
The Eigenvalue Problem for the∞-Bilaplacian

Nikos Katzourakis and Enea Parini

Abstract. We consider the problem of finding and describing minimisers
of the Rayleigh quotient

Λ∞ := inf
u∈W2,∞(Ω)\{0}

‖∆u‖L∞(Ω)

‖u‖L∞(Ω)

,

where Ω ⊆ Rn is a bounded C1,1 domain and W2,∞(Ω) is a class of
weakly twice differentiable functions satisfying either u = 0 on ∂Ω or
u = |Du| = 0 on ∂Ω. Our first main result, obtained through approx-
imation by Lp-problems as p → ∞, is the existence of a minimiser
u∞ ∈ W2,∞(Ω) satisfying{

∆u∞ ∈ Λ∞Sgn(f∞) a.e. in Ω,

∆f∞ = µ∞ in D′(Ω),

for some f∞ ∈ L1(Ω) ∩ BVloc(Ω) and a measure µ∞ ∈ M(Ω), for ei-
ther choice of boundary conditions. Here Sgn is the multi-valued sign
function. We also study the dependence of the eigenvalue Λ∞ on the do-
main, establishing the validity of a Faber-Krahn type inequality: among
all C1,1 domains with fixed measure, the ball is a strict minimiser of
Ω 7→ Λ∞(Ω). This result is shown to hold true for either choice of
boundary conditions and in every dimension.

Mathematics Subject Classification (2010). 35G30, 35G20, 35P15, 35P30,
49R05, 35D99, 35D40, 35J91.
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1. Introduction

Let Ω ⊆ Rn be a bounded domain with C1,1 boundary ∂Ω, where n ∈ N. In
the present paper we are interested in studying nonlinear higher order L∞
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eigenvalue problems. More precisely, we consider the problem of existence of
minimisers to the L∞ Rayleigh quotient

Λ∞(Ω) := inf
u6=0

‖∆u‖L∞(Ω)

‖u‖L∞(Ω)

over appropriate classes of twice weakly differentiable functions, involving two
distinct types of boundary conditions on ∂Ω. Furthermore, we are interested
in studying the structure of these minimisers as well as the dependence of
the eigenvalue Λ∞(Ω) on the shape of the domain Ω.

The types of boundary conditions we will consider are either Dirichlet
conditions (u = 0 on ∂Ω), which we refer to as the “hinged case”, or coupled
Dirichlet-Neumann conditions (u = |Du| = 0 on ∂Ω) which we will refer to
as the “clamped case”. The respective hinged and clamped functional spaces
wherein we will minimise the L∞ Rayleigh quotient are

W2,∞
H (Ω) :=

⋂
1<p<∞

{
u ∈

(
W 2,p ∩W 1,p

0

)
(Ω) : ∆u ∈ L∞(Ω)

}
, (1.1)

W2,∞
C (Ω) :=

⋂
1<p<∞

{
u ∈W 2,p

0 (Ω) : ∆u ∈ L∞(Ω)
}
, (1.2)

and they are Fréchet spaces. Our general notation will be either a convex
combination of standard symbolisations (as e.g. in [E, EG, B]) or else self-
explanatory and clear from the context. The respective hinged and clamped
eigenvalues will be denoted as

ΛH
∞(Ω) := inf

u∈W2,∞
H (Ω)\{0}

‖∆u‖L∞(Ω)

‖u‖L∞(Ω)
, (1.3)

ΛC
∞(Ω) := inf

u∈W2,∞
C (Ω)\{0}

‖∆u‖L∞(Ω)

‖u‖L∞(Ω)
, (1.4)

and the dependence of ΛH
∞(Ω),ΛC

∞(Ω) on the domain Ω will be suppressed
if it is fixed and we do not vary it. This problem can be seen as the higher-
order generalisation of the eigenvalue problem for the∞-Laplacian, which has
been first studied by Juutinen, Lindqvist and Manfredi in [JLM]. Inspired by
their results, herein we prove existence of∞-eigenfunctions by approximation,
considering the respective Lp-Rayleigh quotients

ΛH
p (Ω) := inf

u∈(W 2,p∩W 1,p
0 )(Ω)\{0}

‖∆u‖Lp(Ω)

‖u‖Lp(Ω)
, (1.5)

ΛC
p (Ω) := inf

u∈W 2,p
0 (Ω)\{0}

‖∆u‖Lp(Ω)

‖u‖Lp(Ω)
, (1.6)

for p ∈ (1,∞) and taking p → ∞. By standard weak compactness, lower
semicontinuity and Lagrange multiplier arguments, one easily sees that (for
finite p) minimisers up to the respective Lp-eigenvalue problems do exist and
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solve the Dirichlet problems
∆2
p up = (Λp)

p|up|p−2up in Ω,
up = 0 on ∂Ω,

∆up = 0 on ∂Ω,
(1.7)

where (up,Λp) = (uH
p ,Λ

H
p ) and

∆2
p up = (Λp)

p|up|p−2up in Ω,
up = 0 on ∂Ω,

Dup = 0 on ∂Ω,
(1.8)

where (up,Λp) = (uC
p ,Λ

C
p ). In the above ∆2

p is the p-Bilaplace operator, given
by

∆2
p u := ∆(|∆u|p−2∆u).

The eigenvalue problem for the p-Bilaplacian, apart from the linear case
p = 2, has not received much attention thus far. In the linear case, the
hinged eigenvalue problem is not very meaningful, because the first eigen-
value is simply given by the square of the first eigenvalue of the Laplacian
under Dirichlet boundary conditions. For p 6= 2, Drábek and Otani showed in
[DO] that the first eigenfunction is unique (up to a multiplicative constant)
and strictly positive (or negative) inside Ω. Furthermore, as a straightfor-
ward application of Talenti’s symmetrisation principle [T], which we recall in
our second Appendix, a Faber-Krahn type inequality holds true: among all
domains with fixed volume, the first eigenvalue is minimised by the ball up
to perhaps rigid motions.

On the other hand, the clamped eigenvalue problem presents several
interesting features already in the case of p = 2, which make its study a highly
nontrivial matter. Indeed, the first eigenfunction might be sign-changing,
even for relatively simple domains such as squares or elongated ellipses [Co].
Moreover, some domains admit more than one first eigenfunction, as shown
in [CD]. However, if Ω is a ball, the first eigenfunction is unique and strictly
positive (see for instance [GGS, Theorem 3.7]). The Faber-Krahn inequality
has been shown to hold true only in dimensions n = 2 [N] and n = 3 [AB],
while it still remains a challenging open problem in higher dimensions. The
limiting case p = 1 has been studied by the second author jointly with Ruf
and Tarsi in [PRT1, PRT2], wherein results analogous to the case p = 2 were
obtained. However, in the clamped case, positivity of the first eigenfunction
in a ball and the Faber-Krahn inequality were shown to be true only in
dimension n = 2.

The first main result in the present work concerns the existence and the
qualitative structure properties of minimisers and is given below.

Notational convention: For the sake of simplicity and to avoid repetition,
we will drop the sub/superscripts “ C,H” and treat both cases in a unified
fashion, indicating any differences between the clamped and the hinged case
where appropriate.
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Theorem 1.1 (Existence, structure and approximation for the∞−eigenprob-
lem). Let Ω ⊆ Rn be a bounded domain with C1,1 boundary and consider the
L∞ variational problems (1.3) and (1.4), placed in the respective spaces (1.1)
and (1.2). For 1 < p <∞, consider the pair of Lp normalised eigenfunction-
eigenvalue, corresponding to either (1.7)-(1.5) or (1.8)-(1.6):

(up,Λp) ∈
(
W 2,p(Ω) \ {0}

)
× (0,∞), ‖up‖Lp(Ω) = 1.

Then, there exists a sequence of exponents (p`)
∞
`=1 tending to infinity, such

that 

(up` ,Λp`) −→ (u∞,Λ∞), in C1(Ω)× R,
D2up` −−⇀ D2u∞, in Lq(Ω,Rn×n) for all q ∈ (1,∞),

|∆up` |p`−2∆up`
(Λp`)

p`

{−→ f∞, in Lqloc(Ω) for all q ∈
[
1,

n

n− 1

)
,

∗−−⇀ f∞, in BVloc(Ω),

|up` |p`−2up` Ln ∗−−⇀ µ∞, in M(Ω),

as `→∞, where f∞ ∈ L1(Ω)∩BVloc(Ω), µ∞ ∈M(Ω), and u∞ ∈ W2,∞(Ω) is
a normalised minimiser of (1.3) or (1.4) respectively, satisfying ‖u∞‖L∞(Ω) =
1 and

Λ∞ = ‖∆u∞‖L∞(Ω).

Moreover, 0 < Λ∞ <∞, and f∞, µ∞ are such that{
∆u∞(x) ∈ Λ∞Sgn

(
f∞(x)

)
a.e. x ∈ Ω,

∆f∞ = µ∞ in D′(Ω).
(1.9)

In the above, Sgn : R −→ 2R is the set-valued sign function given by:

Sgn(x) :=

 {−1}, x < 0,
[−1,+1], x = 0,
{+1}, x > 0.

In particular, in the case of hinged boundary conditions, one has µ∞ ≡ 0,
f∞ ≡ 1 and ∆u∞ ≡ Λ∞ on Ω.

The symbolisation “Ln” above obviously stands for the Lebesgue mea-
sure in Rn. Theorem 1.1 establishes the existence of second order ∞-eigen-
functions which solve the parametric system (1.9) consisting of a second or-
der differential inclusion (satisfied in the strong sense a.e. in Ω), coupled by a
second order equation with measure right hand side (satisfied in the distribu-
tional sense). The system (1.9) can be seen as a kind of “constrained Euler-
Lagrange equations” for the L∞ second order eigenvalue problems (1.3)-(1.4),
but we temporarily defer the relation of the present variational problems to
the existing theory of Calculus of Variations in L∞ until later in the intro-
duction, after we will have expounded on our second main result.

In addition to existence and structure, Theorem 1.1 provides extra infor-
mation for our L∞-eigenproblems, showing they are approximable by more
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conventional Lp-eigenvalue problems. In the case of hinged boundary con-
ditions, the weaker requirements on the boundary data allow to have ∞-
eigenfunctions with constant Laplacian throughout the domain. However, in
the clamped case the ∞-eigenfunctions are non-C2 even in one space di-
mension (see Remark 3.7). Moreover, it appears that one can not in gen-
eral expect the differential inclusion to reduce to an equation because the
level set {f∞ = 0} might have positive measure, as shown by the example
f(x) = max{x, 0} which solves f ′′ = δ0 in D′(R).

Our second main result concerns an inequality of Faber-Krahn type.
Namely, we study the dependence of the eigenvalues (1.3)-(1.4) on the geom-
etry of the domain Ω, under a volume constraint. The relevant theorem below
establishes that the Euclidean ball is a strict minimiser of both Ω 7→ ΛH

∞(Ω)
and of Ω 7→ ΛC

∞(Ω), among all regular bounded domains with fixed mea-
sure. Let us stress that our result holds true in every dimension, even in the
clamped case.

Theorem 1.2 (Faber-Krahn inequality for the second order∞-eigenproblem).
Let B be an open ball in Rn and let Ω be a bounded domain in Rn with C1,1

boundary of the same measure as B. Then, in the case of either hinged or
clamped boundary conditions, the eigenvalues (1.3)-(1.4) satisfy

Λ∞(Ω) ≥ Λ∞(B). (1.10)

Equality in (1.10) holds true if and only if Ω = B, up to rigid motions in Rn.

Finally, we study the concrete case when Ω is a ball in Rn and we
calculate explicitly the eigenvalues ΛH

∞,Λ
C
∞ and the eigenfunctions uH

∞, u
C
∞ in

this case (see Corollary 3.2, Proposition 3.5). In both cases, the eigenfunctions
are unique (up to a multiplicative constant), strictly positive and radially
decreasing.

We conclude this introduction by placing the second order∞-eigenvalue
problem we study herein in the wider context of Calculus of Variations in L∞.
Variational problems for first order functionals

E∞(u,O) = ess sup
x∈O

H
(
x, u(x),Du(x)

)
, u ∈W 1,∞(Ω), O ∈ L(Ω),

(1.11)
together with the associated equations, first emerged in the work of Aronsson
in the 1960s ([A1]–[A3]). The area is now well developed and the relevant
bibliography is vast; for a pedagogical introduction accessible to non-experts,
we refer to [K1] (see also [C]). Higher order L∞ variational problems have
only very recently begun to be investigated and are still poorly understood.
In the recent paper [KP2], the first author jointly with Pryer considered
second order variational problems and their relevant equations, focusing on
functional of the form

E∞(u,O) = ess sup
x∈O

H
(
D2u(x)

)
, u ∈W 2,∞(Ω), O ∈ L(Ω).

Subsequently, in a joint paper with Moser [KMo] the case of dependence
on second derivatives through the Laplacian was considered, focusing on the
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model case of so-called ∞-Bilaplacian:

∆2
∞u :=

(
∆u I

)⊗3
:
(
D3u

)⊗2
= 0. (1.12)

In the light of the above general L∞ framework, we see the quantities
ΛH
∞(Ω) and ΛC

∞(Ω) as the first eigenvalues of the ∞-Bilaplacian under the
respective (hinged or clamped) boundary conditions and the parametric sys-
tem (1.9) as the analogue of the constrained Euler-Lagrange equations for the
minimisation problems (1.3)-(1.4). However, there does exist a more conven-
tional PDE arising in the formal limit of the Dirichlet problems (1.7)-(1.8)
as p→∞: by exploiting the relation

∆2
pu = (p− 1)|∆u|p−2∆2u + (p− 1)(p− 2)|∆u|p−4∆u|D(∆u)|2

and performing similar computations as in [JLM], one can see that any pu-
tative ∞-eigenfunction u∞ has to satisfy

min
{
|∆u| − Λ∞|u| , ∆2

∞u
}

= 0,

where ∆2
∞ is the ∞-Bilaplacian given by (1.12). Notwithstanding, this is

merely a formal claim, since we can not expect the solutions to be classical,
and, to the best of our knowledge, there does not exist any analogue of the
theory of viscosity solutions for the higher order problem at hand which is
equally stable under limiting processes. However, this is not an issue because
for the particular problem herein, the method of Lp-approximations con-
structs second order ∞-eigenfunctions with finer structure. This renders the
direct study of the formal third order PDE redundant, whilst we obtain also
a selection principle of the numerous possible ∞-eigenfunctions realising the
infima in (1.3)-(1.4). A similar phenomenon has already arisen in the paper
[KMo], wherein the authors proved existence and uniqueness of (absolute)
minimisers to u 7→ ‖∆u‖L∞(Ω) by solving the parametric system{

∆u∗ = Λ∗sgn(f∗) a.e. in Ω,

∆f∗ = 0 a.e. in Ω,
(1.13)

for any given prescribed boundary values u∗ = g and Du∗ = Dg on ∂Ω.
In (1.13), “sgn” is the usual single-valued sign function. In particular, (1.13)
implies that |∆u∗| = Λ∗ a.e. in Ω and any such u∗ is the unique minimising∞-
Biharmonic function solving (1.12) in the appropriate sense of D-solutions,
a new theory of generalised solutions for fully nonlinear systems recently
introduced in [K2, K3]. The fact that u∗ solves (1.12) if it solves (1.13) can
be readily seen formally by recasting (1.12) as ∆u |D

(
|∆u|2)|2 = 0.

2. Existence, structure and p-approximation to the
eigenproblem for the ∞-Bilaplacian

Let Ω ⊆ Rn be a given domain with C1,1 boundary ∂Ω. In this section we
establish Theorem 1.1. Its proof consists of several lemmas and, as in the
statement, we tackle both cases simultaneously. To this end, it suffices to
consider only the case of hinged boundary conditions, because if we obtain
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the desired existence-compactness-approximation conclusion by requiring the
weaker condition “u = 0 on ∂Ω” for the Lp approximating sequences of
eigenfunctions, then it most certainly holds under the stronger requirement
“u = |Du| = 0 on ∂Ω” of clamped boundary conditions. Also, the putative
limit eigenfunction u∞ will be in the respective space because

W2,∞(Ω) ⊇ W2,∞
H (Ω) ⊇ W2,∞

C (Ω)

and the hinged/clamped functional spaces are closed in their super-space

W2,∞(Ω) :=
⋂

1<p<∞

{
u ∈W 2,p(Ω) : ∆u ∈ L∞(Ω)

}
.

For technical convenience in the proof we modify our notation slightly, as
follows: for p ∈ [1,∞], we consider the normalised Lp norm with respect to
the probability measure λ = Ln/Ln(Ω) ∈P(Ω), that is

‖f‖Lp(Ω,λ) :=


(
−
ˆ

Ω

|f |p
)1/p

, 1 ≤ p <∞,

‖f‖L∞(Ω) , p =∞,
(2.1)

and, given a fixed p ∈ (1,∞), we also consider the constrained variational

problem of finding up ∈
(
W 2,p ∩W 1,p

0

)
(Ω) with ‖up‖Lp(Ω,λ) = 1 such that

‖∆up‖Lp(Ω,λ) = Λp, (2.2)

where

Λp := inf
{
‖∆v‖Lp(Ω,λ) : v ∈

(
W 2,p ∩W 1,p

0

)
(Ω), ‖v‖Lp(Ω,λ) = 1

}
. (2.3)

By standard weak compactness, lower semicontinuity and Lagrange multiplier
arguments (see e.g. the relevant arguments for the Laplacian in [E]), one
easily sees that for any p ∈ (1,∞) there indeed exists a desired minimiser up
of (2.2)-(2.3) which solves weakly the Dirichlet problem{

∆2
p up = (Λp)

p|up|p−2up in Ω,

up = 0 on ∂Ω.
(2.4)

Note that we refrain from stating the natural boundary condition “∆up = 0
on ∂Ω” which is also satisfied weakly in the hinged case only, because we
do not utilise it in any way in the foregoing reasoning which applies to both
cases.

We begin with the next lemma.

Lemma 2.1. Let {(up,Λp) : 1 < p < ∞} be the family of eigenfunctions
and eigenvalues solving for each p the problems (2.2)-(2.4) and such that
‖up‖Lp(Ω,λ) = 1. Then, for any sequence of indices p tending to infinity,
there exists a subsequence (p`)

∞
`=1 and a pair

(u∞, Λ̂∞) ∈ W2,∞(Ω)× [0,∞)

with

‖u∞‖L∞(Ω) = 1
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such that{
(up,Λp) −→ (u∞, Λ̂∞), in C1(Ω)× [0,∞),

D2up −−⇀ D2u∞, in Lq(Ω,Rn×n) for all q ∈ (1,∞),

along this subsequence as p→∞. In particular, ∆u∞ ∈ L∞(Ω) and we also
have

‖∆u∞‖L∞(Ω) = Λ̂∞ ‖u∞‖L∞(Ω) = Λ̂∞.

Proof of Lemma 2.1. Consider any increasing sequence of indices p tending
to infinity and suppose we are along this sequence. We begin by obtaining an
a priori bound for the sequence (Λp)

∞
1 . Fix ξ ∈ C∞c (Ω), ξ 6≡ 0. Then, there

exists a modulus of continuity ω ∈ C(0,∞) with ω(0+) = 0 and 0 < ω < 1/2
such that

‖ξ‖L∞(Ω,λ) ≥ ‖ξ‖Lp(Ω,λ) ≥
(
1− ω(1/p)

)
‖ξ‖L∞(Ω,λ).

Note also that (2.1) implies ‖ · ‖L∞(Ω,λ) = ‖ · ‖L∞(Ω). By invoking (2.3) and
Hölder inequality, we have

0 ≤ Λp ≤
‖∆ξ‖Lp(Ω,λ)

‖ξ‖Lp(Ω,λ)
≤ 1

1− ω(1/p)

‖∆ξ‖L∞(Ω)

‖ξ‖L∞(Ω)
≤ 2

‖∆ξ‖L∞(Ω)

‖ξ‖L∞(Ω)
. (2.5)

Therefore, by passing to a subsequence, there exists

Λ̂∞ ∈
[

0 ,
‖∆ξ‖L∞(Ω)

‖ξ‖L∞(Ω)

]
such that Λp −→ Λ̂∞, along this subsequence as p → ∞. For technical
convenience, we will suppress the subscripts of the subsequences and we will
not relabel them. Fix now k ∈ N, k ≥ 2. Since up ∈

(
W 2,p ∩W 1,p

0

)
(Ω), we

have

up ∈
(
W 2,k ∩W 1,k

0

)
(Ω), p ≥ k.

Since ∂Ω is of class C1,1, by the Calderon-Zygmund global Lk-estimate (see
e.g. [GT, Lemma 9.17, p. 242]), it follows that there exists a constant C =
C(k,Ω) > 0 such that

‖up‖W 2,k(Ω) ≤ C(k,Ω) ‖∆up‖Lk(Ω,λ). (2.6)

By (2.2),(2.3) and Hölder inequality, for any p ≥ k we have

‖∆up‖Lk(Ω,λ) ≤ ‖∆up‖Lp(Ω,λ) = Λp (2.7)

and hence by (2.5)-(2.6) we infer that

‖up‖W 2,k(Ω) ≤
2C(k,Ω)‖∆ξ‖L∞(Ω)

‖ξ‖L∞(Ω)
, p ≥ k. (2.8)

By (2.8), the sequence (up)
∞
1 is bounded in W 2,k(Ω) for any k ∈ N. By

passing to a further subsequence if necessary, by Morrey’s theorem and a
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standard weak compactness diagonal argument there exists

u∞ ∈
⋂

1<p<∞
W 2,p(Ω) ∩ C1(Ω)

such that up −→ u∞ strongly in C1(Ω) and D2up −−⇀ D2u∞ weakly in
Lk(Ω,Rn×n), as p→∞ along this subsequence. By the weak lower semicon-
tinuity of the Lk norm, (2.7) gives for any k ∈ N that

‖∆u∞‖Lk(Ω,λ) ≤ lim inf
p→∞

‖∆up‖Lk(Ω,λ) ≤ lim inf
p→∞

Λp = Λ̂∞ (2.9)

and by letting k →∞, we obtain

‖∆u∞‖L∞(Ω) ≤ Λ̂∞.

Further, we have

1 = ‖up‖Lp(Ω,λ) ≤ ‖up‖L∞(Ω) −→ ‖u∞‖L∞(Ω), as p→∞,
whilst for any k ∈ N, Hölder’s inequality gives

‖u∞‖Lk(Ω,λ) = lim
p→∞

‖up‖Lk(Ω,λ) ≤ lim sup
p→∞

‖up‖Lp(Ω,λ) = 1.

Therefore, ‖u∞‖L∞(Ω) = 1. Finally, since u∞ ∈
(
W 2,p ∩W 1,p

0

)
(Ω) \ {0}, by

(2.3) and minimality we have

Λp ≤
‖∆u∞‖Lp(Ω,λ)

‖u∞‖Lp(Ω,λ)

and by letting p→∞, the above inequality yields Λ̂∞ ≤ ‖∆u∞‖L∞(Ω). The
lemma ensues. �

The next result shows that the limit u∞ of Lp minimisers constructed
above is an L∞ minimiser itself.

Lemma 2.2. The function u∞ ∈ W2,∞(Ω) constructed in Lemma 2.1 solves
the minimisation problem

‖∆u∞‖L∞(Ω) = inf
{
‖∆v‖L∞(Ω) : v ∈ W2,∞

H (Ω), ‖v‖L∞(Ω) = 1
}

(2.10)

where the hinged space W2,∞
H (Ω) is given by (1.1). In particular, Λ̂∞ is the

value of the infimum in (2.10), namely ΛH
∞ ≡ Λ∞. Moreover, we have

Λ∞ > 0.

Proof of Lemma 2.2. By (1.1) we have that W2,∞
H (Ω) ⊆

(
W 2,p ∩W 1,p

0

)
(Ω)

for all p ∈ (1,∞). Hence, by (2.2)-(2.3) and minimality, we have

Λp ≤ ‖∆v‖Lp(Ω,λ), v ∈ W2,∞
H (Ω), ‖v‖Lp(Ω,λ) = 1.

By fixing v and letting p→∞, by Lemma 2.1 we obtain

‖∆u∞‖L∞(Ω) = Λ̂∞ ≤ ‖∆v‖L∞(Ω), v ∈ W2,∞
H (Ω), ‖v‖L∞(Ω) = 1.

By taking infimum over all such v, we deduce the equality Λ̂∞ = Λ∞, as
claimed. Finally, recall that we already know 0 ≤ Λ∞ < ∞. Suppose for
the sake of contradiction that Λ∞ = 0. Then, the constraint ‖u∞‖L∞(Ω) =
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1 contradicts the uniqueness of solutions to the Dirichlet problem for the
Laplace equation because ∆u∞ = 0 in Ω and u∞ = 0 on ∂Ω. The lemma has
been established. �

Next, we prepare towards the construction of the function f∞ ∈ L1(Ω)∩
BVloc(Ω) and the signed measure µ∞ ∈ M(Ω) associated with the ∞-
eigenpair (u∞,Λ∞) which was constructed in Lemmas 2.1-2.2 above.

Lemma 2.3. Let (up)
∞
1 be the subsequence of the Lp minimisers (satisfying

for each p the equalities (2.2)-(2.3) and solving the Dirichlet problem (2.4))
along which the conclusion of Lemmas 2.1-2.2 hold. We define the measurable
functions fp, gp : Ω −→ R by

fp :=
|∆up|p−2∆up

(Λp)p
, (2.11)

gp := |up|p−2up. (2.12)

Then, we have
∆fp = gp in D′(Ω), (2.13)

and if p′ = p/(p− 1), we also have

‖fp‖Lp′ (Ω,λ) =
1

Λp
, (2.14)

‖gp‖Lp′ (Ω,λ) = 1. (2.15)

Proof of Lemma 2.3. The proof is elementary, but we provide it anyway for
the sake of completeness. Let fp, gp be given by (2.11)-(2.12). We begin by
noting that (2.13) is a consequence of (2.4) and the definitions. For (2.14),
by (2.1)-(2.3) we have

‖fp‖Lp′ (Ω,λ) =
1

(Λp)p

(
−
ˆ

Ω

∣∣|∆up|p−2∆up
∣∣ p
p−1

) p−1
p

=
1

(Λp)p

(
−
ˆ

Ω

|∆up|p
) p−1

p

=
1

(Λp)p
(Λp)

p−1

=
1

Λp

and similarly, in view of (2.3) we have

‖gp‖Lp′ (Ω,λ) =

(
−
ˆ

Ω

∣∣|up|p−2up
∣∣ p
p−1

) p−1
p

=

(
−
ˆ

Ω

|up|p
) p−1

p

= 1.

The lemma ensues. �
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Lemma 2.4. In the setting of Lemma 2.3, there exist a function f∞ ∈ L1(Ω)∩
BVloc(Ω) and a signed Radon measure µ∞ ∈ M(Ω) associated with the ∞-
eigenpair (u∞,Λ∞) such that

fp −→ f∞, in Lqloc(Ω) for all q ∈
[
1,

n

n− 1

)
,

fp
∗−−⇀ f∞, in BVloc(Ω),

gp Ln ∗−−⇀ µ∞, in M(Ω),

along perhaps a further subsequence as p → ∞. Moreover, f∞ is a distribu-
tional solution to the Poisson equation with right hand side µ∞:

∆f∞ = µ∞ in D′(Ω).

Proof of Lemma 2.4. By Lemmas 2.1 and 2.4, we have that the sequences
(fp)

∞
1 , (gp)

∞
1 are uniformly bounded in L1(Ω) and for each p along a subse-

quence they satisfy

∆fp = gp in D′(Ω).

By Lemma 4.1 and Corollary 4.2 in our first Appendix, we have that (fp)
∞
1

is bounded in L
n/(n−1)
loc (Ω) ∩ BVloc(Ω) and there exists a limit function f∞

such that the desired modes of convergence hold true. Moreover, since the
absolutely continuous measures (gp Ln)∞1 ⊆ M(Ω) have bounded total vari-
ation, there exists a signed Radon measure µ∞ such that the desired weak*
convergence holds true as well. By passing to the weak* limit in (2.13) as
p→∞ along an appropriate subsequence, we obtain ∆f∞ = µ∞ on Ω in the
sense of distributions.

It remains to show that f∞ ∈ L1(Ω). Indeed, fix a compact set K ⊆ Ω
with positive measure. Since fp −→ f∞ as p → ∞ strongly in L1

loc(Ω) and
(fp)

∞
1 is bounded in L1(Ω), by (2.14) and (2.1) we have

‖f∞‖L1(K) = lim
p→∞

‖fp‖L1(K) ≤ lim sup
p→∞

‖fp‖L1(Ω) ≤
Ln(Ω)

Λ∞
.

We conclude by invoking the upper continuity properties of the measure
‖f∞‖L1(·) on Ω. �

Now we show the validity of the desired differential inclusion which the
∞-eigenpair (u∞,Λ∞) satisfies.

Lemma 2.5. Let the quadruple (u∞,Λ∞, f∞, µ∞) be as in Lemmas 2.1-2.4.
Then, we have

∆u∞(x) = Λ∞
f∞(x)

|f∞(x)|
, a.e. x ∈ Ω \ {f∞ = 0}.

Proof of Lemma 2.5. By (2.11), for any p along the subsequence on which
the convergence modes of Lemmas 2.1-2.4 hold true, we have

|∆up|p−2∆up = (Λp)
pfp, on Ω.
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Since the real function t 7→ |t|p−2t is strictly increasing and invertible on R
with its inverse given by s 7→ s|s|−1+ 1

p−1 when s 6= 0, we may rewrite the
above definition as

∆up(x) = (Λp)
1

1− 1
p

∣∣fp(x)
∣∣ 1
p−1

fp(x)

|fp(x)|
, a.e. x ∈ Ω \ {f∞ = 0}. (2.16)

In view of Lemma 2.4, we may fix x in a subset of Ω \ {f∞ = 0} of full
measure on which we have fp(x) −→ f∞(x) as p→∞ along a subsequence.
Then, for p large enough, we have

0 <
|f∞(x)|

2
≤ |fp(x)| ≤ 2 |f∞(x)| < ∞

and hence ∣∣fp(x)
∣∣ 1
p−1 −→ 1, as p→∞. (2.17)

By (2.16)-(2.17) and Lemmas 2.1-2.2 we infer that for a.e. x ∈ Ω \ {f∞ = 0}
we have

∆up(x) −→ Λ∞
f∞(x)

|f∞(x)|
, as p→∞. (2.18)

By Lemma 2.1 we also have that (∆up)
∞
1 is bounded in Lq+1

(
Ω \ {f∞ = 0}

)
for any q ∈ (1,∞) and hence q-equi-integrable in Lq

(
Ω \ {f∞ = 0}

)
, because

by Hölder’s inequality, (2.2) and (2.5) we have

‖∆up‖Lq(E) ≤
(
Ln(E)

) 1
q(q+1) ‖∆up‖Lq+1(Ω\{f∞=0})

≤
(
Ln(E)

) 1
q(q+1)

(
Ln(Ω)

) 1
q+1 ‖∆up‖Lp(Ω,λ)

≤
(
Ln(E)

) 1
q(q+1)

(
Ln(Ω)

) 1
q+1 Λp

≤
(

2
(
Ln(Ω)

) 1
q+1
‖∆ξ‖L∞(Ω)

‖ξ‖L∞(Ω)

)(
Ln(E)

) 1
q(q+1) ,

for any measurable set E ⊆ Ω \ {f∞ = 0} and p > q + 1. Therefore, by
invoking the Vitali convergence theorem (see e.g. [FL]), the boundedness of
the domain Ω implies

∆up −→ Λ∞
f∞
|f∞|

, in Lq
(
Ω \ {f∞ = 0}

)
as p → ∞, for any q ∈ (1,∞). Since ∆up −−⇀ ∆u∞ in Lq

(
Ω \ {f∞ = 0}

)
,

uniqueness of weak limits establishes the desired equality and the lemma
ensues. �

By combining Lemmas 2.1 and 2.5, we readily obtain the claimed dif-
ferential inclusion.

Corollary 2.6. Let Sgn : R −→ 2R be the continuous set-valued sign function
given by:

Sgn(x) :=

 {−1}, x < 0,
[−1,+1], x = 0,
{+1}, x > 0.
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Then, the ∞-eigenpair (u∞,Λ∞) satisfies

∆u∞(x) ∈ Λ∞Sgn
(
f∞(x)

)
a.e. x ∈ Ω.

We complete the proof of Theorem 1.1 by showing that in the case
of hinged boundary condition, the differential inclusion reduces to just the
Poisson equation with constant right hand side. This result reconciles with
the more general findings on (absolute) minimisers of second order functionals
in Calculus of Variations in L∞ in the papers ([MS, S, KP2, KMo]).

Proposition 2.7. Let Ω ⊆ Rn be a bounded domain. Then u∞ ∈ W2,∞
H (Ω) is

a minimiser for ΛH
∞(Ω) if and only if it is a multiple of the solution to{

−∆v = 1 in Ω,
v = 0 on ∂Ω.

(2.19)

In particular, u∞ is strictly positive (or strictly negative) in Ω, and unique
up to a nonzero multiplicative constant.

Note that for this last part of the proof of the theorem, we do not need
any boundary regularity.

Proof of Proposition 2.7. Let u∞ be a minimiser realising the infimum in (1.3).
By a rescaling, we may assume that ‖∆u∞‖L∞(Ω) = 1 and by replacing u∞
by −u∞, we may assume that

‖u∞‖L∞(Ω) = ess sup
Ω

u∞.

Set g := −∆u∞ and suppose for the sake of contradiction that g 6≡ 1 on Ω,
keeping in mind that −1 ≤ g ≤ 1 a.e. on Ω. To this end, let v be the solution
of (2.19). We have that{

−∆(v − u∞) = 1− g in Ω,

v − u∞ = 0, on ∂Ω,

and 1 − g ≥ 0 in Ω with 1 − g > 0 on a subset of positive measure. By the
strong maximum principle we infer that u∞ < v in Ω, and therefore

‖u∞‖L∞(Ω) < ‖v‖L∞(Ω)

because the supremum is attained inside Ω. This leads to the contradiction
to minimality

‖∆u∞‖L∞(Ω)

‖u∞‖L∞(Ω)
>
‖∆v‖L∞(Ω)

‖v‖L∞(Ω)
.

Therefore, any minimiser u∞ must satisfy−∆u∞ = 1 a.e. in Ω up to a scaling.
The converse statement can be established by arguing in a completely similar
fashion and therefore the conclusion follows. �

Remark 2.8. We note that Proposition 2.7 provides existence of a minimiser
in the case of hinged boundary conditions, without appealing to the approx-
imation arguments detailed before.
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Proof of Theorem 1.1. The proof of our first main result is now an immediate
consequence of Lemmas 2.1-2.5, Corollary 2.6 and Proposition 2.7. �

3. The Faber-Krahn inequality for the ∞-Bilaplacian and
∞-eigenpairs in the case of the ball

In this section we establish the proof of Theorem 1.2 in the case of hinged
and clamped boundary conditions, whilst we also calculate the eigenvalues
and the eigenfunctions in the case that the domain is a Euclidean ball.

The case of hinged boundary conditions. We begin with the simpler case of
hinged boundary conditions. In this section we will be using the symbolisation
ωn for the volume of the unit ball in Rn, whilst BR will stand for the open
ball in Rn of radius R > 0, allowing ourselves the convenient flexibility to
mean either centred at the origin, or at any other point. The meaning will
be clear from the context and in any case the invariance of the ∞-eigenvalue
problem under rigid motions will not entail any ramifications.

Proposition 3.1 (The Faber-Krahn inequality in the hinged case). Let Ω ⊆ Rn
be a bounded domain with C1,1 boundary and let BR be a ball with radius

R :=

(
Ln(Ω)

ωn

)1/n

namely, such that Ln(Ω) = Ln(BR). Let ΛH
∞(Ω) be given by (1.3). Then,

ΛH
∞(Ω) ≥ ΛH

∞(BR),

and equality holds if and only if Ω coincides with the ball BR up to a rigid
motion in Rn.

Proof of Proposition 3.1. The proof is a consequence of Talenti’s symmetrisa-
tion principle [T, Theorem 1], and of the characterisation of∞−eigenfunctions
in Proposition 2.7. By a rescaling argument, we may assume without loss of
generality that Ln(Ω) = Ln(B1) = ωn. Let u be a positive minimiser for
ΛH
∞(Ω). By [T, Theorem 1], if v is the solution of the problem{

−∆v = 1 in B1,
v = 0 on ∂B1,

we obtain that 0 ≤ u∗ ≤ v in B1, where u∗ is the Schwarz symmetrisation of
u. Therefore, we deduce that

‖u‖L∞(Ω) = ‖u∗‖L∞(Ω) ≤ ‖v‖L∞(Ω),

which implies ΛH
∞(Ω) ≥ ΛH

∞(B1). By the results of [Ke2], it follows that
equality holds if and only if Ω coincides with B1, up to rigid motions. �

The next lemma, which is a direct consequence of Proposition 2.7 of
the previous section, completes the picture in the case of hinged boundary
conditions.
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Corollary 3.2 (The ∞-eigenpairs in the hinged case). Let BR be the ball of
radius R in Rn centred at the origin. Then every minimiser is a nonzero
multiple of the function defined as

u∞(x) :=
1

2n
(R2 − |x|2)

and we also have

ΛH
∞(BR) =

2n

R2
.

The case of clamped boundary conditions. We continue with the more com-
plex case of clamped boundary conditions. Let us begin by noting that, if
u ∈ W2,∞

C (Ω), then ˆ
Ω

∆u = 0,

as a consequence of the Gauss-Green theorem. Nonetheless, the converse is
not true in general for a function u ∈ W2,∞(Ω) (satisfying u = 0 on ∂Ω),
unless Ω is a ball BR and u is radially symmetric. In this case,

0 =

ˆ
Ω

∆u =

ˆ
∂Ω

Du · ν dHn−1 = u′(R)Hn−1(∂BR)

which implies that u′(R) = 0 and hence indeed u ∈ W2,∞
C (Ω) as claimed. In

the above argument, Hn−1 denotes the n−1-Hausdorff measure restricted to
∂Ω and ν the outwards pointing normal vector field on ∂Ω.

Before proving the Faber-Krahn inequality, we need some technical
preparation which is the content of the next lemma.

Lemma 3.3. Let R ∈ (0, 1], and BR ⊆ Rn be the ball of radius R centred at
the origin. Let f be defined on B1 as

f(x) :=

{
1, for |x| ≤ 2−

1
n ,

−1, for 2−
1
n < |x| < 1,

and let fR be the restriction of f to BR. Let wR be the solution to the problem{
−∆wR = fR in BR,

wR = 0 on ∂BR.

Then, when n = 2, wR is given by

wR(x) =
1

4
(R2 − |x|2)

if R ≤ 2−
1
2 , and

wR(x) =


1

4
− R2

4
+

lnR

2
+

ln 2

4
− |x|

2

4
, for |x| ≤ 2−

1
2

|x|2

4
− ln |x|

2
− R2

4
+

lnR

2
, for 2−

1
2 < |x| < R,
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otherwise. If n ≥ 3, wR is given by

wR(x) =
1

2n
(R2 − |x|2)

if R ≤ 2−
1
n , and

wR(x) =


2−

2
n

n
− R2

2n
− R2−n

n(n− 2)
+

21− 2
n

n(n− 2)
− |x|

2

2n
, for |x| ≤ 2−

1
n ,

|x|2

2n
+
|x|2−n

n(n− 2)
− R2

2n
− R2−n

n(n− 2)
, for 2−

1
n < |x| < R,

otherwise.
Moreover, in either case wR has the following properties:

(i) wR > 0 in BR;
(ii) wR is radially symmetric and radially decreasing;

(iii) for R = 1, w1 belongs to W2,∞
C (B1);

(iv) the function R 7→ ‖wR‖L∞(Ω), defined on (0, 1], attains a strict maxi-
mum for R = 1.

The proof of this result is a computation exercise on the use of deriva-
tives in polar coordinates and therefore we refrain from providing the tedious
details of it. Now we have:

Proposition 3.4 (The Faber-Krahn inequality in the clamped case). Let Ω ⊆
Rn be a bounded domain with C1,1 boundary and let BR be a ball with radius

R :=

(
Ln(Ω)

ωn

)1/n

namely, such that Ln(Ω) = Ln(BR). Let ΛC
∞(Ω) be given by (1.4). Then,

ΛC
∞(Ω) ≥ ΛC

∞(BR),

and equality holds if and only if Ω coincides with the ball BR up to a rigid
motion in Rn.

Proof of Proposition 3.4. Without loss of generality, we may assume that
Ln(Ω) = Ln(B1) = ωn. Let u be a minimiser realising the infimum in (1.4)
for Ω, rescaled in a way that ‖∆u‖L∞(Ω) = 1. By replacing u with −u if
necessary, since u = 0 on ∂Ω we may suppose that

‖u‖L∞(Ω) = u(x) > 0

for an interior maximum point x ∈ Ω. For convenience we set f := −∆u.
By the representation formula for solutions of the Poisson equation for the
Laplacian (see e.g. [GT, Ch. 2]), we have

‖u‖L∞(Ω) = u(x) =

ˆ
Ω

G(x, y)f(y) dy,

where G is the Green function for Ω. The existence of the latter is guaranteed
by the C1,1 regularity of the boundary ∂Ω. By the bathtub principle ([LL,
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Theorem 1.14], recalled in our second Appendix), since
´

Ω
f(y) dy = 0, we

have

u(x) ≤
ˆ

Ω

G(x, y)f̃(y) dy, (3.1)

with f̃ = χE − χΩ\E , where

E :=
{
y ∈ Ω |G(x, y) > t

}
for a suitable t such that

´
Ω
f̃(y) dy = 0. Note that we have used the fact

that the level sets of G(x, ·) are negligible with respect to the n-dimensional
Lebesgue measure because G(x, ·) is a harmonic function on Ω \ {x} (see e.g.
[HS]). Let now v be the solution of{

−∆v = f̃ in Ω,

v = 0 on ∂Ω.

Inequality (3.1) reads 0 < u(x) ≤ v(x) and therefore

‖u‖L∞(Ω) ≤ ‖v+‖L∞(Ω),

where v+ is the positive part of v. Let Ω+ be the open set {v > 0} and
suppose that Ln(Ω+) = ωnR

n. Clearly, we have that R ∈ (0, 1]. By Tal-
enti’s symmetrisation principle ([Ke1, Theorem 3.1.1], recalled in our second
Appendix), if w̃R is the solution of the problem{

−∆w̃R = f̃∗ in BR,

w̃R = 0 on ∂BR,

then

‖v+‖L∞(Ω) ≤ ‖w̃R‖L∞(Ω).

Let fR and wR be the functions defined in Lemma 3.3. By invoking the
maximum principle, we obtain that 0 < w̃R ≤ wR, and thus

‖v+‖L∞(Ω) ≤ ‖wR‖L∞(Ω).

The last quantity is maximal for R = 1 by Lemma 3.3. Since w1 ∈ W2,∞
C (B1),

we get that ΛC
∞(B1) ≤ ‖w1‖−1

L∞(Ω) and hence we obtain

ΛC
∞(Ω) ≥ ΛC

∞(B1). (3.2)

If equality holds in (3.2), then all the previous inequalities must be equalities.
In particular, we have

‖v+‖L∞(Ω) = ‖w̃R‖L∞(Ω).

By [Ke2], this implies Ω+ = BR and v+ = w̃R. Moreover, we see that w̃R ≡
wR and moreover R = 1 by Lemma 3.3. Conclusively, this implies Ω = B1

after perhaps a translation. �

By arguing in a fashion similar to that of Proposition 3.4, one may
further quite easily obtain the following result.



18 Nikos Katzourakis and Enea Parini

Proposition 3.5. Let BR be the ball of radius R in Rn centred at the origin.
Then, the minimiser realising the infimum in (1.4) in the case of the ball is a
positive, radially symmetric function u, which satisfies u(x) = w1(x/R), with
w1 as defined in Lemma 3.3 for R = 1. In particular,

ΛC
∞(BR) =


ln 2

4R2
, if n = 2,

2
2
n (n− 2)

1− 2
2
n−1

1

R2
, if n ≥ 3.

Remark 3.6. It is interesting to notice that ΛC
∞(BR) satisfies

2
2
n (n− 2)

1− 2
2
n−1

1

R2
∼ 2n

R2
as n→ +∞,

and hence, asymptotically it coincides with the first eigenvalue under hinged
boundary conditions. This facts holds true also in the linear case p = 2. Let
Jν , Iν be respectively the Bessel function and the modified Bessel function
of the first kind of order ν ∈ R. The first eigenvalue of the bilaplacian under
Navier boundary conditions is equal to the square of the first eigenvalue of
the Laplacian under Dirichlet boundary conditions, and therefore

ΛH2 (BR) =
j2
n
2−1

R2
,

where jν is the first zero of Jν . On the other hand, the first eigenvalue of the
bilaplacian under Dirichlet boundary conditions is given by

ΛC2 (BR) =
k2
n
2−1

R2
,

where kν is the first zero of JνIν+1 + IνJν+1. It can be proven that

ΛC2 (BR)

ΛH2 (BR)
=

k2
n
2−1

j2
n
2−1

→ 1 as n→ +∞.

The aforementioned results can be found in [AL]. At present we do not know
whether this property holds true for a general domain Ω ⊆ Rn.

Remark 3.7 (The case of n = 1). The foregoing reasoning can be applied
also to the one-dimensional case of an interval (−R,R) ⊆ R. When n = 1,
the minimiser is given by u(x) = w(x/R), where w is the piecewise quadratic
function

w(x) :=


1

4
− x2

2
, for |x| ≤ 1

2 ,

x2

2
− x+

1

2
, for 1

2 < |x| < 1

and we also have

ΛC
∞
(
(−R,R)

)
=

4

R2
.

We note that phenomena of piecewise regularity structure for (absolute)
minimisers in L∞ similar to those arising in the clamped case herein have
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previously been observed in more general settings of higher order Calculus
of Variations in L∞ for functionals involving the Laplacian in the papers
[MS, S, KP, KMo].

4. Appendix: Local compactness in L1 and BV of
distributional solutions to the Poisson equation with L1 data

In this appendix we establish an estimate regarding the strong local com-
pactness of L1 distributional solutions to the Poisson equation with L1 right
hand side. This result is probably already known in the literature, but since
we could not locate a precise reference for this fact, we provide a complete
proof for the convenience of the reader.

Lemma 4.1. Let Ω ⊆ Rn be open and bounded and let u, g ∈ L1(Ω) be such
that

∆u = g in Ω,

in the sense of distributions. Then:

(a) For any compactly contained Ω′ b Ω, there is a constant C = C(Ω,Ω′) >
0 such that,∥∥u(·+ z)− u

∥∥
L1(Ω′)

≤ C
(
‖u‖L1(Ω) + ‖g‖L1(Ω)

)
|z|.

for any 0 < |z| < 1
2dist(Ω′, ∂Ω).

(b) The solution u ∈ L1(Ω) belongs to (Lqloc∩BVloc)(Ω) for all q ∈ [1, 1∗] and
there is a C = C(q,Ω,Ω′) > 0 such that∥∥[Du]

∥∥(Ω′) + ‖u‖Lq(Ω′) ≤ C
(
‖u‖L1(Ω) + ‖g‖L1(Ω)

)
,

where [Du] ∈ M(Ω) denotes the measure derivative, ‖[Du]‖(·) is the total
variation measure and

1∗ =
n

n− 1
.

As a consequence, we have also:

Corollary 4.2. In the setting of Lemma 4.1, any sequence (ui)
∞
i=1 of solutions

to

∆ui = gi in Ω,

bounded in L1(Ω) is strongly precompact in Lqloc(Ω) for q ∈ [1, 1∗) and weakly*
precompact in BVloc(Ω) if (gi)

∞
i=1 is also bounded in L1(Ω). Further, any limit

point u such that ui −→ u as i→∞ along a subsequence, solves an equation
of the type

∆u = µ in Ω,

where µ ∈M(Ω) is a signed Radon measure such that gi Ln ∗−−⇀µ as i→∞.
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Proof of Lemma 4.1. (a) Fix an Ω′ b Ω. By the local nature of the desired
estimate and the properties of the Laplace operator, a mollification argument
allows us to assume without harming generality that u, g ∈ C∞(Ω), ∂Ω is
piecewise C∞ and ∆u = g classically in Ω. (Indeed, if ∆u = g on Ω, then
the standard mollification (as e.g. in [E]) yields ∆(u ∗ ηε) = g ∗ ηε in an inner
ε-neighbourhood Ωε and we may consider an Ω′′ such that Ω′ b Ω′′ b Ωε
whose boundary is piecewise spherical.) Let us also understand g as being
extended by zero on Rn \ Ω. By Green’s formula (see e.g. [GT, Ch. 2]), we
decompose u as

u = h + Φ ∗ g,
where ∆h = 0 in Ω and Φ is the fundamental solution of the Laplace operator.
Then, by setting

R(Ω) := 2 diam(Ω) + dist(Ω′, ∂Ω)

we estimate∥∥(Φ ∗ g)(·+ z)− Φ ∗ g
∥∥
L1(Ω′)

≤
ˆ

Ω

∣∣∣∣ˆ
Ω

[
Φ(x+ z − y)− Φ(x− y)

]
g(y) dy

∣∣∣∣ dx
≤ |z|

ˆ
Ω

ˆ
Ω

ˆ 1

0

∣∣DΦ(x− y + λz)
∣∣|g(y)| dλ dy dx

≤ C |z|
ˆ

Ω

ˆ 1

0

(ˆ
Ω−y+λz

dw

|w|n−1

)
|g(y)| dλ dy,

for some C = C(n) > 0. By using that x−y+λz lies in the ball BR(Ω) ⊆ Rn,

when x, y ∈ Ω, λ ∈ [0, 1] and |z| < 1
2dist(Ω′, ∂Ω), we deduce

∥∥(Φ ∗ g)(·+ z)− Φ ∗ g
∥∥
L1(Ω′)

≤ C |z|

(ˆ
BR(Ω)

dw

|w|n−1

)
‖g‖L1(Ω).

Further, by using that h = u− Φ ∗ g, Young’s inequality implies

‖h‖L1(Ω) ≤ ‖u‖L1(Ω) +

∥∥∥∥ˆ
Ω

Φ(· − y)g(y) dy

∥∥∥∥
L1(Ω)

≤ ‖u‖L1(Ω) +

∥∥∥∥ˆ
Rn

(
χΩ(y)Φ(· − y)

)
g(y) dy

∥∥∥∥
L1(Ω)

≤ ‖u‖L1(Ω) + Ln(Ω) ‖g‖L1(Ω)‖Φ‖L1(BR(Ω)).

Finally, we conclude by putting the pieces together. Let Ω′δ be the open δ-
neighbourhood of Ω′ with δ := 1

2dist(Ω′, ∂Ω). Then, we have Ω′ b Ω′δ b Ω
and hence∥∥u(·+ z)− u

∥∥
L1(Ω′)

≤
∥∥(Φ ∗ g)(·+ z)− Φ ∗ g

∥∥
L1(Ω′)

+
∥∥h(·+ z)− h

∥∥
L1(Ω′)

≤ C
(
|z|‖g‖L1(Ω) + |z|‖Dh‖L∞(Ω′δ)

)
≤ C

(
‖g‖L1(Ω) + ‖h‖L1(Ω)

)
|z|
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for some C = C(n,Ω) > 0, where the last line of the estimate is a consequence
of the mean value theorem for harmonic functions and interior derivative
estimates (see e.g. [GT, Ch. 2]). By the above estimates, we obtain finally∥∥u(·+ z)− u

∥∥
L1(Ω′)

≤ C
(
‖u‖L1(Ω) + ‖g‖L1(Ω)

)
|z|.

(b) By the obtained estimate, the difference quotients (D1,huLn)h6=0 of u
have bounded total variation in the space of Radon measures M(Ω′) and
hence by well known arguments

D1,huLn ∗−−⇀ [Du] in Mloc(Ω,Rn),

as h → 0. The estimate follows from the weak* lower semi-continuity of the
total variation norm and the Sobolev inequality in the BV-space ([EG, Ch.
5]). The lemma ensues. �

Proof of Corollary 4.2. The result is an immediate consequence of the Fréchet-
Kolmogorov strong compactness theorem (see e.g. [B, Ch. 4]), the Vitali con-
vergence theorem ([FL, Ch. 2]) via an equi-integrability argument similar to
that employed in Lemma 2.5 and standard results on the weak* compactness
of the spaces of BV functions and Radon measures ([EG, Ch. 5]). �

5. Appendix: Some useful results

In this appendix we collect some useful results which have been utilised earlier
in the paper. Some of the results are well-known, and we mention them for
the reader’s convenience.

Symmetrisations. Let Ω ⊆ Rn be a bounded domain, and let f be a function
in L1(Ω). We denote by Ω∗ the ball having the same measure as Ω, and by
f∗ the Schwarz symmetrisation of f , as defined in [Ke1, Section 1.3]. f∗ is a
radially symmetric, radially decreasing function defined on Ω∗. It is known
that ˆ

Ω∗
u∗ =

ˆ
Ω

u,

and also that
‖u∗‖Lp(Ω∗) = ‖u‖Lp(Ω), p ∈ [1,+∞].

Moreover, if u ≥ 0 and u ∈ W 1,p
0 (Ω), then u∗ ∈ W 1,p

0 (Ω∗), and the Pólya-
Szegö inequality holds true:

‖Du∗‖Lp(Ω∗) ≤ ‖Du‖Lp(Ω), p ∈ [1,+∞].

Symmetrisations are the method of choice in order to prove that the first
eigenvalue of the p-Laplacian is minimal for the ball, among all domains with
fixed volume. Unfortunately this approach does not work for the higher order
L∞ problem we are considering herein because if u ∈W 2,p(Ω), it does not in
general follow that u∗ ∈ W 2,p(Ω∗). In particular, it does not work even for
the pre-limiting case of finite p. Nonetheless, the following result of Talenti
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[T] (see also [Ke1, Theorem 3.1.1]), which turned out to be very useful in
the context of higher order problems, is utilised in our proofs in an essential
fashion:

Theorem 5.1 (Talenti’s Symmetrisation Principle). Let f ∈ L2(Ω), and let

u ∈W 1,2
0 (Ω) and v ∈W 1,2

0 (Ω∗) be the weak solutions of the problems{
−∆u = f in Ω,

u = 0 on ∂Ω,

{
−∆v = f∗ in Ω∗,

v = 0 on ∂Ω∗.

If u ≥ 0, then u∗ ≤ v in Ω∗.

In particular, by the above result it follows that

‖u‖L∞(Ω) ≤ ‖v‖L∞(Ω).

Further, by a result of Kesavan [Ke2], equality ‖u‖L∞(Ω) = ‖v‖L∞(Ω) holds
true if and only if Ω = Ω∗, and f is radially symmetric.

The Bathtub principle. In our proofs we have also used the following simple
measure-theoretic fact, whose proof is a special case of a more general result
(see [LL, Theorem 1.14]).

Proposition 5.2. Let Ω ⊆ Rn be a bounded domain and f ∈ L1(Ω) a function
such that, for every t ∈ R, the level set {f = t} is a Lebesgue null set. Let a,
b, ` ∈ R be fixed and such that a ≤ ` ≤ b, and consider the set of functions

C :=

{
g ∈ L∞(Ω) : a ≤ g ≤ b in Ω, −

ˆ
Ω

g(x) dx = `

}
.

Then the supremum in the maximisation problem

sup
g∈C

ˆ
Ω

f(x)g(x) dx

is attained at a function g ∈ C of the form

g = aχ{f<t} + bχ{f≥t},

for a suitable t ∈ R such that the average of g over Ω is `.

Acknowledgement. This work was initiated during a visit of E.P. to the Uni-
versity of Reading in December 2016, partially supported by the Engineering
and Physical Sciences Research Council grant EP/N017412/1. Hosting and
financing institutions are gratefully acknowledged. N.K. would like to thank
Craig Evans, Robert Jensen, Roger Moser, Juan Manfredi, Tristan Pryer,
Giles Shaw and Zisis Sakellaris for scientific discussions on the topic of higher
order L∞ variational problems. Both authors would like to thank the referee
of the paper for the careful and prompt reading of the manuscript, as well as
for their constructive comments.



The Eigenvalue Problem for the ∞-Bilaplacian 23

References

A1. G. Aronsson, Minimization problems for the functional supxF(x, f(x), f ′(x)),
Ark. Mat. 6 (1965), 33–53.

A2. G. Aronsson, Minimisation problems for the functional supxF(x, f(x), f ′(x))
II, Ark. Mat. 6 (1966), 409–431.

A3. G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat.
6 (1967), 551–561.

AB. M. Ashbaugh, R. Benguria, On Rayleigh’s conjecture for the clamped plate and
its generalisation to three dimensions, Duke Math. J. 78 (1995), 1–17.

AL. M. Ashbaugh, R. Laugesen, Fundamental tones and buckling loads of clamped
plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 2, 383–402.

B. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions, Springer Universitext, 2011 reprint.

Co. Ch. V. Coffman, On the structure of solutions to ∆2u = λu which satisfy the
clamped plate conditions on a right angle, SIAM J. Math. Anal. 13 (1982), no.
5, 746–757.

CD. Ch. V. Coffman, R.J. Duffin, On the fundamental eigenfunctions of a clamped
punctured disk, Adv. in Appl. Math. 13 (1992), 142–151.

C. M. G. Crandall, A visit with the ∞-Laplacian, in Calculus of Variations and
Non-Linear Partial Differential Equations, Springer Lecture notes in Mathe-
matics 1927, CIME, Cetraro, Italy 2005.
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