the Database.

· Business Rule (BR). Programmed routine that provides validation about the data

which is transferred between the Interface and the Database.

· Data Entity (DE). Tables and Fields [26].

The Software Architecture components are presented in Figure 13 from top to

down (from the AS to DE), according to the nature of their relation of usage i.e. the

component on top uses and depends on the component on the lines below to properly

work [27]. We define four types of relations concerning Software Architecture spec-

ification:

· Architectural Usage - Underlined correct sign (ü). Goals architectural relations.

Define relations between components which are generated by means of the appli-

cation of the Goals method, and which are part of its meta-model, as presented

throughout Sections 4 and 5.

· Allowed Usage – Correct sign (ü). Relations that can be applied for the purpose

of architectural optimization. Mostly represent: reuse (ü1), of the components by

itself by means of architectural observation, IS invocation (ü2), for purpose of

the data validation, or direct usage of DE by IS (ü3), meaning that no restrictions

are applied in this case.

· Contingency Usage – Wrong sign (û). Which are relations that that should not

occur, but that yet can represent a useful trade-off, as they can simplify implemen-

tation, however introducing architectural disorganization: between Software-Spe-

cific components (û1), or related to the Enterprise Structure components (û2), as

BRs should always be accessed by ISs and not directly, and also as DEs should be

access by means of UI or DB SRs, and not by User Interface components.

· Restricted Usage – Wrong underlined sign (û). Relations that should not exist,

as the IO should never make use of itself, and well as the BR, in order to promote

business regulations organization.

Fig. 13. CCA validation of cross-consistency.

Hence, the cross-consistency of concepts between the Enterprise Structure and the

Software Architecture components is achieved by means of the relation between the

AS and the IS, providing support for the human interaction and business regulation

execution, supporting our hypothesis. The AS also establishes the relation with the

Software-Specific components by means of the Interaction Components and their

Interaction Objects, namely with the User Interface and Database SRs, which use

Data Entity elements, which are also common to the Enterprise Structure, providing

full traceability between business and software implementation.

7 Conclusions

Our approach inherently aims at facilitating requirements elicitation, focuses on user

needs, and simplifies traceability between business requirements and software im-

plementation, which matches project management needs and user involvement in the

Software Development Process, in what we believe that is the more important con-

tribution of our work. The base strategy, based on Business Process Improvement

(BPI), fits most successfully sized projects, as based on The Standish Group statisti-

cal reports, projects under 1 M$ (one million dollars), in which cost most BPI fit into,

are believed to be up to 10 times more successful than 10 M$ projects [4].

Our approach is suitable for in-house development in Small and Medium Enter-

prises (SME), as it produces a controllable set of elements for a single BP organiza-

tional change, which will usually be implemented with great efficiency (concerning

man-hours work) by programmers with knowledge of the domain, and also defines

an agile and straightforward logic, which suits SME needs for development perfor-

mance. This induces iterative enterprise and information system continuous devel-

opment which is compatible with the Agile Development manifesto [30], at an en-

terprise scale.

8 Future Work

Future work mostly concerns the development of a toll for the application of the

Goals method, as we believe from the long term use of the presented concepts, that

the Goals structure is sufficiently well-defined in order to define a Platform-Specific

Model (PIM) that can be used for full-stack MVC code generation. In this way, we

open the space to predict software development effort with higher accuracy, and ul-

timately identify successful enterprise and software development patterns.

References

1. The Standish Group. Chaos Report 2014. (2014)

2. Valente, P., Aveiro, D., Nunes, N.: Improving Software Design decisions towards en-

hanced Return of Investment. In: Proceedings of ICEIS 2015, pp. 388-394. (2015)

3. Morgenshtern, O., Raz, T., Dvir, D.: Factors affecting duration and effort estimation er-

rors in software development projects. In: IST, V. 49, pp. 827-837. (2007)

4. The Standish Group. Chaos Report 2013. (2013)

5. Gerogiannis, V., Kakarontzas, G., Anthopoulos, L., Bibi, S., Stamelos, I.; The SPRINT-

SMEs approach for software process improvement in small-medium sized software de-

velopment enterprises. In: Proceedings of ARCHIMEDES III. (2013)

6. Kervel, S., Dietz, J, Hintzen, J., Meeuwen, T., Zijlstra, B.: Enterprise Ontology driven

Software Engineering. In: Proceedings of ICsoft 2012. (2012)

7. Pombinho, J.: Value-oriented Enterprise Transformation - Design and Engineering of

Value Networks. PhD Thesis, University of Lisbon – IST. (2014)

8. Archimate Foundation. Archimate Made Practical. (2008).

9. Völzer, H.: An overview of BPMN 2.0 and its potential use. In: BPMN 2010 Lecture

Notes in Business Information Processing, V. 67, pp. 14-15, Springer. (2010)

10. Gareis, R.: 'Management by projects': the management approach for the future. In: Inter-

national Journal of Project Management, V. 7(4), pp. 243-249. (1989)

11. Cannon, D.: ITIL Service Strategy. ISBN: 978-0113313044. (2011)

12. Schwaber, K.: Agile Project Management with Scrum (Developer Best Practices). ISBN:

978-0735619937. (2004)

13. Beck, K.: Embracing change with extreme programming. In: Computer, V. 32(10), pp.

70-77. (1999)

14. Grundy, J.: Foreword by John Grundy: Architecture vs Agile: competition or coopera-

tion?. In: Agile Software Architecture, ISBN: 978-0124077720. (2013)

15. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User interface

derivation from business processes. In: Proceedings of SAC 2008, pp. 553-560. (2008)

16. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-Centered Design

and Business Process Modeling: Cross Road in Rapid Prototyping Tools. In: LNCS, Pro-

ceedings of INTERACT 2007, pp. 165-178. (2007)

17. Nunes, N.: Object Modeling for User-Centered Development and User Interface Design:

The Wisdom Approach. PhD Thesis, Universidade da Madeira. (2001)

18. Dietz, J.: Enterprise Ontology - Theory and Methodology. Springer-Verlag Berlin Hei-

delberg, ISBN: 978-3540331490. (2006)

19. Constantine, L.: Human Activity Modeling - Toward a Pragmatic Integration of Activity

Theory and Usage-Centered Design. Springer. (2009)

20. Costa, D., Nóbrega, L., Nunes, N.: An MDA Approach for Generating Web Interfaces

with UML ConcurTaskTrees and Canonical Abstract Prototypes. In: LNCS, V. 4385.

(2007)

21. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The Rspec

Book. ISBN: 1934356379. (2010)

22. Zukowski, J.: The Model-View-Controller Architecture. In: John Zukowski's Definitive

Guide to Swing for Java 2, ISBN: 978-1430252511. (1999)

23. Valente, P. Goals Software Construction Process: Goal-Oriented Software Development.

VDM Verlag Dr. Müller, ISBN: 978-3639212426. (2009)

24. Winckler, M., Freitas, C., Palanque, P., Cava, R., Barboni, E.: Usability aspects of the in-

side-in approach for ancillary search tasks on the web. In: IFIP TC13 Conference on Hu-

man-Computer Interaction 2015 (INTERACT), pp. 207-226. (2015)

25. Grudin, J. Computer-Supported Cooperative Work: History and Focus. In: Computer,

v.27, pp. 19-26. (1994)

26. Awang, M., Labadu, N.: Transforming Object oriented Data Model to Relational Data

Model. In: New Computer Architectures and their Applications, V. 2(3), pp. 402-409.

(2012)

27. Booch, G., Jacobson, I., Rumbaugh, J.,: The Unified Modeling Language Users Guide.

Addison-Wesley. (1998)

28. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. (1999)

29. Ritchey, T.: Principles of cross-consistency assessment in general morphological model-

ling. In: Acta Morphologica Generalis, V. 4. (2015)

30. Agile Alliance: Agile Manifesto. Retrieved 18-10-2016: http://agileman-

ifesto.org/iso/en/principles.html

