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Abstract In formal concept analysis, 2-dimensional formal contexts are bipar-
tite graphs. In this work, we generalise the notions of context and concept to
graphs that are not bipartite. We then study the complexity of the enumeration
and identify the structure of the set of such concepts.

1 Introduction

Formal concept analysis (FCA) is a mathematical framework centered on the notions
of formal context (data) and formal concept (set of significant correlated data). Most of
the simpler real-life data sets take the form of formal contexts and the interesting pat-
terns are often variations on the theme of formal concepts, making FCA well-suited for
applications in any field that deals with data [3,9,6,11]. However, it has its limitations.
With the increasing complexity of data, FCA requires extensions and generalizations
[2,1,7,12].

Formal contexts are usually binary tables that we consider here as bipartite graphs
(vertices are divided into 2 sets such that each edge has one end into each set) for which
a bipartition into independent sets is given. One of the most important generalizations
of FCA, Polyadic Concept Analysis (PCA) [12], deals with the same notions of context
and concept when said context is an n-uniform1 n-partite2 hypergraph – modeling the
majority of multidimensional data sets. In PCA, again, an n-partition of the hypergraph
is given.

We believe that it would be interesting to, ultimately, generalize FCA to n-partite
hypergraphs that are not n-uniform. In this work, as a first step toward this goal, we
focus on the case of k-partitioned graphs with k > 2. We define the corresponding
“concepts”, briefly study the complexity of their enumeration and show that they form
a complete k-lattice, implying that known algorithms can be used to compute them.

2 Basics

This section briefly presents the basic notions in formal concept analysis and polyadic
concept analysis. For a deeper look into the 2-dimensional case, we refer the reader
to [5].

1 i.e. hypergraph such that all its hyperedges have size n
2 i.e. a set of graph vertices decomposed into n disjoint sets such that no two graph vertices

within the same set are adjacent



2.1 Binary Formal Concept Analysis

Definition 1 A (formal) context is a triple (S1, S2, R) in which S1 and S2 are sets
of what is commonly referred to as objects and attributes and R is a binary relation
between objects and attributes representing the fact that an object is described by an
attribute.

A formal context is usually represented by a crosstable.

R a b c d e
1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

Figure 1. A formal context ({1, 2, 3, 4, 5}, {a, b, c, d, e}, R)

Definition 2 Let C = (S1, S2, R) be a context. A (formal) concept of C is a pair (E ⊆
S1, I ⊆ S2) such that E × I ⊆ R and both E and I are maximal for this property.

In other words, a concept is a maximal rectangle full of crosses up to permutation of
objects or attributes, also called in graph theory: a full bipartite subgraph or a biclique.

In our Fig. 1 example, (1, ab) and (23, bd) are concepts.

The set of concepts can be ordered by the inclusion relation on both objects and
attributes and then forms a complete lattice (i.e. graph of concepts). Every complete
lattice is isomorphic to the concept lattice of some context [5].

2.2 Multidimensional Formal Concept Analysis

The notions of formal contexts and concepts have been extensively studied and are
successfully used in various fields such as data mining, data analysis, information re-
trieval, source code error correction, machine learning and for building taxonomies and
ontologies [13]. The multidimensional generalization of FCA, polyadic concept analy-
sis [12], has received comparatively less attention but is a promising theoretical as well
as applicative field. Let us present here the basics.

Definition 3 An n-context is a tuple (S1, . . . , Sn, R) in which Si, i ∈ {1, . . . , n}, is a
set called a dimension and R ⊆

∏
i∈{1,...,n} Si is an n-ary relation.



An n-context can be represented by an n-dimensional crosstable.

a b c a b c a b c
1 × × × ×
2 × × × ×
3 × × × ×

α β γ

Figure 2. A 3-context ({1, 2, 3}, {a, b, c}, {α, β, γ}, R)

Definition 4 Let C = (S1, . . . , Sn, R) be an n-context. An n-concept of C is an n-tuple
(T1, . . . , Tn) such that Ti ⊆ Si,

∏
i∈{1,...,n} Ti ⊆ R and there is no d ∈ {1, . . . , n}

and k ∈ Sd \ Td such that (T1, . . . , Td ∪ {k}, . . . , Tn) respects this property.

In other words, an n-concept is a maximal n-dimensional box full of crosses in C
up to permutations inside dimensions.

In our Fig. 2 example, ({1, 2, 3}, {a}, {α, β}) and ({2}, {a, b}, {γ}) are 3-concepts.

The set of all the n-concepts in an n-context, together with the n quasi-orders in-
duced by the inclusion relation on the subsets of each dimension, forms an n-lattice and
every complete n-lattice is isomorphic to the concept lattice of an n-context, as stated
in the basic theorem of polyadic concept analysis [12].

2.3 Graphs

A graph is a pair G = (V,E) in which V is a set of elements called vertices and
E ⊆ V 2 is a set of edges.
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Figure 3. Graph that will be used a running example.



A set X ⊆ V of vertices is a clique if there is an edge between any two of its
elements. A clique is maximal if it is not contained in another clique. An independent
set is a set of vertices that does not contain any edge. An independent set is maximal if it
is not contained in any independent set. A vertex cover is a set of vertices that contains
at least one vertex from every edge. A vertex cover is minimal if it does not contain
any vertex cover. A (maximal) independent set in a graphG is a (maximal) clique in the
complementary graphG and reciprocally. The complement of a (maximal) independent
set is a (minimal) vertex cover and reciprocally.

We will useM(G) to denote the set of maximal cliques in a graph G.

A graph G = (V,E) is k-partite iff V can be partitioned into k independent sets.
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Figure 4. Partition of our example graph into three independent sets Snumbers, Slatin and
Sgreek.

A complete k-partite graph is a k-partite graph such that there is an edge between
every pair of vertices that do not belong to the same independent set.

In our running example, the subgraphs induced by the vertices sets {1, b, α} and
{1, a, b} are, respectively, complete tripartite and bipartite graphs.

Bidimensional formal contexts (S1, S2, R) are bipartite graphs (S1 ∪ S2, R) for
which a bipartition is given. In graph terminology, 2-concepts are thus maximal com-
plete bipartite subgraphs of the context.

3 k-Partite Graphs as Contexts

FCA offers tools to find and manipulate patterns in bipartite graphs. What happens to
these patterns and tools when the input graph is not bipartite ?



3.1 Defining the Concepts

Let us start by defining the objects we are looking for. The central patterns in FCA are
concepts : maximal complete bipartite subgraphs of the context. When the context is
k-partite, a natural generalisation can then be expressed as follows.

Definition 5 Let G = (V,E) be a graph and S = (S1, . . . , Sk) a partition of V into
k independent sets. Let {j1, . . . , jm} ⊆ {1, . . . , k}. An m-2concept of (S,E) is a tuple
C = (Cj1 , . . . , Cjm), Cjx 6= ∅, Cjx ⊆ Sjx , such that

⋃
x∈{1,...,m} Cjx induces a

maximal complete m-partite subgraph of G and there is no (Cj1 , . . . , Cjm , Cjm+1
)

with this property.

In “m-2concept”, the 2 means that we are in a graph and the m means that m
dimensions are involved in the pattern. We have chosen to define them as m-tuples
instead of k-tuples with k − m empty components in order to avoid confusion with
k-concepts from PCA.

We will now suppose for the remainder of this paper that our running example is
partitioned as in Fig. 4. In this case, (1, b, α) is a 3-2concept and (1, ab) and (23, βγ) are
2-2concepts. The tuple (3, c, βγ) is not a 3-2concept because the induced subgraph is
complete bipartite, not complete tripartite. The tuple (1, α) is not a 2-2concept because
(1, b, α) is a 3-2concept.

When the graph is bipartite and the provided partition is binary, the 2-2concepts
are the formal concepts with non-empty intents and extents. It is important to note that
Si, i ∈ {1, . . . , k}, is a complete 1-partite subgraph – though (Si) is not necessarily a
1-2concept.

We will use T ((S,E)) to denote the set ofm-2concepts, 1 < m ≤ |S|, of a k-partite
graph (V,E) together with a partition S of V into k independent sets.

Proposition 1 Let (V,E) be a graph and S = (S1, . . . , Sk) a partition of V into k
independent sets.

T ((S,E)) =M((V,E ∪X))

with X =
⋃

i∈{1,...,k}
(
Si

2

)
Proof. In G = (V,E

⋃
i∈{1,...,k}

(
Si

2

)
), we have that ∀i ∈ {1, . . . , k}, Si is a clique.

Let C = (Cj1 , . . . , Cjm) with Cji ⊆ Sji be such that
⋃

i∈{1,...,m} Cji is a maximal
clique in G. By definition, any two vertices x ∈ Cja and y ∈ Cjb , a 6= b are neighbours
in G. As such, they are neighbours in (V,E) too. Clearly, that makes C an m-partite
complete subgraph of (V,E). The maximality property holds from one graph to the
other so C is an m-2concept of (V,E).

Let C = (Cj1 , . . . , Cjm) be an m-2concept of (V,E). By definition, any two ver-
tices x ∈ Cja and y ∈ Cjb , a 6= b are neighbours in (V,E). As such, they are neigh-
bours in G. As, ∀i ∈ {1, . . . , k}, Si is a clique,

⋃
i∈{1,...,m} Cji is a clique in G. The
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Figure 5. Our example graph with its partitions made into cliques.

maximality property once again holds from one graph to the other so
⋃

i∈{1,...,m} Cji

is a maximal clique in G. ut

This proposition states that m-2concepts are maximal cliques in a graph that can be
constructed in polynomial time from the context. This implies that T ((S,E)) can be
computed from (S,E) in output-polynomial time [10].

3.2 Structuring the Concepts

We now have to characterize the structure of the set T ((S,E)). We will show that it
forms a k-lattice when put together with the appropriate quasi-orders. The best way to
do this is, of course, to show that T ((S,E)) is isomorphic to the concept k-lattice of a
k-context.

Let K((S,E)) = (S1 ∪ {s1}, . . . , Sk ∪ {sk}, R) be a k-context such that si 6∈ Si

and

(x1, . . . , xk) ∈ R⇐⇒ ∀xi 6= si, xj 6= sj ,∃e ∈ E such that xi, xj ∈ e

Note that, potentially, xi = xj . In the context K((S,E)) each cross corresponds to a
clique of the graph (V,E), including 1-element ones, with the elements si representing
the fact that a clique does not intersect the set Si. Figure 6 illustrates the 3-context
corresponding to our running example..

Clearly, if (X1, . . . , Xk) is a k-concept of K((S,E)), then ∀i ∈ {1, . . . ,m}, si ∈
Xi.



a b c s2 a b c s2 a b c s2 a b c s2
1 × × × × ×
2 × × × ×
3 × × × ×
s1 × × × × × × × ×

α β γ s3

Figure 6. The 3-context ({1, 2, 3, s1}, {a, b, c, s2}, {α, β, γ, s3}, R) corresponding to our run-
ning example.

Theorem 1. Let (V,E) be a graph and S a k-partition of (V,E) into k independent
sets. The set of m-2concepts of (S,E), together with the k quasi-orders induced by the
inclusion relation on each independent set, forms a k-lattice.

Proof. Let (X1, . . . , Xk) be a k-concept ofK((S,E)) = (S1∪{s1}, . . . , Sk∪{sk}, R).
By definition,

∏
i∈{1,...,k}(Xi \{si}) ⊆ R. From the construction ofK((S,E)), we get

that ∀xi ∈ Xi \ {si}, xj ∈ Xj \ {sj}, ∃e ∈ E such that xi, xj ∈ e. This means that
the tuple (Xj1 \ {sj1}, . . . , Xjm \ {sjm}), such that the different Xji \ {sji} are the
non-empty components of (X1 \ {s1}, . . . , Xk \ {sk}), is an m-2concept of (S,E).

Let (Cj1 , . . . , Cjm) be anm-2concept of (S,E). By definition, ∀A ∈
∏

i∈{1,...,m} Cji ,
∀x, y ∈ A, ∃e ∈ E such that x, y ∈ e. As such, the tuple (X1, . . . , Xk) such that

Xi =

{
Ci ∪ {si} if i ∈ {j1, . . . , jm}
{si} otherwise

is a k-concept of K((S,E)). ut
This implies that algorithms [4,8] for computing n-concepts can be used to compute

m-2concepts.

In Fig. 6, the 3-concepts are

(1s1, bs2, αs3) (23s1, s2, βγs3)
(1s1, abs2, s3) (12s1, bs2, s3)
(3s1, cs2, s3) (123s1, s2, s3)
(s1, abcs2, s3) (s1, s2, αβγs3)

which yield the m-2concepts of our running example once the si and empty sets are
removed.

4 Conclusion

We have extended the notion of formal concept to graphs that are not bipartite and
shown that, given a k-partition of the graph into independent sets, the set of such m-
2concepts forms a k-lattice. Those m-2concepts are not harder to compute than regular
concepts as they can be enumerated in output-polynomial time using known algorithms.



The next step would be to generalise the notion of n-concept to hypergraphs that
are not n-partite n-uniform. This, however, is not as straightforward as m-2concepts.
Indeed, the k-lattice structure of m-2concepts comes from the fact that a clique with n
vertices can freely be converted into 2n hyperedges (the subsets of vertices). Converting
an edge (a, b) into two singletons (a) and (b) does not add complexity. However, con-
verting an hyperedge (a, b, c) into a triangle (a, b), (b, c), (a, c) can potentially create
new triangles that do not correspond to existing hyperedges of size 3.
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