
HAL Id: hal-01712535
https://hal.science/hal-01712535

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definition of a Behavior-Driven Model for Requirements
Specification and Testing of Interactive Systems

Thiago Rocha Silva

To cite this version:
Thiago Rocha Silva. Definition of a Behavior-Driven Model for Requirements Specification and Testing
of Interactive Systems. 24th IEEE International Requirements Engineering conference (RE 2016), Sep
2016, Beijin, China. pp. 444-449. �hal-01712535�

https://hal.science/hal-01712535
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18851

The contribution was presented at RE 2016 :
http://www.re16.org/

To link to this article :
URL: http://dx.doi.org/10.1109/RE.2016.12

To cite this version : Rocha Silva, Thiago Definition of a Behavior-Driven
Model for Requirements Specification and Testing of Interactive Systems.
(2016) In: 24th IEEE International Requirements Engineering conference
(RE 2016), 12 September 2016 - 16 September 2016 (Beijin, China).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Definition of a behavior-driven model for

requirements specification and testing of interactive

systems

Thiago Rocha Silva

ICS-IRIT

Université Paul Sabatier – Toulouse III

Toulouse, France

rocha@irit.fr

Abstract — In a user-centered development process, artifacts

are aimed to evolve in iterative cycles until they meet users’ re-

quirements and then become the final product. Every cycle gives

the opportunity to revise the design and to introduce new re-

quirements which might affect the specification of artifacts that

have been set in former development phases. Testing the con-

sistency of multiple artifacts used to develop interactive systems

every time that a new requirement is introduced it is a cumber-

some and time consuming activity, especially if it should be done

manually. For that we propose an approach based on Behavior-

Driven Development (BDD) to support the automated assessment

of artifacts along the development process of interactive systems.

In order to prevent that test should be written to every type of

artifact, we investigate the use of ontologies for specifying the test

once and then run it in all artifacts sharing the ontological con-

cepts.

Index Terms — Automated Requirements Checking, Behavior-

Driven Development, Ontological Modeling, Prototyping, Multi-

Artifact Testing.

I. INTRODUCTION AND MOTIVATION

When designing new software systems, clients and users

are keen to introduce new requirements along successive itera-

tions. This characteristic has an impact in the future develop-

ment as well as in previously developed artifacts. Requirements

should be tested and verified against not only the software

already produced, but also against the other permanent artifacts

produced throughout the process. It leads us to a cycle of per-

manent production of multiple artifacts, in multiple versions,

evolving all along of multiple phases of development.

The artifacts traceability problem has been studied by sev-

eral authors and a wide set of commercial tools have been de-

veloped to address this problem in various approaches [3].

Nonetheless, solutions to promote vertical traceability of arti-

facts can simply track them among themselves, not allowing to

effectively testing them against requirements specifications. It

is a peaceful argument that testing plays a crucial role in the

quality of the software under development. Moreover, the

sooner the teams pay attention to test their software compo-

nents and especially their requirements specifications, more

effective will be the results towards a quality assurance of the

product.

Lindstrom [5] declared that failure to trace tests to require-

ments is one of the five most effective ways to destroy a pro-

ject. According to Uusitalo et al. [6], traceability between re-

quirements and tests was rarely maintained in practice. This

was caused primarily by failure to update traces when require-

ments change, due to stringent enforcement of schedules and

budgets, as well as difficulties to conduct testing processes

through a manual approach. In most cases, interviewees in

industry longed for better tool support for traceability. Some

also noted that poor quality of requirements was a hindrance to

maintaining the traces, since there is no guarantee how well the

requirements covered the actual functionality of the product.

In this context, Behavior Driven Development (BDD) [4]

has aroused interest from both academic and industrial com-

munities in the last years. Supported by a wide development

philosophy that includes Acceptance Test-Driven Development

(ATDD) [7] and Specification by Example [8], BDD drives

development teams to a requirements specification based on

User Stories [9] in a comprehensive natural language format.

This format allows specify executable requirements, which

mean we can test our requirements specification directly, con-

ducting to a “live” documentation and making easier for the

clients to set their final acceptance tests. It guides the system

development and brings the opportunity to test Scenarios di-

rectly in the User Interface (UI) with the aid of external frame-

works for different platforms.

However, this technique is currently limited and allows us

to test requirements only against a Final User Interface (Final

UI), using software robots that those external frameworks pro-

vide. Besides that, specifications using only Scenarios are not

self-sufficient to provide a concrete perception of the system to

the users and, at the same time, allow an overall description of

the system in terms of tasks that may be accomplished. For

that, the use of Prototypes and Task Models is well accepted as

a good approach to address User-Centered Design (UCD),

providing a concrete perception of the system under develop-

ment and allowing an overall description of the tasks in execut-

able Scenarios.

Moreover, domain ontologies are an effective means to rep-

resent concepts and relationships when integrating all of these

techniques and approaches in a formal model. According to

Gruber [10], ontologies describe concepts, relationships and

behaviors between elements in a given domain. In the context

of interactive systems development, we are studying the use of

ontologies to create a flexible and reusable model that could

support the description of an extensive set of artifacts, as well

as their representations and behaviors for testing purposes.

II. RESEARCH QUESTIONS AND HYPOTHESES

In this thesis work, we are trying to answer two main re-

search questions: (i) “Ontologies are useful to support the de-

velopment of testable User Stories?” and (ii) “Are User Stories

self-enough to support the multi-artifact testing process?”.

Based on these questions, we have two main hypotheses: (i)

the use of a common ontological model makes easier the reuse

of behaviors for the testing of interactive systems, and (ii) re-

quirements expressed as User Stories can effectively support

automated testing in a wide spectrum of artifacts, assuring

traceability and consistency.

To answer these questions and to verify our hypotheses, we

study in this thesis a new ontological perspective for Behavior-

Driven Development (BDD) to describe requirements in a Sce-

nario-based approach [11], aiming multi-artifact testing since

early in the design process. This approach aims to address the

challenge of testing different artifacts throughout the develop-

ment process of interactive systems, checking their correct

correspondence with requirements, thus promoting as a conse-

quence vertical and bidirectional traceability in the artifact

level. To achieve this goal, a formal ontology model is provid-

ed to describe concepts used by platforms, models and artifacts

that compose the design of interactive systems, allowing a wide

description of interaction elements (and its behaviors) to sup-

port testing activities.

III. TECHNICAL CHALLENGES

A first challenge in the thesis assumption is that require-

ments are dispersed in multiple artifacts that describe them in

different levels of abstraction. Thus, tests should run not only

in the final product, but also in the whole set of artifacts to

assure that they represent the same information in a non-

ambiguous way, and in accordance with the whole require-

ments chain. A big challenge in this case is how to verify and

check these artifacts, and mainly how to assure correctness and

consistency between them and the other components of the

requirements specification.

Another big challenge for testing is that requirements are

not stable along the iterative processes of software develop-

ment. Clients and Users introduce new demands or modify the

existing ones all along the iterations and because of that, Re-

gression Testing become crucial to assure that the system re-

mains behaving properly and in accordance with the new re-

quirements introduced. However, manual Regression Tests are

extremely time consuming and highly error-prone. Therefore,

promoting automated tests is a key factor to support testing in

an ever-changing environment, allowing a secure check of

requirements and promoting a high availability of testing.

A third challenge is that, despite being very profitable

providing the testing component for requirements, Scenarios

identified from BDD approaches in the Software Engineering

processes become very cumbersome when specifying the

whole set of cases in which the system is able to run. On the

other hand, Scenarios extracted from Task Models in the UCD

processes do not provide the testing component which requires

a heavy charge of effort to implement automated tests. Thus,

the challenge is how to use a combination of both practices to

provide a practical method to extract useful and testable Sce-

narios as well as bringing the testing component for require-

ments specifications.

In short, these concerns bring us three main challenges: (i)

formalize requirements in order to provide testability in an

automated approach for multiple artifacts in ever-changing

environments; (ii) provide vertical and bidirectional traceability

of the requirements, ensuring reliability and consistency be-

tween artifacts; and (iii) assure a complete and testable onto-

logical description of the requirements artifacts to support au-

tomated testing in an integrated way.

IV. STATE OF THE ART

A. User Stories and Scenarios

User Stories have a large meaning in the literature. The

Human-Computer Interaction community understands this

concept as stories that users tell to describe their activities and

jobs during typical requirements meetings. This concept of

User Stories is close to the concept of Scenarios given by Ros-

son & Carroll [11] and widely used in UCD design. According

to Lewis & Rieman [12], Scenario spells out what a user would

have to do and what he or she would see step-by-step in per-

forming a task using a given system. The key distinction be-

tween a scenario and a task is that a scenario is design-specific,

in that it shows how a task would be performed if you adopt a

particular design, while the task itself is design-independent,

i.e., it is something the user wants to do regardless of what

design is chosen. Given task models have already been devel-

oped, scenarios can also be extracted from them to provide the

executable and possible paths in the system [14].

In the Software Engineering (SE) side, User Stories are typ-

ically used to describe requirements in agile projects. This

technique was proposed by Cohn [9] and provides in the same

artifact a Narrative, briefly describing a feature in the business

point of view, and a set of Scenarios to give details about busi-

ness rules and to be used as Acceptance Criteria, giving con-

crete examples about what should be tested to consider a given

feature as “done”. This kind of description handles a Behavior-

Driven Development (BDD) assumption [4], in which the sys-

tem is developed under a behavior perspective in the user point

of view. This method assures for clients and teams a semi-

structured natural language description, in a non-ambiguous

way (because it is supported by test cases), in addition to pro-

mote the reuse of business behaviors that can be shared for

multiple features in the system.

As we can realize, the approaches for Scenarios from UCD

and SE share the same concept. Both of them provide a step-

by-step description of tasks being performed by users using a

given system. The main difference between them lies in the

testing and the business value components present in the SE

approach. Scenarios from UCD, despite describing events that

a given system can answer, do not describe the expected behav-

ior from the system when those events are triggered, besides

not determine the business motivation to develop the feature

being described. TABLE I. summarizes these characteristics.

TABLE I. APPROACHES FOR DESCRIBING USER STORIES AND SCENARIOS

Approaches for

User Stories and

Scenarios

Key facts Advantages Shortcomings

User Stories
and/or Scenarios

by Rosson &
Carroll [11]

Informal

description of
user activities

contextualize

d in a story.

Highly flexible

and easily
comprehensive

for non-
technical

stakeholders.

Very hard to

formalize, little
evolutionary

and low

reusability.

User Stories

and/or Scenarios
by Cohn [9] and

North [13]

Semi-formal

description of
user tasks

being

performed in
an interactive

system.

Highly testable

and easily

comprehensive
for non-

technical
stakeholders.

Very
descriptive and

time

consuming to
produce.

Scenarios

extracted from

Task Models by
Santoro [14]

Possible
instances of

execution for

a given path
in a task

model.

Highly
traceable for

task models.

Dependency of

task models

and low
testability.

In this thesis, we are interested in providing testing for the

Functional aspects of interactive systems in the Acceptance

level. Functional Testing identifies situations that should be

tested to assure the appropriate behavior of the system under

development in accordance with the requirements previously

specified. The Acceptance Level makes reference to the tests

made under the client/user point of view to validate the right

behavior of the system. At this level, clients might be able to

run their business workflows and to check if the system be-

haves in an appropriate manner. Considering these testing con-

cerns and taking into account that the presented approaches do

not solve the problem by themselves, a possible solution might

address a combination of them.

B. Computational Ontologies

According to Guarino et al. [15], computational ontologies

are a means to formally model the structure of a system, i.e.,

the relevant entities and relations that emerge from its observa-

tion, and which are useful to our purposes. Some approaches

such as DOLPHIN [16], UsiXML [17] and W3C MBUI Glos-

sary [18] have tried to define a common vocabulary for specific

domains, although have not formalized it through a conven-

tional ontology. According to the authors, DOLPHIN [16] is a

software architecture that attempts to solve the problem of

multiple definitions in the task modeling domain. The authors

claim that multiple versions and expressions of task models

used in user interface design, specification, and verification of

interactive systems have led to an ontological problem of iden-

tifying and understanding concepts which are similar or differ-

ent across models. This variety raises a particular problem in

model-based approaches for designing user interfaces as differ-

ent task models, possibly with different vocabularies, different

formalisms, different concepts are exploited. The argument is

there was not software tool able to accommodate any task

models as input for a user-centered design process.

In a broader spectrum, UsiXML (which stands for USer In-

terface eXtensible Markup Language) [17] is a XML-compliant

markup language that describes the UI for multiple contexts of

use such as Character User Interfaces (CUIs), Graphical User

Interfaces (GUIs), Auditory User Interfaces, and Multimodal

User Interfaces. UsiXML consists of a User Interface Descrip-

tion Language (UIDL) that is a declarative language capturing

the essence of what a UI is or should be independently of phys-

ical characteristics. UsiXML describes at a high level of ab-

straction the constituting elements of the UI of an application:

widgets, controls, containers, modalities and interaction tech-

niques. More recently, W3C has published a glossary of recur-

rent terms in the Model-based User Interface domain (MBUI)

[18]. It was intended to capture a common, coherent terminolo-

gy for specifications and to provide a concise reference of do-

main terms for the interested audience. The authors’ initial

focus was on task models, UI components and integrity con-

straints at a level of abstraction independent of the choice of

devices to implement the models.

The problem with these attempts to define concepts and re-

lationships is they are incomplete and do not formalize an on-

tology model to be reused and adapted to other domains. In

addition to that, they do not provide the testing component to

directly support tests in the requirements artifacts.

C. Related Works

Requirements specified through an ATDD approach are

relatively recent in academic discussions. Efforts to specify

requirements in a natural language perspective are not so recent

though. Language Extended Lexicon (LEL) [19] has studied

this theme since the beginning of 90’s. The authors propose a

lexicon analysis in requirements descriptions aiming integrate

scenarios into a requirements baseline, making possible their

evolution as well as the traceability of the different views of the

requirements baseline. The main focus is in using natural lan-

guage descriptions to help the elicitation and modeling of re-

quirements.

Soeken et al. [20] go in the direction of system design from

a requirements specification provided in BDD. The authors

propose a design flow where the designer enters into a dialog

with the computer. In an interactive manner, a program pro-

cesses sentence by sentence from the requirements specifica-

tion and suggests creating code blocks such as classes, attrib-

utes, and operations. The designer can then accept or refuse

these suggestions. Furthermore, the suggestions by the comput-

er can be revised which leads to a training of the computer

program and a better understanding of following sentences.

Those works [19] and [20] use different approaches to process

natural language; nonetheless do not consider constraints relat-

ed to User-Centered Design (UCD) specifications.

Wolff et al. [21] discuss an approach for linking GUI speci-

fications to more abstract dialogue models, supporting an evo-

lutionary design process. These specifications are linked to task

models describing behavioral characteristics. With this ap-

proach, prototypes of interactive systems are interactively gen-

erated, and then refined specifications are automatically gener-

ated using a GUI editor, which allows replacing of user inter-

face elements by other elements or components. The authors

present a design cycle from task model to abstract user inter-

faces and finally to a concrete user interface. It is an interesting

approach to have a mechanism to control changes in interface

elements according to the task they are associated in the task

models. The approach however is limited, being applied only in

the evolutionary process of UI elements in accordance to their

representation in the task models. Apart from being applicable

in a limited context, this approach does not provide the neces-

sary testing component to check and verify user interfaces

against predefined behaviors from requirements.

Martinie et al. [22] propose a tool-supported framework for

exploiting task models throughout the development process and

even when the interactive application is deployed and used. To

this end, they introduce a framework for connecting task mod-

els to an existing, executable, interactive application. Accord-

ing to the authors, the main contribution of the paper lies in the

definition of a systematic correspondence between the user

interface elements of the interactive application and the low

level tasks in the task model in a tool-supported way. This task-

application integration allows the exploitation of task models at

run time on interactive application. The problem with this ap-

proach is that it only covers the interaction of task models with

Final UIs, not covering other types of possible requirements

artifacts that can emerge along the process. It does not even

indicate how other set of artifacts could be supported. Another

problem is it requires much intervention of developers to pre-

pare the code to support the integration, making difficult to

adopt in applications that cannot receive interventions in the

code level.

Buchmann & Karagiannis [23] present a modelling method

aimed to support the definition and elicitation of requirements

for mobile apps through an approach that enables semantic

traceability for the requirements representation. According to

the authors, instead of having requirements represented as natu-

ral language items that are documented by diagrammatic mod-

els, the communication channels are switched: semantically

interlinked conceptual models become the requirements repre-

sentation, while free text can be used for requirements annota-

tions/metadata. The work is oriented to provide support for

requirements representation by means of a knowledge-

orientation. The authors claim that the method can support

semantic traceability in scenarios of human-based requirements

validation, but using an extremely heavy modeling approach

which it is not suitable to check requirements in a high level of

abstraction. Besides that, the method is not focused in provid-

ing a testing mechanism through common artifacts, but only in

validating the requirements modeled within the approach.

Finally, Käpyaho & Kauppinen [24] describe a case study

to explore how prototyping can solve the challenges of re-

quirements in an agile context. Authors’ findings indicate that

prototyping can help with some challenges of agile require-

ments such as lack of documentation and motivation as well as

poor quality communication, but it also needs complementary

practices to reach its full potential. These practices include

using ATDD (Acceptance Test-Driven Development), among

other ones. The authors conclude that one of the biggest bene-

fits from prototyping is that the prototypes act as tangible plans

that can be relied on when discussing changes. Prototypes also

seem to improve motivation to do requirements work as they

force participants to discuss changes to requirements more

concretely.

These findings point initially towards a gap integrating dif-

ferent requirements artifacts throughout a design process. Some

methods address concerns in scenarios descriptions, other ones

in prototype or task modeling, however none of them solve the

problem of multi-artifacts integration in order to provide means

to test them, assuring correctness and consistency along the

development.

V. RESEARCH METHODS AND EVALUATION

Research methods for this thesis were initially based on lit-

erature reviews and observations in the industry to establish the

thesis scope. Based on the findings, we are proposing an ap-

proach to address the stated problem. This approach is planned

to be validated following empirical methods to assure its ad-

herence to the problem statement. To check the results against

our hypothesis, we envision 3 main validations:

· (i) through a case study to evaluate how effective is

reusing behaviors described in the ontology to test an

interactive system;

· (ii) through a case study to evaluate the User Stories

support for testing Task Models, Prototypes and Final

User Interfaces; and

· (iii) through a controlled experiment aiming to verify

the effectiveness and the workload of the approach

when providing multiple design solutions and testing

a predefined set of artifacts and requirements.

This strategy aims to cover the more frequent set of

artifacts used to build interactive systems: User Stories and

Scenarios, Prototypes, Task Models and Final User Interfaces.

The case studies are planned to be conducted for the Web and

Mobile environments whilst the experiments are planned to be

conducted in laboratory with real requirements collected in the

industry.

VI. CONTRIBUTIONS

A. Definition of an Ontology

We have started defining an OWL ontology for Web and

Mobile platforms and associating the most common behaviors

that each UI element in these environments can answer. These

behaviors are being described using a natural language conven-

tion, useful later to specify Steps of Scenarios to set actions in

these elements. For that, we have started modeling concepts

describing the structure of User Stories, Tasks and Scenarios.

Following this, we have modeled the most common Interaction

Elements used to build Prototypes and Final User Interfaces

(FUIs) in the Web and Mobile environments. The dialog com-

ponent that allows us to add dynamic behavior to Prototypes

and navigation to FUIs was modeled as a State Machine. In this

level, a Scenario that runs on a given interface is represented as

a Transition in the machine, while the interface itself and the

other one resultant of the action were represented as States.

Scenarios in the Transition state have always at least one or

more Conditions (represented by the “Given” clause), one or

more Events (represented by the “When” clause), and one or

more Actions (represented by the “Then” clause). These ele-

ments always trigger instances of tasks that are represented as

the Steps of Scenarios.

Fig. 1. State Machine representing a Scenario transition

The ontological model describes only behaviors that report

Steps performing common actions directly in the User Interface

through Interaction Elements. We call it Common Steps. This

is a powerful resource because it allows us to keep the ontolog-

ical model domain-free, which means they are not subject to

particular business characteristics in the User Stories, instigat-

ing the reuse of Steps in multiple Scenarios. Steps might be

easily reused to build different behaviors in different Scenarios.

Specific business behaviors should be specified only for the

systems they make reference, not affecting the whole ontology.

Technically and with this structure, the current version of

the ontology bears an amount of 422 axioms, being 276 logical

axioms, 56 classes, 33 object properties, 17 data properties and

3 individuals. The ontology could be extended in the future to

support behaviors for other environments or platforms.

B. User Stories Modeling

The Fig. 2. presents the conceptual model that explains

how testable requirements are formalized in the ontology. A

requirement is expressed as a set of User Stories (US) as in the

template proposed by Cohn [9] and North [13]:

Title (one line describing the story)

Narrative:

As a [role]

I want [feature]

So that [benefit]

Acceptance Criteria: (presented as Scenarios)

Scenario 1: Title

Given [context]

 And [some more context]...

When [event]

Then [outcome]

 And [another outcome]...

Scenario 2: ...

User Stories are composed by a Narrative and a set of Ac-

ceptance Criteria. Acceptance Criteria are presented as Scenar-

ios and these last ones are composed by at least three main

Steps (“Given”, “When” and “Then”) that represent Behaviors

which the system can answer. Behaviors handle actions on

Interaction Elements in the User Interface (UI) and can also

mention examples of data that are suitable to test them. Notice

that these concepts are part of the ontology described in the

previous section.

Fig. 2. Conceptual Model for testable requirements

C. Multi-Artifact Testing

Fig. 3. gives a general view of how testing integration can

occur in multiple artifacts, given an example of behavior. In the

top of the figure is presented an example of a Step of Scenario

describing the behavior “choose … referring to …”. In the ex-

ample, a user is choosing the gender “Female” on the UI ele-

ment “Gender” in a form. This task is triggered when an event

“When” occurs in the Scenario. To be tested, this task is asso-

ciated to values for data (“Female”) and UI element (“Gen-

der”), indicating a possible and executable Scenario that can be

extracted from that task. Following the ontology, the behavior

addressed by this task can be associated to multiple UI ele-

ments such as Radio Button, Check Box, Link and Calendar

components. The arrows in the right side of the figure indicate

two implementations of this ontology, highlighting these asso-

ciations. First in an OWL version at the top and then converted

in Java code in the bottom. Considering that the UI element

Radio Button has been chosen to attend this behavior, a locator

is triggered to trace this element throughout the artifacts, thus

allowing us to reach it for testing purposes. The figure shows

this trace being made through a HAMSTERS Specification for

Task Models [22] (in the task “Choose Gender”), through a

UsiXML Specification for Prototypes [17] (Radio Button

“Gender” with the data options “Male” and “Female”), and

finally through a Java Specification for Final UIs

(@ElementMap “Gender” with the XPath reference

"//input[@id='genderSelect']").

Fig. 3. Identifying behaviors through multiple artifacts

Tools like Webdriver, JBehave and JUnit can therefore be

used to conduct the testing automation, running directly in the

artifacts that compose the requirements specification, validat-

ing them and keeping the trace between themselves, Scenarios

in the User Stories and the instantiated ontology, which leads to

a genuine and “live” documentation.

VII. PROGRESS

We have started this thesis by making a large systematic

review in the literature about prototyping and tools that support

this activity. It has been made to explore the state of the art in

this theme, searching mainly for solutions that other works

have already given for processing Scenarios in the Prototyping

context, and eventually for the problem of testing Prototypes

and Final UIs in an evolutionary perspective. Part of this work

has been published in Silva et al. [1] and the final results have

been submitted as a survey for publication in a journal.

In a second moment and based in our findings, we started

working on the ontology and on the core mechanism to address

the problem of promoting the testing component for multiple

artifacts. The first ideas were published in Silva & Winckler

[2]. Afterward, we started working on applying the initial pro-

posal for Prototypes, Task Models and Final UIs as primary

artifacts. The results of this work have been submitted for pub-

lication in a conference and in a journal.

Ongoing work is currently being conducted to verify poten-

tial problems and inconsistencies when working with multiple

design options and complex task models. We are also develop-

ing a tool to support the creation, visualization and execution of

the tests. Next steps include establish the case studies and ex-

periments planned to validate the proposed approach.

VIII. ACCEPTED PUBLICATIONS

[1] T. R. Silva, J. L. Hak, and M. Winckler. “A Review of
Milestones in the History of GUI Prototyping Tools.”

INTERACT 2015 Adjunct Proceedings: 15th IFIP TC. 13

International Conference on Human-Computer Interaction,

Bamberg, Germany, 2015.

[2] T. R. Silva, and M. A. A. Winckler. “Towards automated
requirements checking throughout development processes of

interactive systems.” Joint Proceedings of the 22nd International

Working Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ), Gothenburg, Sweden, 2016.

REFERENCES

[3] S. Nair, J. L. de la Vara, and S. Satyaki. “A review of

traceability research at the requirements engineering conference

re@ 21”. IEEE International Requirements Engineering

Conference (RE), p. 222-229, 2013.

[4] D. Chelimsky et al. “The RSpec book: Behaviour driven

development with Rspec, Cucumber, and friends”. Pragmatic

Bookshelf, 2010.

[5] R. D. Lindstrom. “Five ways to destroy a development project

(software development)”. IEEE Software, p. 55-58, 1993.

[6] J. E. Uusitalo et al. “Linking requirements and testing in

practice”. IEEE International Requirements Engineering

Conference, p. 265-270, 2008.

[7] K. Pugh. “Lean-Agile Acceptance Test-Driven Development”.
Pearson Education, 2010.

[8] G. Adzic. “Specification by Example: How Successful Teams

Deliver the Right Software”. Manning Publications, 2011.

[9] M. Cohn. “User stories applied: For agile software

development”. Addison-Wesley Professional, 2004.

[10] T. Gruber. “A Translational Approach to Portable Ontologies”.

Knowledge Acquisition 5.2, p. 199-229, 1993.

[11] M. B. Rosson, and J. M. Carroll. “Usability engineering:

scenario-based development of human-computer interaction”.
Morgan Kaufmann, 2002.

[12] C. Lewis and J. Rieman. “Task-centered user interface design: A

Practical Introduction”. 1993.

[13] D. North. “What's in a story?”. http://dannorth.net/whats-in-a-

story/, Accessed: Jun. 2016.

[14] C. Santoro. “A Task Model-based Approach for Design and

Evaluation of Innovative User Interfaces”. Presses univ. de

Louvain, 2005.

[15] N. Guarino, D. Oberle, and S. Staab. “What is an ontology?”.

Handbook on ontologies, Springer Berlin Heidelberg, p. 1-17,

2009.

[16] Q. Limbourg, C. Pribeanu, and J. Vanderdonckt. “Towards

uniformed task models in a model-based approach”. Interactive

Systems: Design, Specification, and Verification, Springer

Berlin Heidelberg, p. 164-182, 2001.

[17] Q. Limbourg et al. “USIXML: a language supporting multi-path

development of user interfaces”. EHCI/DS-VIS 3425, p. 200-

220, 2004.

[18] J. Pullmann. “MBUI - Glossary - W3C”.

https://www.w3.org/TR/mbui-glossary/, Fraunhofer FIT, Ac-

cessed: Jun. 2016.

[19] J. C. S. do Prado Leite et al. “Enhancing a requirements baseline

with scenarios”. Requirements Engineering 2.4, p. 184-198,

1997.

[20] M. Soeken, R. Wille, R. Drechsler. “Assisted behavior driven

development using natural language processing”. International

Conference on Modelling, Techniques and Tools for Computer

Performance Evaluation. Springer Berlin Heidelberg, p. 269-

287, 2012.

[21] A. Wolff et al. “Linking GUI elements to tasks: supporting an

evolutionary design process”. Proceedings of the International

Workshop on Task models and diagrams. ACM, p. 27-34, 2005.

[22] C. Martinie et al. “A generic tool-supported framework for

coupling task models and interactive applications”. Proceedings

of the 7th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems. ACM, p. 244-253, 2015.

[23] R. A. Buchmann, and D. Karagiannis. “Modelling mobile app

requirements for semantic traceability”. Requirements
Engineering, p. 1-35, 2015.

[24] M. Kapyaho, and M. Kauppinen. “Agile requirements engineer-
ing with prototyping: A case study”. IEEE 23rd International
Requirements Engineering Conference (RE), p. 334-343, 2015.

