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Introduction

Formal concept analysis (FCA) is a mathematical framework centered on the notions of formal context (data) and formal concept (set of significant correlated data). Most of the simpler real-life data sets take the form of formal contexts and the interesting patterns are often variations on the theme of formal concepts, making FCA well-suited for applications in any field that deals with data [START_REF] Carbonnel | Feature model composition assisted by formal concept analysis[END_REF][START_REF] Snelting | Software reengineering based on concept lattices[END_REF][START_REF] Kaytoue | Mining gene expression data with pattern structures in formal concept analysis[END_REF][START_REF] Valtchev | Formal concept analysis for knowledge discovery and data mining: The new challenges[END_REF]. However, it has its limitations. With the increasing complexity of data, FCA requires extensions and generalizations [START_REF] Burusco | The study of the l-fuzzy concept lattice[END_REF][START_REF] Belohlavek | What is a fuzzy concept lattice? ii. Rough Sets, Fuzzy Sets[END_REF][START_REF] Lehmann | A triadic approach to formal concept analysis[END_REF][START_REF] Voutsadakis | Polyadic concept analysis[END_REF].

Formal contexts are usually binary tables that we consider here as bipartite graphs (vertices are divided into 2 sets such that each edge has one end into each set) for which a bipartition into independent sets is given. One of the most important generalizations of FCA, Polyadic Concept Analysis (PCA) [START_REF] Voutsadakis | Polyadic concept analysis[END_REF], deals with the same notions of context and concept when said context is an n-uniform1 n-partite2 hypergraph -modeling the majority of multidimensional data sets. In PCA, again, an n-partition of the hypergraph is given.

We believe that it would be interesting to, ultimately, generalize FCA to n-partite hypergraphs that are not n-uniform. In this work, as a first step toward this goal, we focus on the case of k-partitioned graphs with k > 2. We define the corresponding "concepts", briefly study the complexity of their enumeration and show that they form a complete k-lattice, implying that known algorithms can be used to compute them.

Basics

This section briefly presents the basic notions in formal concept analysis and polyadic concept analysis. For a deeper look into the 2-dimensional case, we refer the reader to [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF].

Binary Formal Concept Analysis

Definition 1 A (formal) context is a triple (S 1 , S 2 , R) in which S 1 and S 2 are sets of what is commonly referred to as objects and attributes and R is a binary relation between objects and attributes representing the fact that an object is described by an attribute.

A formal context is usually represented by a crosstable. R a b c d e 1 × × 2 × × × 3 × × × 4 × × 5 × × Figure 1. A formal context ({1, 2, 3, 4, 5}, {a, b, c, d, e}, R) Definition 2 Let C = (S 1 , S 2 , R) be a context. A (formal) concept of C is a pair (E ⊆ S 1 , I ⊆ S 2 )
such that E × I ⊆ R and both E and I are maximal for this property.

In other words, a concept is a maximal rectangle full of crosses up to permutation of objects or attributes, also called in graph theory: a full bipartite subgraph or a biclique.

In our Fig. 1 example, (1, ab) and (23, bd) are concepts.

The set of concepts can be ordered by the inclusion relation on both objects and attributes and then forms a complete lattice (i.e. graph of concepts). Every complete lattice is isomorphic to the concept lattice of some context [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF].

Multidimensional Formal Concept Analysis

The notions of formal contexts and concepts have been extensively studied and are successfully used in various fields such as data mining, data analysis, information retrieval, source code error correction, machine learning and for building taxonomies and ontologies [START_REF] Škopljanac | Formal concept analysis -overview and applications[END_REF]. The multidimensional generalization of FCA, polyadic concept analysis [START_REF] Voutsadakis | Polyadic concept analysis[END_REF], has received comparatively less attention but is a promising theoretical as well as applicative field. Let us present here the basics.

Definition 3 An n-context is a tuple (S 1 , . . . , S n , R) in which S i , i ∈ {1, . . . , n}, is a set called a dimension and R ⊆ i∈{1,...,n} S i is an n-ary relation.

An n-context can be represented by an

n-dimensional crosstable. a b c a b c a b c 1 × × × × 2 × × × × 3 × × × × α β γ Figure 2. A 3-context ({1, 2, 3}, {a, b, c}, {α, β, γ}, R) Definition 4 Let C = (S 1 , . . . , S n , R) be an n-context. An n-concept of C is an n-tuple (T 1 , . . . , T n ) such that T i ⊆ S i , i∈{1,...,n} T i ⊆ R and there is no d ∈ {1, . . . , n} and k ∈ S d \ T d such that (T 1 , . . . , T d ∪ {k}, . . . , T n ) respects this property.
In other words, an n-concept is a maximal n-dimensional box full of crosses in C up to permutations inside dimensions.

In our Fig. 2 example, ({1, 2, 3}, {a}, {α, β}) and ({2}, {a, b}, {γ}) are 3-concepts.

The set of all the n-concepts in an n-context, together with the n quasi-orders induced by the inclusion relation on the subsets of each dimension, forms an n-lattice and every complete n-lattice is isomorphic to the concept lattice of an n-context, as stated in the basic theorem of polyadic concept analysis [START_REF] Voutsadakis | Polyadic concept analysis[END_REF].

Graphs

A graph is a pair G = (V, E) in which V is a set of elements called vertices and E ⊆ V 2 is a set of edges. A set X ⊆ V of vertices is a clique if there is an edge between any two of its elements. A clique is maximal if it is not contained in another clique. An independent set is a set of vertices that does not contain any edge. An independent set is maximal if it is not contained in any independent set. A vertex cover is a set of vertices that contains at least one vertex from every edge. A vertex cover is minimal if it does not contain any vertex cover. A (maximal) independent set in a graph G is a (maximal) clique in the complementary graph G and reciprocally. The complement of a (maximal) independent set is a (minimal) vertex cover and reciprocally.

We will use M(G) to denote the set of maximal cliques in a graph G. A complete k-partite graph is a k-partite graph such that there is an edge between every pair of vertices that do not belong to the same independent set.

A graph G = (V, E) is k-partite iff V can be partitioned into k independent sets.
In our running example, the subgraphs induced by the vertices sets {1, b, α} and {1, a, b} are, respectively, complete tripartite and bipartite graphs.

Bidimensional formal contexts (S 1 , S 2 , R) are bipartite graphs (S 1 ∪ S 2 , R) for which a bipartition is given. In graph terminology, 2-concepts are thus maximal complete bipartite subgraphs of the context.

k-Partite Graphs as Contexts

FCA offers tools to find and manipulate patterns in bipartite graphs. What happens to these patterns and tools when the input graph is not bipartite ?

Defining the Concepts

Let us start by defining the objects we are looking for. The central patterns in FCA are concepts : maximal complete bipartite subgraphs of the context. When the context is k-partite, a natural generalisation can then be expressed as follows.

Definition 5 Let G = (V, E) be a graph and S = (S 1 , . . . , S k ) a partition of V into k independent sets. Let {j 1 , . . . , j m } ⊆ {1, . . . , k}. An m-2 concept of (S, E) is a tuple C = (C j1 , . . . , C jm ), C jx = ∅, C jx ⊆ S jx , such that x∈{1,...,m} C jx induces a maximal complete m-partite subgraph of G and there is no (C j1 , . . . , C jm , C jm+1 ) with this property.

In "m-2 concept", the 2 means that we are in a graph and the m means that m dimensions are involved in the pattern. We have chosen to define them as m-tuples instead of k-tuples with k -m empty components in order to avoid confusion with k-concepts from PCA.

We will now suppose for the remainder of this paper that our running example is partitioned as in Fig. 4. In this case, (1, b, α) is a 3-2 concept and (1, ab) and (23, βγ) are 2-2 concepts. The tuple (3, c, βγ) is not a 3-2 concept because the induced subgraph is complete bipartite, not complete tripartite. The tuple

(1, α) is not a 2-2 concept because (1, b, α) is a 3-2 concept.
When the graph is bipartite and the provided partition is binary, the 2-2 concepts are the formal concepts with non-empty intents and extents. It is important to note that S i , i ∈ {1, . . . , k}, is a complete 1-partite subgraph -though (S i ) is not necessarily a 1-2 concept.

We will use T ((S, E)) to denote the set of m-2 concepts, 1 < m ≤ |S|, of a k-partite graph (V, E) together with a partition S of V into k independent sets. Proposition 1 Let (V, E) be a graph and S = (S 1 , . . . , S k ) a partition of V into k independent sets.

T ((S, E)) = M((V, E ∪ X)) with X = i∈{1,...,k} Si 2 Proof. In G = (V, E i∈{1,...,k} Si 
2 ), we have that ∀i ∈ {1, . . . , k}, S i is a clique. Let C = (C j1 , . . . , C jm ) with C ji ⊆ S ji be such that i∈{1,...,m} C ji is a maximal clique in G. By definition, any two vertices x ∈ C ja and y ∈ C j b , a = b are neighbours in G. As such, they are neighbours in (V, E) too. Clearly, that makes C an m-partite complete subgraph of (V, E). The maximality property holds from one graph to the other so C is an m-2 concept of (V, E).

Let C = (C j1 , . . . , C jm ) be an m-2 concept of (V, E). By definition, any two vertices x ∈ C ja and y ∈ C j b , a = b are neighbours in (V, E). As such, they are neighbours in G. As, ∀i ∈ {1, . . . , k}, S i is a clique, i∈{1,...,m} C ji is a clique in G. The maximality property once again holds from one graph to the other so i∈{1,...,m} C ji is a maximal clique in G.

This proposition states that m-2 concepts are maximal cliques in a graph that can be constructed in polynomial time from the context. This implies that T ((S, E)) can be computed from (S, E) in output-polynomial time [START_REF] Tsukiyama | A new algorithm for generating all the maximal independent sets[END_REF].

Structuring the Concepts

We now have to characterize the structure of the set T ((S, E)). We will show that it forms a k-lattice when put together with the appropriate quasi-orders. The best way to do this is, of course, to show that T ((S, E)) is isomorphic to the concept k-lattice of a k-context.

Let K((S, E)) = (S 1 ∪ {s 1 }, . . . , S k ∪ {s k }, R) be a k-context such that s i ∈ S i and

(x 1 , . . . , x k ) ∈ R ⇐⇒ ∀x i = s i , x j = s j , ∃e ∈ E such that x i , x j ∈ e
Note that, potentially, x i = x j . In the context K((S, E)) each cross corresponds to a clique of the graph (V,E), including 1-element ones, with the elements s i representing the fact that a clique does not intersect the set S i . Figure 6 illustrates the 3-context corresponding to our running example..

Clearly, if (X 1 , . . . , X k ) is a k-concept of K((S, E)), then ∀i ∈ {1, . . . , m}, s i ∈ X i . a b c s2 a b c s2 a b c s2 a b c s2 1 × × × × × 2 × × × × 3 × × × × s1 × × × × × × × × α β γ s3
Figure 6. The 3-context ({1, 2, 3, s1}, {a, b, c, s2}, {α, β, γ, s3}, R) corresponding to our running example.

Theorem 1. Let (V, E) be a graph and S a k-partition of (V, E) into k independent sets. The set of m-2 concepts of (S, E), together with the k quasi-orders induced by the inclusion relation on each independent set, forms a k-lattice.

Proof. Let (X 1 , . . . , X k ) be a k-concept of K((S, E)) = (S 1 ∪{s 1 }, . . . , S k ∪{s k }, R). By definition, i∈{1,...,k} (X i \ {s i }) ⊆ R. From the construction of K((S, E)), we get that ∀x i ∈ X i \ {s i }, x j ∈ X j \ {s j }, ∃e ∈ E such that x i , x j ∈ e. This means that the tuple (X j1 \ {s j1 }, . . . , X jm \ {s jm }), such that the different X ji \ {s ji } are the non-empty components of (X 1 \ {s 1 }, . . . , X k \ {s k }), is an m-2 concept of (S, E). Let (C j1 , . . . , C jm ) be an m-2 concept of (S, E). By definition, ∀A ∈ i∈{1,...,m} C ji , ∀x, y ∈ A, ∃e ∈ E such that x, y ∈ e. As such, the tuple (X 1 , . . . , X k ) such that

X i = C i ∪ {s i } if i ∈ {j 1 , . . . , j m } {s i } otherwise is a k-concept of K((S, E)).
This implies that algorithms [START_REF] Cerf | Data-peeler: Constraint-based closed pattern mining in n-ary relations[END_REF][START_REF] Makhalova | An incremental algorithm for computing nconcepts[END_REF] for computing n-concepts can be used to compute m-2 concepts.

In Fig. 6, the 3-concepts are (1s 1 , bs 2 , αs 3 ) (23s 1 , s 2 , βγs 3 ) (1s 1 , abs 2 , s 3 ) (12s 1 , bs 2 , s 3 ) (3s 1 , cs 2 , s 3 ) (123s 1 , s 2 , s 3 ) (s 1 , abcs 2 , s 3 ) (s 1 , s 2 , αβγs 3 ) which yield the m-2 concepts of our running example once the s i and empty sets are removed.

Conclusion

We have extended the notion of formal concept to graphs that are not bipartite and shown that, given a k-partition of the graph into independent sets, the set of such m-The next step would be to generalise the notion of n-concept to hypergraphs that are not n-partite n-uniform. This, however, is not as straightforward as m-2 concepts. Indeed, the k-lattice structure of m-2 concepts comes from the fact that a clique with n vertices can freely be converted into 2 n hyperedges (the subsets of vertices). Converting an edge (a, b) into two singletons (a) and (b) does not add complexity. However, converting an hyperedge (a, b, c) into a triangle (a, b), (b, c), (a, c) can potentially create new triangles that do not correspond to existing hyperedges of size 3.

Figure 3 .

 3 Figure 3. Graph that will be used a running example.

Figure 4 .

 4 Figure 4. Partition of our example graph into three independent sets S numbers , S latin and S greek .

Figure 5 .

 5 Figure 5. Our example graph with its partitions made into cliques.

i.e. hypergraph such that all its hyperedges have size n

i.e. a set of graph vertices decomposed into n disjoint sets such that no two graph vertices within the same set are adjacent

concepts forms a k-lattice. Those m-2 concepts are not harder to compute than regular concepts as they can be enumerated in output-polynomial time using known algorithms.