
HAL Id: hal-01712347
https://hal.science/hal-01712347

Submitted on 13 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal proof of dynamic memory isolation based on
MMU

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

To cite this version:
Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym. Formal proof of dynamic memory isolation
based on MMU. Science of Computer Programming, 2018, 162, pp.76-92. �10.1016/j.scico.2017.06.012�.
�hal-01712347�

https://hal.science/hal-01712347
https://hal.archives-ouvertes.fr

Formal Proof of Dynamic Memory Isolation
Based on MMUI,II

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

CRIStAL, CNRS & Lille 1 University, France

Abstract

For security and safety reasons, it is essential to ensure memory isolation be-
tween processes. The memory manager is thus a critical part of the kernel of an
operating system. It is common for kernels to ensure memory isolation through
a piece of hardware called memory management unit (MMU). However an MMU
by itself does not provide memory isolation. It is only a tool the kernel can use
to ensure this property. In this paper we show how a proof assistant such as Coq
can be used to model a hardware architecture with an MMU, and an abstract
model of microkernel supporting preemptive scheduling and memory manage-
ment. We proceed by making formally explicit the consistency properties that
must be preserved in order for memory isolation to be preserved.

Keywords: Formal proof, Memory isolation, Microkernel, Coq.

1. Introduction

Modern operating-system kernels make it possible to share computer re-
sources between untrusted processes, and to rapidly deal with external events,
e.g., arrival of a network packet that would be lost if not dealt with immedi-
ately. In this context, both for safety and security reasons, it is important to
respectively prevent accidental and malevolent access by a process to an address
outside its own address space. On modern computers, kernels ensure memory
isolation with the help of a piece of hardware called memory management unit
(MMU). An MMU is a hardware component through which all memory accesses
must go. It translates a virtual memory address to a physical address if there is
indeed a corresponding one in the current setting. It also checks whether in the
current setting accessing this address is allowed. It is indeed a common design
to have the kernel space always mapped for efficiency reasons but not accessible
while in user mode. For this to work properly, the kernel has to maintain page

IThis work was partially supported by the Celtic-Plus Project ODSI C2014/2-12, CNRS
Action Spécifique Sécurité, and IRCICA USR 3380.

IIA preliminary version of this work appeared in the proceedings of the 10th International
Symposium on Theoretical Aspects of Software Engineering (TASE 2016) [1].

Preprint submitted to SCP June 22, 2017

tables which encode for each process the mapping between virtual addresses
and physical addresses, and the access rights. It is important to note here that
an MMU does not ensure memory isolation by itself, but it is only a tool the
kernel can use to ensure the isolation property. A bug in the code of the kernel
that deals with memory management (i.e. the memory manager) may lead to
serious security and safety issues.

Since a kernel is executed in the so-called kernel mode (i.e. the privileged
mode of the hardware), it is better from a security point of view to keep it
as small as possible. This stems from the general principle that the trusted
computing base (TCB) should be kept minimal. This is the reason why in
this paper we focus on an abstract model of a microkernel [2] which supports
preemptive scheduling and ensures memory isolation.

Contributions

Our main contribution is a formally proved model in the Coq proof assistant
of dynamic memory isolation based on the MMU. More precisely, it consists of:

• A formal model of a hardware architecture as a monad: the parts that are
important for memory isolation (e.g., the MMU and CPU) are modeled in
all their relevant minutiae, while less relevant parts are abstracted away.

• A formal model of a microkernel supporting:

– a memory management at an appropriate abstraction level so that it
remains a realistic model without being linked to a particular imple-
mentation,

– the basic principles of interrupts, in particular to support a preemp-
tive scheduler.

• An explicit description of the consistency properties that must be pre-
served by a microkernel dealing with an MMU in order for the memory
isolation to be preserved.

Related work

There have been many efforts to make formal proofs of security for kernels.
Here are the most closely related to ours.

One of the most significant is the formal proof in the Isabelle/HOL proof
assistant of the memory protection model of the microkernel seL4 [3]. It is
proved that the assembly code emitted by the compiler is correct in the sense
that it implements the abstract model of memory isolation [4]. This work was
the first complete formal proof of an operating system kernel.

There is also CertiKOS which is a hypervisor dedicated to cloud computing
that is formally verified [5, 6]. In particular, its memory manager BabyVMM
is constructed in layers so as to allow for formal verification by a series of
refinements that are formalized in the Coq proof assistant [7].

In contrast to those related work above, our goal is not to formally prove
properties of a specific microkernel but to clarify what is needed to be assumed

2

by microkernels about the hardware architecture and what are the constraints
a microkernel must respect in order for memory isolation to be guaranteed at
all times.

Moreover, a novel framework is developed in [8]. It gives the possibility to
extend a verified non-interruptible kernel to a verified interruptible kernel where
device drivers are implemented inside the kernel, their approach was successfully
applied on the kernel mCertiKOS. In our case, device drivers are kept outside
the microkernel, and the isolation between these components, like any process
user, is ensured by the virtual memory manager which is implemented inside
the microkernel on top of the physical memory. In the mCertiKOS kernel a
different isolation property is defined and verified in order to ensure separation
between different device objects and the kernel inside the kernel without relying
on the virtual memory manager.

In [9], an idealized model of a hypervisor was formalized in Coq and isolation
properties were proved. While we also consider an abstract model, we are not
treating isolation from the point of view of the information flow but at the lower
level of page table management (information access). We are thus led to a model
that includes an MMU and deals with page allocation.

In [10], the operations of allocation and deallocation of a microkernel were
proved correct. However, those operations live in a higher layer of the operat-
ing system than the lower-level layer we consider here. Our work shows that
the correct implementation of those operations is essential to ensure memory
isolation.

Guo and Zhang proposed in [11] a verification framework for verifying pre-
emption control operations in a preemptive kernel. In our case, we focus on
proving memory isolation between processes.

Outline

We first describe in Section 2 our formal model of a microkernel. We then
make explicit in Section 3 our formal definition of memory isolation and the
consistency properties that are to be preserved in order for memory isolation to
hold. In Section 4, we present our proof methodology and discuss the difficulties
met and their solutions. We finally give a brief overview of our Coq code in
Section 5, before concluding in Section 6.

2. Formal model of a microkernel

In this section, we first briefly recall some basic facts on how microkernels
control hardware components in order to manage CPU time and MMU resources
and then we describe our formal model of the dynamic evolution of the system
based on interrupts.

2.1. Background on MMU-based microkernels

The purpose of a microkernel is to manage several executing programs known
as runnable processes. To provide preemptive scheduling, the microkernel must

3

Hardware

Microkernel Address

CPU time

Interruption

Handler
management

Kernel mode

Process

User mode

Process Process

and system calls

Hardware

space

layer

sharing

Figure 1: Architecture of a microkernel

share CPU time between them giving the illusion that the processes run simul-
taneously. Each runnable process should have access only to its own address
space, so the microkernel should control execution to prevent illegal accesses.
This architecture of a microkernel is, for instance, detailed on pages 17 and 18
in the MINIX book [12] and illustrated in Fig. 1. We have designed a model for
a microkernel that includes these major mechanisms.

To ensure security (in particular memory isolation), processes cannot directly
access the physical memory which is divided into fixed-length blocks called phys-
ical pages. All their accesses to memory use virtual addresses and go through
the MMU that translates virtual addresses to physical addresses. We illustrate
the internal operation of the MMU with one level of indirection (cf. Fig. 2 taken
from [12]). This translation mechanism is implemented using page tables. A
page table is a physical page which is managed by the memory manager of the
kernel. Each process has an address space large enough to store its code and
data. The memory manager should ensure that any physical page allocated to
a given process is referenced only in its page table. Using the virtual address,
translate starts by finding the corresponding entry in page table. It then checks
whether accessing that virtual address is allowed, i.e. there is a mapped page in
this entry, using the present bit. It also verifies whether this page is accessible
or not using the kernel only bit and the execution mode. When a process tries
to violate these protection rules, the MMU raises an exception which will be
handled by the microkernel.

Finally, in order to perform some operations that do require a higher level
of privileges (read data from a file, get access to more physical memory, etc.),
a process may request the microkernel to perform it on its behalf. To that end,
the microkernel provides a set of system calls.

Since these mechanisms are clearly crucial to ensure memory isolation among
processes, the memory manager and the scheduling mechanism used by the
microkernel must be verified.

2.2. State of the system

In real implementations of operating systems, the state of the system is
complex and includes the internal state of each hardware device and all the

4

1 1 0 0 0 10 0 0 0 0 0 0 00 0

0 0 0 0 0 10 0 0 0 0 0 0 01 0

0000 0

0000 0

0000 0

0000 0

1110 1

0000 0

1010 1

0000 0

0000 0

0000 0

0011 1

0100 1

0000 1

1100 1

0010 1

0100 1

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1100

Incoming

virtual

address

Outgoing

physical

address

n-bit offset

copied directly

from input

to output

2: index into the

page table

Present/absent bit

0

0

0

0

1

0

1

0

0

0

1

1

1

1

1

1
kernel bit

Page
table

Figure 2: Memory management unit (MMU)

kernel data structures. In our formal model, the state s is a tuple containing
many components; it is divided into two parts, the hardware state and the
software state. For each part, we focus only on the components which are
relevant to prove the properties we are interested in. The actual definitions of
the state and its components are given in Appendix A.1 in Gallina syntax for
reference. The formal definition of the type of the state is a record containing
the following fields.

Hardware state. The following information about hardware devices (mostly
processor and memory) is necessary to reason about memory isolation.

• currentptp(s) is the number of the physical page containing the page table
of the current process.

• kernel mode(s) is a boolean that will be true when the processor is exe-
cuting in kernel mode and false, otherwise.

• currentpc(s) (current program counter) is the position of the current in-
struction to be executed.

• memory(s) is the physical memory that we model as a list; it contains
in particular two crucial data structures for the memory management:
the page tables of the current processes used by the MMU address space
translation and the list of the free pages (which is detailed below).

5

• interrupts(s) models hardware interrupts in a simple way since modeling
hardware itself is out-of-scope of this work; they are modeled as an infi-
nite list (or stream) containing one element per clock tick ; each element
indicates whether a hardware interrupt is to be triggered at that tick and
which interrupt it is, if any.

Software state. During execution, the system needs to store some infor-
mation in physical memory and it must be accessible only in kernel mode. We
modeled that information separately from the memory itself in order to simplify
the proof of our property. Real implementations do ensure that it is kept sep-
arate by storing it in some part of memory which is reserved to the kernel and
thus never accessible for processes. In the following, we provide some details
concerning the most important fields :

• processes(s) is the list of runnable processes. Note that a process type is
a record which contains information about a runnable process P in this
list such as the reference to its page table ptp(P) and the address of the
next instruction to execute pc(P). When we switch between processes the
value of currentptp(s) should be updated with the value of ptp(P) of the
selected process P and the value of currentpc(s) should be updated with
the value of its pc(P).

• code(s) is a list that contains all the instructions of the system and of the
user processes. The main property we are interested in here is to ensure
data security. The proof of isolation for the code would be similar.

• intr table(s) represents the interrupt descriptor table. It is a list associ-
ating to each interrupt number its handler code such that each position
into the list corresponds to the interrupt number and the associated value
represents the address (as a position) into code(s).

• stack(s) is the system stack used to store the context of the current
runnable program when an interrupt occurs.

• first free page(s) is the first page of the list of free pages. A page is said
free when it is not allocated to any process (either as its page table or as a
regular page, to store its data). A memory manager is obviously required
to determine which pages are available for allocation and which are not.
In our model, this is done using the available pages themselves to store
the linked list of free pages (cf. Fig. 3): since a free page does not contain
any process data, we can use it to store the position of the next free page.
That way, the microkernel needs to keep only the position of the first page
of that linked list in its state per se to manage the free pages.

On system startup, all available physical pages are initialized so that they
are in the free-page list.

6

0 1 2 3 4

first free page
1

3 4 5

used page free page

pointer to the position (as a number)
of the next free page

Physical
memory

Figure 3: Memory model

2.3. Dynamic evolution of the system

During the lifetime of the system many processes may be created and exe-
cuted and several events could occur generating state updates. So, the micro-
kernel should provide an efficient mechanism to ensure correct state transitions.
In this section we show how we formally model this dynamic evolution by using
a monad.

H monad. Gallina, the specification language of Coq, is a purely functional
language and thus does not provide imperative features such as updatable state,
undefined behaviors and halting. In such a language, it is thus common to im-
plement such features using a monad [13, 14]. For our model, we have defined
a monad that we call H monad and that provides states (as described in Sec-
tion 2.2) and support for undefined behaviors and halting.

Our H monad is a kind of state monad where M(A) is the type of a compu-
tation that may have side effects and returns a result of type A: M(A) =def

S → result(A×S) where S is the type of the state of the system and result(X)
is an inductive type with three constructors: one to return a result of type A
and the new state of type S, and two others to denote an undefined behavior
and halting. In the following, we will use s to denote a state in S. In our model,
we identify three different kinds of computations:

• a hardware component models the behavior of a relevant piece of hardware;
indeed, we need to model the pieces of hardware involved in the memory
management (namely the operations performed by the MMU);

• an instruction corresponds to a single CPU instruction; it is modeled
as a sequence of more elementary steps (for instance involving hardware
components);

• a subroutine is an atomic sequence of instructions of the microkernel that
cannot be interrupted.

System calls and interrupts. Our model of the CPU, in particular regard-
ing how system calls and interrupts work, aims at being as general as possible.

7

Fig. 4 (taken from Stallings’ book on Computer Organization and Architec-
ture [15]) outlines the dynamic evolution of the system with and without inter-
rupt and Fig. 5 represents the formal model implemented in Coq.

Our model of the kernel provides a very simple API, focused on our topic of
interest: memory isolation of processes. So its API provides only the subroutines
create process, switch process, add pte, and remove pte which will be detailed
later in this paper. The actual definitions of the step hardware component in
Gallina syntax is given for reference in Appendix A.2.

Start
fetch next

instruction

execute

instruction

Check for
interrupt;

process interrupt

Halt

Fetch cycle Execute cycle Interrupt cycle

Interrupts disabled

Interrupts
enabled

Figure 4: Dynamic evolution of the system

Hardware component step : M(unit)
Action:
check for the presence of an interrupt ;
if there is some interrupt n then

interrupt(n) ;
else

i← fetch instruction ;
execute(i);

end

Figure 5: The specification of the dynamic evolution of the system

We can see in Fig. 4 that instruction execution operates mainly in three
steps:

1. Fetch instruction: read or extract the instruction from memory. Our
hardware component fetch instruction corresponds to this step.

2. Execute instruction: execute the sequence of elementary steps of that CPU
instruction. For instance, the instruction may require the CPU to deter-
mine some effective (physical) address to load or store some data, such
as when a process stores a value in memory using the instruction write.
Before storing data in memory, using the hardware component translate,
this instruction determines the physical address that corresponds to the
virtual address provided by the process.

8

3. Check for interrupt: check whether there is an interrupt to handle before
moving on to the next instruction. We modeled this operation by the
hardware component fetch interrupt (Fig. 6): it pops the head element of
the hardware-interrupt stream in order to check if an interrupt has been
triggered. If some interrupt needs to be dealt with, using the hardware
component interrupt (Fig. 7), the current context is pushed on top of the
system stack, does switching to kernel mode and branching to the code of
the handler for the triggered interrupt. The hardware finds the right han-
dler using the interrupt number as index in intr table(s). To continue the
execution of the current process properly after an interrupt, the hardware
component return from interrupt (Fig. 8) needs to be executed to return
from the interrupt handler.

Hardware component fetch interrupt : M(option integer)
Action:
pop the head of the hardware interrupt stream;
return it;

Figure 6: Check for interrupt

Hardware component interrupt : integer→M(unit)
Input : n: the number of the interrupt to execute
Action:
push the currentpc and the execution mode on the stack;
switch to kernel mode;
jump to the first instruction of the interrupt handler;

Figure 7: Handling the interrupt

Hardware component return from interrupt : M(unit)
Action:
pop the head of the stack;
restore the execution mode of the current program;
restore the currentpc;

Figure 8: Returning from an interrupt

Processes invoke system calls to interact with the microkernel by triggering
software interrupts. In our model, thus, the instruction trap allows processes to
trigger software interrupts which are then processed as explained in Fig. 7.

9

3. Isolation and consistency

In this section, we present our memory isolation property, then we introduce
the consistency properties and motivate them with counterexamples that show
how a simple breach of consistency would invalidate memory isolation.

Consistency is the conjunction of multiple properties that must be preserved
in order for isolation to be preserved. Testing at runtime that these properties
are preserved is not realistic since it would take too much time. Indeed, it
would for instance require checking if all the entries of a set of tables match
some condition on every system call. We rather characterize the consistency
properties required for isolation and prove that they are always preserved.

3.1. Memory isolation

Each process has its own page table which is located in memory. Our model
for page-table entries follows closely the description given in Section 2.1. Each
entry of a page table corresponds to a virtual address and contains the cor-
responding physical-page number and some bits for access control such as the
present bit and the kernel only bit. The former should have the value 1 if there
is a mapped page in this entry and the latter should have the value 0 if the
mapped page should only be accessible to the microkernel. Unfortunately, the
MMU cannot ensure separation between process address spaces all by itself.

Instruction write : integer→ integer→M(unit)
Input : val : the value to be written

vaddr : the virtual address at which it should be written
Action:
paddr← translate(vaddr) ;
if paddr is not an exception then

write phy(val, paddr) ; (*write val at physical address paddr*)
end

Figure 9: Writing a value in memory

Indeed, if the page tables are not configured correctly then the translation
function could translate a virtual address to a physical address which is also
used by another process. Let us consider how this could happen by looking
at what happens when a process runs the write instruction. That instruction,
illustrated in Fig. 9, writes a value val to some virtual address vaddr. In order to
perform that action, it relies on the hardware component translate (cf. Fig. 10)
to compute the physical address paddr for the virtual address vaddr according
to the page table of the current process. Considering how these operations
are performed, the MMU will translate addresses without raising any exception
even if the physical page is also mapped in another process page table and so
the current process will access and modify the content of that page. This clearly
shows that the two processes are not properly isolated.

10

Hardware component translate : integer→M(integer + exception)
Input : vaddr : a virtual address
Output: the corresponding physical address or an exception
Action :
if the vaddr size is valid then

calculate the address of page table entry pte and the offset in this
page corresponding to vaddr ;

if there is a mapped page in pte and (the kernel mode(s) = true or
kernel only(pte) = 1) then

calculate the physical address and return it;
else

return an exception
end

else
return an exception

end

Figure 10: Translating virtual addresses to physical addresses

To ensure isolation then, we need to guarantee that all page tables are always
soundly configured. That is the aim of our memory isolation property (Def. 1).
Intuitively, we want to show that for any state s there is no interference between
any two runnable processes: if P1 and P2 are two runnable processes then any
page which is used by P1 is different from any page used by P2.

Definition 1 (Memory isolation property). A state s is isolated iff for all
P1, P2 ∈ Processes(s) such that P1 6= P2 (i.e. ptp(P1) 6= ptp(P2)) and for all
p ∈ UsedPages(P1), we have p /∈ UsedPages(P2), where

• Processes(s) is the set of runnable processes in the state s,

• ptp(Pi) is the number of the physical page containing the page table of the
process Pi,

• UsedPages(Pi) is the list of all the pages referenced in the page table ptp(Pi)
plus ptp(Pi) itself.

3.2. Consistency

In this section, we explain and justify the various properties composing the
consistency. We organize them into two categories: software consistency and
hardware consistency.

The consistency is required to prove the isolation property. It precisely
capture some properties about the functional correctness of the system. The
aim of our work is not to list and prove all possible consistency properties about
the API and the hardware but only those which are necessary to prove that

11

isolation is preserved. In other words, the consistency properties give another
view of what it actually means for isolation to be preserved.

Many of the consistency properties are related to the list of free pages. So
we define the following notation:

Notation. Given a state s, FreePageList(s) stands for the linked list of all
physical pages available for allocation.

That list is encoded in memory and in the microkernel state as described in
Section 2.2.

3.2.1. Software consistency

All free pages are really free

The following consistency property really free ensures that all free pages
are never mapped in any runnable-process page table.

Definition 2. Given a state s, really free(s) holds iff for all p ∈ FreePageList(s),
p /∈ AllUsedPages(s) and p < nb pages, where nb pages is the number of pages
in physical memory and AllUsedPages(s) is the list of pages used by all processes
in Processes(s).

0 1 2 3 4

first free page
1

3 4 2

used page free page

pointer to the position (as a number)
of the next free page

Physical
memory

a used page is marked as the next

free page of the 4 th free page

Figure 11: Counterexample for really free

By adding the property really free in consistency we must verify that
on each system step, all free pages are not mapped in any runnable-process
page table. For instance, without such a property, we cannot prove that the
subroutine add pte (which adds an entry to a page table, cf. Fig. 12) preserves
isolation. Indeed, this subroutine allocates the first free page selected from
FreePageList(s), then adds it into the process page table. If this page was
already used by another process (cf. Fig. 11), the execution of add pte would
result in a state in which the page tables of two processes would reference the
same page: consequently, the isolation property would no longer hold.

No cycle in the free-page list

The following consistency property not cyclic means that no page appears
more than once in the free-page list.

Definition 3. Given a state s, not cyclic(s) holds iff by traversing the FreePageList(s)
list until reaching the end of the list, we never encounter the same node.

12

Subroutine add pte : integer→ integer→M(unit)
Input : permission: access rights for the new mapped page

index: entry in the page table
Action:
if permission and index are valid then

pte← get the entry at position index ;
if there is a mapped page in pte then

remove the entry content of pte;
end
allocate a new physical page p ;
add a mapping in pte according to p and permission;

end

Figure 12: Adding an entry in page table

The search of the list is performed using an accumulator list called seen, by
traversing the FreePageList(s) list until the end, we pop each encountered node
into the list seen. If the current node is already seen (i.e. present into seen)
that means the FreePageList(s) list is cyclic.

0 1 2 3 4

first free page
1

3 4 1

used page free page

pointer to the position (as a number)
of the next free page

Physical
memory

the page at position 1 is referenced twice
through the free-page linked list

Figure 13: Counterexample for not cyclic

As we have detailed above, free pages are referenced through a linked list in
physical memory. If such a property did not hold, the subroutine add pte could
allocate twice the same physical page (to the same process or a different one):
consequently, isolation property would no longer hold. Fig. 13 illustrates such
counterexample.

No duplicate in process used pages

The following consistency property noDuplic processPages property (Def. 4)
ensures that for any process, all its used pages appear only once in its page table.

Definition 4. The consistency property noDuplic processPages holds of a
state s iff for all process P ∈ Processes(s), there is no duplicate in UsedPages(P).

13

The need for this property arises when proving the isolation property of
subroutine remove pte (Fig. 14). This subroutine removes the content of a
page-table entry and frees the page p of that entry by adding it to the free-page
list. We use the present bit to check if the page-table entry is in use or free.
After the execution of remove pte, p must be really free. However, if there were
another entry which mapped the same physical page p, after remove pte p would
be considered both used and free at the same time. Then another process might
allocate p, and isolation property would no longer hold. Fig. 15 illustrates an
inconsistent state produced after the execution of remove pte when a physical
page is mapped twice by the current process.

Subroutine remove pte : integer→M(unit)
Input : vaddr : virtual address to be removed
Action:
index ← the entry position corresponding to vaddr ;
if index is valid and there is a mapped page at index then

Remove the entry content and return the page number p which was
mapped in this entry;

At the first word of p write the value of the first free page of s then
return p ;

Update the first free page of s with the value p;

end

Figure 14: Remove a page table entry content

The current page table is of a process

The following consistency property currProcess inProcessList (Def. 5)
ensures that the number currentptp(s) of the physical page storing the page
table of the current process is indeed the ptp of one of the runnable processes.

Definition 5. Given a state s, the property currProcess inProcessList(s)
holds iff there exists P ∈ Processes(s) such that ptp(P) = currentptp(s).

This property is required to preserve the isolation property for some sub-
routines which depend on this part of the state, the current page table. For
instance, when the scheduler switches between processes, it calls the subrou-
tine switch process which sequentially execute the subroutines save process (Fig. 16)
and restore process (Fig. 17). The first one removes the first process (which is
the currently running process) from the runnable-process list to then add it
at the end of the list with its ptp(P) value and the updated current pc. On
the other hand, the second subroutine sets the next process into the runnable-
process list as the new current process by mainly updating the currentptp(s)
with the corresponding process page table and jumping to the next instruction
of that process.

The isolation property requires that the used pages should be different, thus
when the save process subroutine adds a process to the process list, each of its

14

0 1

3

3

5

4

first free page
1

0 1

3

2

page table

3

5

4
currentptp

2

page table

used page

free page pointer to the position (as a number)
of the next free page

mapping

Remove pte execution

Physical
memory

first free page
4

1

currentptp

Figure 15: Counterexample for noDuplic processPages

mapped page must be different from any mapped page of other processes. Con-
sequently, to prove isolation, adding the current process to process list requires
that it matches a process in Processes(s), precisely the first one which has been
removed previously. Note that because of this property the list of processes can
never be empty even in the initial state.

Subroutine save process : M(unit)
Action:
remove the first process from the runnable-process list;
add the current process to the end of the runnable-process list;

Figure 16: Saving the current process to the process list

Subroutine restore process : M(unit)
Action:
set the first process of the runnable-process list as the current process;
update the current page table with the value of the page table of the new
current process;

replace the head of the kernel stack by the next instruction to execute by
the new current process and its execution mode;

Figure 17: Restoring the state of a process

3.2.2. Hardware consistency

Page 0 is never used or free

Physical memory may contain several kinds of pages such as used pages, free
pages and pages which are reserved by the kernel (and therefore not available
for allocation to any process). The latter is very important to isolate some part
of the memory from all processes during all possible executions, for instance to
store the code of the microkernel and its data. Thus, this information must be
stated in consistency properties. So we need to make sure that the pages which

15

are not available for allocation are indeed never used by a process or considered
free. In our model, we chose page 0 as a simple example of this kind of pages.
Of course, it could readily be generalized to any set of memory locations which
should never be allocated to process.

Two specific consistency properties, Free notZero (Def. 7) and Used notZero
(Def. 6), serve to check that page 0 stays unavailable for allocation. In a gener-
alization to any set of unavailable locations, those properties would check that
used and free pages stay within the range of valid page numbers.

Definition 6. Given a state s, used notZero(s) holds iff for all process P ∈
Processes(s), for all page p ∈ UsedPages(P) then 0 < p < nb pages.

Definition 7. Given a state s, Free notZero(s) holds iff
for all p ∈ FreePageList(s), p 6= 0.

Physical memory large enough

The following consistency property ensures that the memory is large enough.

Definition 8. Given a state s, memory length(s) holds iff

nb pages× page size ≤ length(data(s))

where length(memory(s)) to denote the size (in bytes) of the physical memory
and page size to denote the size of a page in memory.

Obviously, an undefined hardware behavior can cause vulnerabilities and
hence render a proof of security impossible. Commonly, it is the programmer
that should ensure that the code never invokes any undefined hardware behavior.
In particular, we cannot determine the result of accessing a physical page which
is not defined in memory. Consequently, we need to define some property that
ensures that all available physical pages are valid and we prove that our model
never causes this security issue.

4. Isolation proof

4.1. Hoare logic on top of the H monad

In order to reason about our code, we define a Hoare logic [16] on top of our
H monad. A similar approach was used in [17, 18]. Properties of computations
are specified by Hoare triples of the form {P} c {Q} where:

• P is a precondition, i.e. a unary predicate on the starting state;

• c is a computation returning a result of type A, i.e. the computation c is
of type M(A);

• Q is a postcondition, i.e. a binary predicate on the returned value and on
the ending state.

16

By definition, a triple {P} c {Q} holds iff: for all state s, if P holds for s then
either c(s) denotes the halting of the system or it denotes a pair (a, s′) where a
is a returned value and s′ is an ending state such that the postcondition Q holds
for this pair. In the case of c(s) denoting an undefined behavior, the triple does
not hold.

The weakest precondition for a computation c and a postcondition Q is the
unary predicate on state wp(Q, c) such that:

• the triple {wp(Q, c)} c {Q} holds, and

• for any precondition P such that {P} c {Q} holds we have, for all state s,
P (s) implies wp(Q, c)(s).

4.2. Preservation of isolation and consistency

We have formally proved in Coq that all the instructions, subroutines and
hardware components that we model preserve the isolation and the consistency
properties. For the most basic computations used as building blocks for our
instructions and subroutines, we first prove their weakest precondition triples,
and then use it to prove their invariant triples that state preservation of isolation
and consistency.

Then we combine those basic invariant triples to obtain invariant triples
for the more complex instructions, subroutines and hardware components. We
start this section by detailing the formal proof sketch of the basic instruction
trap, followed by a more involved one, write, and give some details about our
approach.

Detailed example: the trap instruction

Of course, processes are running in a low-privileged mode called user mode,
while the microkernel is running in a high-privileged mode called kernel mode.
In our model, a process can invoke a system call by triggering a software in-
terrupt trap (cf. Fig. 18) in order to request the microkernel to perform some
operations that do require a higher level of privilege. The intended behavior of
this instruction is to increment the currentpc position then call the instruction
interrupt (cf. Fig. 7) which save the context of the current running program
(the next instruction to execute and the execution mode) in the stack, switch
to the kernel mode, then branches to the involved interrupt handler instruc-
tion identified by the interrupt argument. The proof of this instruction is fairly
straightforward. So, we start by proving its weakest precondition then we prove
that isolation and consistency properties are preserved after the execution of
trap. None of these properties depend on the state fields updated by this in-
struction such as the system stack, the execution mode kernel mode and the
current instruction to execute. Consequently, this invariant is trivial.

Detailed example: writing in memory

The intended behavior of write is to store a given value at a given virtual
address in memory. First, this instruction invokes the hardware instruction

17

Instruction trap : integer→M(unit)
Input : n: the number of the interrupt to execute
Action:
increment the current instruction to execute;
interrupt(n);

Figure 18: triggering a software interrupt

translate. If there is a mapping that corresponds to the given virtual address
vaddr, translate returns the physical address paddr, otherwise it returns an
exception. In the first case, write then executes the instruction write phy (cf.
Fig. 19) which stores a value v at the memory address paddr of the current
process.

Hardware component write phy : integer→ integer→M(unit)
Input : v: value to be stored at paddr

paddr: physical address
Action :
p← the page of paddr;
i← the position of paddr in p;
update memory(v, i, p);

Figure 19: writing a value at a physical address

Our aim is to ensure that the instruction write preserves isolation and con-
sistency. So, we must prove the correctness of the Hoare triple write invariant.

Proposition (write invariant). If the isolation property I and the consistency
property C hold for the state before the execution of write, then I and C also
hold afterwards. Formally, we write:

{I ∧ C}write(v, vaddr) {I ∧ C}

translate is invoked first. It can return an exception. In that case, write ends
and the final state will be identical to the initial state: isolation and consistency
are then trivially preserved.

Let us then consider when translate succeeds. Since translate is invoked
first, its precondition must be the same as the precondition of the instruction
write. The instruction write phy is the last instruction invoked by write so its
postcondition must be the same postcondition as write.

Since the whole instruction write is the sequence of those two functions
translate and write phy, the postcondition of the first must match the precon-
dition of the second. translate should preserve isolation and consistency, so its
postcondition will include both these properties.

Another relevant point is that write phy uses the value paddr returned by
translate as a parameter, so to prove that isolation and consistency hold after

18

the execution of write phy, we must define some property R that depends on
this value and the state produced by translate. Therefore, the challenge here is
to determine the property R and prove the Hoare triples for translate invariant
(Lemma 1) and write phy invariant (Lemma 2).

Lemma 1 (translate invariant). If the isolation property I and the consistency
property C hold for the state before the execution of translate, then I, C and R
also hold afterwards. Formally, we write:

{I ∧ C} translate(vaddr) {I ∧ C ∧R}

Lemma 2 (write phy invariant). If the isolation property I, the consistency
property C and the property R hold for the state before the execution of write phy,
then I and C also hold afterwards. Formally, we write:

{I ∧ C ∧R}write phy(v, paddr) {I ∧ C}

Determining the intermediate property R. Before storing a value in
memory, write phy (Fig. 19) must calculate the corresponding page number p
of the physical address paddr and the offset i of paddr in page p, then store v
at the position i in the page p. To preserve isolation and consistency, the page
p must be mapped in the current process and i must be an offset in this page.
So, the property R is defined as follows:

Given a physical address paddr, R holds of a state s and a physical address
paddr iff there exists a physical page p and an offset i such that:

• paddr = p× page size + i,

• p ∈ MappedPages(ptp(s)), and

• i < page size.

where MappedPages(ptp(s)) is the list of all the pages referenced in the page
table ptp(s).

After the execution of translate, the new state is equal to the previous state.
So, it is straightforward to prove that isolation and consistency are preserved.
On the other hand, we have to prove that R(paddr, s) holds afterwards (where
paddr is the physical address returned by translate). For such needs, we use its
weakest precondition triple.

Contrary to translate, write phy modifies the current state and does not
return any value. Consequently, the postcondition will depend on the new state
that we denote s′. This instruction stores the value v in physical memory. Thus,
only memory(s) will be changed.

Therefore we have to prove that if isolation I, consistency C and R hold
of the parameter paddr and the state before the execution of write phy then
isolation and consistency hold afterwards. This proof requires eight cases, one
for isolation, and one per consistency property. In the following we sketch the
proof of all properties.

19

• isolation(s) : This case amounts to the fact that if the current process
writes a value in physical memory, it cannot modify a page table of a
runnable process. The challenge is to prove that the position of the page p
(cf. Fig. 19) is different from all positions of runnable-process page tables
and mapped pages into these tables.

Let P1 and P2 be two distinct processes from Processes(s). The consis-
tency property currProcess inProcessList(s) (Def. 5) ensures that
the page table of the current process is a page table of a process in
Processes(s). Consequently we have three cases (two of which are symmet-
ric). The first case is when currentptp(s) is different from both ptp(P1) and
ptp(P2). Isolation and consistency are trivially preserved in this case. The
two other cases are respectively when currentptp(s) is equal to ptp(P1) or,
symmetrically, ptp(P2). In those cases, we need the property R to ensure
that the page p is a mapped page in the current-process page table and
i is a position in this page. In addition we need the consistency property
noDuplic processPages to ensure that the position of a mapped page
is different from the position of the current page table and thus that the
page table will not be modified. Also, we use the isolation property of
the previous state to prove that this instruction cannot modify any other
runnable-process page table.

• really free(s) : This property depends on the free-page list and process
page tables. So, in this case we prove that if a process writes a value in
physical memory, it cannot modify this kernel data. We use the property R
to ensure that the page p which will be modified is a mapped page and thus
using the property really free on the previous state, we ensure that it
is not a free page. Also, we use the property noDuplic processPages
to ensure that this instruction cannot modify the current process page
table. Finally we use the isolation property on the previous state to prove
that it cannot modify any runnable-process page table.

• not cyclic(s) : To prove that there is no cycle in the free-page list on the
ending state, we first use the property not cyclic of the previous state.
Then, using a reasoning similar to the one used for really free, we
prove that this instruction cannot modify the free-page list using mainly
R and really free.

• noDuplic processPages(s): To prove that there is no duplication in
the pages used by the processes on the ending state, we use noDu-
plic processPages to ensure that this instruction cannot modify the
current-process page table and the isolation property in the previous state
to ensure that this instruction cannot modify any runnable-process page
table.

• free notZero(s): To prove that all free pages remain different from the
page 0 during the execution of write phy, we use a reasoning similar to

20

the one used for not cyclic (which depends only upon this list, too) to
prove that the free-page list is unchanged on the ending state.

• used notZero(s): To prove that the page 0 is never used by any process
during the execution of write phy, we have to prove that the page table
of any process is not modified on the ending state. Both, isolation(s)
and used notZero(s) depend on this data, consequently the proof is the
same as in isolation(s).

• memory length(s): In this case we need to prove that the physical-
memory length does not vary during the execution of write phy.

• currProcess inProcessList(s): The proof of this property is trivial
because it does not depend on memory(s).

Other example: adding a new PTE

The proof sketch of write invariant above was set out to explore the most
relevant points necessary to understand our approach to establish the expected
properties of our model. There are however more involved subroutines that need
more effort to prove their expected properties because of their complexity. In
this section, we will briefly discuss another example.

The expected behavior of the subroutine add pte (Fig. 12) is to add a new
entry to the page table of the currently-running process: it maps a new physical
page at a given index in the page table of the currently-running process. More
precisely, if there is no mapping yet at that index, it invokes a subroutine called
alloc page. This subroutine allocates a new page then adds a new mapping
corresponding to this page and to a given permission. The latter one requires a
precondition ensuring that there is no mapping in the involved entry which is,
notably, ensured by the second test in Fig. 12. The difficulty is that between this
test and the second instruction which adds the mapping in pte, the subroutine
alloc page changes the state. Consequently, we have to propagate this property
by proving that if it holds at the state before the execution of alloc page then
it holds afterwards. In our model, alloc page is used in several subroutines.
Therefore, we have defined and proved a new invariant for alloc page which
preserves isolation and consistency and propagates the necessary property.

4.3. Initial state and process creation

In our approach we consider that the isolation and consistency properties
are invariant. So, when the system starts up, its first task is to reach the first,
initial, state in which those properties are verified. This is the goal of the boot
subroutine.

An example of a consistent initial state could be the initialization of the list
of processes with a single process P which is also the current process. The value
of currentpc(s) would be initialized with the value of pc(P) (i.e. the pointer
to the first instruction to execute by P) and the value of currentptp(s) would
be initialized with the value of ptp(P) (i.e. the page table of the process P).

21

Similarly, physical memory should be initialized so that the consistency of the
free pages linked list (as detailed in Fig. 3) is ensured and so that the value
of first free page(s) corresponds to the value of the first free page. Finally, the
intr table(s) list should contain the entry points of all the interrupt handlers in
code(s). An example of this list is to set the switch process subroutine as the
interrupt number 0 and the create process subroutine as the interrupt number 1.

In order to verify this initial state we prove the Hoare triple for boot invariant
(Lemma 3).

Lemma 3 (boot invariant). The isolation property I and the consistency prop-
erty C hold for the state after the execution of boot

{True} boot {I ∧ C}

After booting up, any process can create new processes using the create process
subroutine which allocates a new page as the page table of this process and adds
it to the list of processes.

Subroutine create process : integer→M(unit)
Input : pc: the first instruction to execute by the process
Action :
table← allocate new physical page;
set table as the page table of the process;
set pc as the pointer to the first instruction to execute by the process;
add the new process to processes(s);

Figure 20: create a new process

It is also during start-up that the system configures the timer to trigger
preemptive scheduling. This can be implemented in our model by building
(during the boot subroutine) an initial state such that:

• some interrupt number (the one used by the timer) is associated in intr table
to the scheduler,

• and the hardware interrupts stream periodically contains the timer inter-
rupt number.

5. Overview of the formalization

In this section we describe the structure of our development in Coq. The Coq
code of our formalization is available at: https://github.com/jomaa/MIMIC.
It can be compiled with the version 8.5pl2 of Coq. It consists of about 2400
lines of specification and 9700 lines of proof. The size of each file can be found
in Table 1. Our development is organized in the following way:

• The definition of our hardware monad that provides states is split in the
two files StateMonad.v and HMonad.v.

22

https://github.com/jomaa/MIMIC

Category Filename
lines of

spec
lines of
proof

Hardware monad
StateMonad.v 101 70
HMonad.v 145 70
Subtotal 246 140

Hardware architecture

MMU.v 84 170
MemoryManager.v 93 76
Access.v 107 42
Instructions.v 168 117
Step.v 32 0
Subtotal 484 405

Microkernel

PageTableManager.v 207 76
Scheduler.v 115 25
ProcessManager.v 115 6
Subtotal 437 107

Definition and proof of
isolation and consistency

Properties.v 58 0
MMU invariant.v 18 273
Access invariants.v 117 1487
Scheduler invariant.v 140 347
Instructions invariants.v 55 108
ProcessManager invariant.v 123 596
Step invariant.v 8 37
Alloc invariants.v 37 102
Addpte invariant.v 122 1749
Removepte invariant.v 323 3763
Subtotal 1001 8462

Miscellaneous files

Lib.v 182 525
LibOs.v 29 69
Example.v 83 89
Subtotal 294 683

Total 2462 9797

Table 1: Project organization

• Our model of a hardware architecture is split into different files:

– The hardware component translate for the MMU is singled out in
MMU.v.

– Memory allocation is modeled in MemoryManager.v by the alloc page
subroutine.

– Access to physical memory is modeled in Access.v where the instruc-
tions write and read are defined.

– The dynamic evolution of the system (i.e. step), including inter-
rupt management (interrupt, fetch interrupt, fetch instruction and
return from interrupt), is modeled in Instructions.v and Step.v.

23

• Our model of a microkernel is split into different files:

– Subroutines add pte and remove pte to modify process page tables
are in PageTableManager.v.

– Subroutines save process, restore process and switch process for pre-
emptive CPU-time sharing are in Scheduler.v.

– The process creation subroutine create process is defined in Process-
Manager.v.

• The file Properties.v contains the definitions of isolation and consistency.

• The proofs of preservation of isolation and consistency are spread between
the files MMU invariant.v, Access invariants.v, Scheduler invariant.v, In-
structions invariants.v, ProcessManager invariant.v, Step invariant.v, Al-
loc invariants.v, Addpte invariant.v, Removepte invariant.v.

6. Conclusions and future work

In this paper we developed an approach based on a variant of the Hoare logic
in order to verify an abstract model of a microkernel in the Coq proof assistant.
This formal model is implemented using a monadic style in order to represent
stateful programs. The physical memory of user processes is guaranteed to be
isolated. Indeed, we first formalize the model of the relevant part of both MMU
and CPU behaviors that are required for the memory isolation property. Then
we implement an abstract model of a virtual memory manager and the basic
principles of interrupts in order to support preemptive scheduling.

Several consistency properties about the microkernel kernel behavior and
the corresponding hardware architecture were discovered incrementally during
the proof, that must be preserved by the microkernel in order for the memory
isolation to be preserved. Our proofs consist in proving that both isolation and
consistency properties are preserved along the execution of the microkernel.

One conclusion we can draw from this formalization is that many details
about the architecture and the microkernel are to be taken into account in order
to prove memory isolation between processes. This is thus a typical example of
a proof that would be hard for a human to conduct without a proof assistant,
because there would be too many details to keep in mind at all times. But
with the help of the Coq proof assistant that keeps track rigorously of all the
minutiae of the proof, one can be sure not to overlook any corner case.

Also we arrived at the current list of consistency properties listed in Section 3
after a few iterations. And each time we were extending this list, we had to go
through all the invariant proofs again to prove that consistency was preserved.
We benefited from the simple but useful mechanism called bullets which allows
to structure proof script and thus easily find where to insert the additional cases
to be dealt with.

One possible future work is to use the insights we gained from this for-
malization to design kernels that are more amenable to formal proof. We are

24

in particular interested in exokernels [19] because they push much further the
minimality principle [2] while still ensuring fundamental security properties that
would be interesting to formally prove.

References

[1] N. Jomaa, D. Nowak, G. Grimaud, S. Hym, Formal proof of dynamic
memory isolation based on MMU, in: 10th International Symposium
on Theoretical Aspects of Software Engineering, TASE 2016, Shanghai,
China, July 17-19, 2016, IEEE Computer Society, 2016, pp. 73–80. doi:

10.1109/TASE.2016.28.

[2] J. Liedtke, On micro-kernel construction, in: Jones [20], pp. 237–250. doi:
10.1145/224056.224075.

[3] D. Elkaduwe, G. Klein, K. Elphinstone, Verified protection model of the
sel4 microkernel, in: N. Shankar, J. Woodcock (Eds.), Verified Soft-
ware: Theories, Tools, Experiments, Second International Conference,
VSTTE 2008, Toronto, Canada, October 6-9, 2008. Proceedings, Vol.
5295 of Lecture Notes in Computer Science, Springer, 2008, pp. 99–114.
doi:10.1007/978-3-540-87873-5_11.

[4] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell, R. Kolan-
ski, G. Heiser, Comprehensive formal verification of an OS microkernel,
ACM Trans. Comput. Syst. 32 (1) (2014) 2:1–2:70. doi:10.1145/2560537.

[5] L. Gu, A. Vaynberg, B. Ford, Z. Shao, D. Costanzo, Certikos: a certified
kernel for secure cloud computing, in: H. Chen, Z. Zhang, S. Moon, Y. Zhou
(Eds.), APSys ’11 Asia Pacific Workshop on Systems, Shanghai, China,
July 11-12, 2011, ACM, 2011, p. 3. doi:10.1145/2103799.2103803.

[6] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, D. Costanzo,
Certikos: An extensible architecture for building certified concurrent OS
kernels, in: K. Keeton, T. Roscoe (Eds.), 12th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016., USENIX Association, 2016, pp. 653–669.

[7] A. Vaynberg, Z. Shao, Compositional verification of a baby virtual memory
manager, in: C. Hawblitzel, D. Miller (Eds.), Certified Programs and Proofs
- Second International Conference, CPP 2012, Kyoto, Japan, December
13-15, 2012. Proceedings, Vol. 7679 of Lecture Notes in Computer Science,
Springer, 2012, pp. 143–159. doi:10.1007/978-3-642-35308-6_13.

[8] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, R. Gu, Toward compositional
verification of interruptible OS kernels and device drivers, in: C. Krintz,
E. Berger (Eds.), Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016, ACM, 2016, pp. 431–447. doi:

10.1145/2908080.2908101.

25

http://dx.doi.org/10.1109/TASE.2016.28
http://dx.doi.org/10.1109/TASE.2016.28
http://dx.doi.org/10.1145/224056.224075
http://dx.doi.org/10.1145/224056.224075
http://dx.doi.org/10.1007/978-3-540-87873-5_11
http://dx.doi.org/10.1145/2560537
http://dx.doi.org/10.1145/2103799.2103803
http://dx.doi.org/10.1007/978-3-642-35308-6_13
http://dx.doi.org/10.1145/2908080.2908101
http://dx.doi.org/10.1145/2908080.2908101

[9] G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, C. Luna, For-
mally verified implementation of an idealized model of virtualization, in:
R. Matthes, A. Schubert (Eds.), 19th International Conference on Types for
Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France,
Vol. 26 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2013, pp. 45–63. doi:10.4230/LIPIcs.TYPES.2013.45.

[10] N. Marti, R. Affeldt, A. Yonezawa, Formal verification of the heap manager
of an operating system using separation logic, in: Z. Liu, J. He (Eds.),
Formal Methods and Software Engineering, 8th International Conference
on Formal Engineering Methods, ICFEM 2006, Macao, China, November
1-3, 2006, Proceedings, Vol. 4260 of Lecture Notes in Computer Science,
Springer, 2006, pp. 400–419. doi:10.1007/11901433_22.

[11] Y. Guo, H. Zhang, Verifying preemptive kernel code with preemption con-
trol support, in: 2014 Theoretical Aspects of Software Engineering Confer-
ence, TASE 2014, Changsha, China, September 1-3, 2014, IEEE Computer
Society, 2014, pp. 26–33. doi:10.1109/TASE.2014.29.

[12] A. S. Tanenbaum, A. S. Woodhull, Operating systems - design and imple-
mentation, 3rd Edition, Pearson Education, 2006.

[13] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (1991)
55–92. doi:10.1016/0890-5401(91)90052-4.

[14] P. Wadler, Comprehending monads, Mathematical Structures in Computer
Science 2 (4) (1992) 461–493. doi:10.1017/S0960129500001560.

[15] W. Stallings, P. Zeno, Computer Organization and Architecture: Designing
for Performance, 10th Edition, Always learning, Pearson, 2015, Ch. 3, p.
116.

[16] C. A. R. Hoare, An axiomatic basis for computer programming, Commun.
ACM 12 (10) (1969) 576–580. doi:10.1145/363235.363259.

[17] D. Cock, G. Klein, T. Sewell, Secure microkernels, state monads and scal-
able refinement, in: O. A. Mohamed, C. A. Muñoz, S. Tahar (Eds.),
Theorem Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, Vol.
5170 of Lecture Notes in Computer Science, Springer, 2008, pp. 167–182.
doi:10.1007/978-3-540-71067-7_16.

[18] W. Swierstra, A hoare logic for the state monad, in: S. Berghofer, T. Nip-
kow, C. Urban, M. Wenzel (Eds.), Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings, Vol. 5674 of Lecture Notes in Computer Science,
Springer, 2009, pp. 440–451. doi:10.1007/978-3-642-03359-9_30.

26

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.45
http://dx.doi.org/10.1007/11901433_22
http://dx.doi.org/10.1109/TASE.2014.29
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1017/S0960129500001560
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-540-71067-7_16
http://dx.doi.org/10.1007/978-3-642-03359-9_30

[19] D. R. Engler, M. F. Kaashoek, J. O’Toole, Exokernel: An operating system
architecture for application-level resource management, in: Jones [20], pp.
251–266. doi:10.1145/224056.224076.

[20] M. B. Jones (Ed.), Proceedings of the Fifteenth ACM Symposium on Oper-
ating System Principles, SOSP 1995, Copper Mountain Resort, Colorado,
USA, December 3-6, 1995, ACM, 1995. doi:10.1145/224056.

Appendix A. The formal model in Coq

Appendix A.1. The state of the system

Induct ive i n s t r : Type :=
(∗∗ Hardware component and i n s t r u c t i o n s ∗)
| Halt
| Trap (n : nat)
| I r e t
| Reset
| Write (va l vaddr : nat)
| Load (addr : nat)
| Nop
| Exit
(∗∗ ke rne l subrout ine s ∗)
| Crea t e p roce s s (pc : nat)
| Swi t ch proce s s
| Add pte (permis s ion index : nat)
| Remove pte (page : nat) .

Record proce s s : Type := {
pc : nat ;
p roce s s ke rne l mode : bool ;
ptp : nat ;
s t a c k p r o c e s s : l i s t nat

} .

Record s t a t e : Type := {
p r o c e s s l i s t : l i s t p roce s s ;
c u r r e n t p r o c e s s : p roce s s ;
currentptp : nat ;
code : l i s t i n s t r ;
i n t r t a b l e : l i s t nat ;
i n t e r r u p t i o n s : Stream (opt ion nat) ;
kernel mode : bool ;
currentpc : nat ;
s tack : l i s t (bool ∗ nat) ;

27

http://dx.doi.org/10.1145/224056.224076
http://dx.doi.org/10.1145/224056

r e g i s t e r : nat ;
memory : l i s t nat ;
f i r s t f r e e p a g e : nat

} .

Appendix A.2. The dynamic evolution of the system

In the formal definition for the step hardware component, we used notations
for the monadic operations.

perform b := M in N

stands for the standard monadic bind (binding the result of the computation M
to the name b in N); and

M ; ; N

stands for the monadic bind that discards the result of the computation M .
Using those notations, step is defined as follows.

D e f i n i t i o n step : M uni t :=
perform b := f e t c h i n t e r r u p t i o n in
match b with
| None => perform i := f e t c h i n s t r u c t i o n in

match i with
(∗∗ Hardware component and i n s t r u c t i o n s ∗)

| Halt => ha l t
| Trap n => i n c r p c ; ; i n t e r r u p t n
| I r e t => r e t u r n f r o m i n t e r r u p t
| Reset => i n c r p c ; ; r e s e t
| Write v vaddr => i n c r p c ; ; wr i t e v vaddr
| Load addr => i n c r p c ; ; load addr
| Nop => i n c r p c
| Exit => r e t t t

(∗∗ ke rne l subrout ine s ∗)
| Crea t e p roce s s pc => i n c r p c ; ; c r e a t e p r o c e s s pc
| Swi t ch proce s s => i n c r p c ; ; s w i t c h p r o c e s s
| Add pte permis s ion index => i n c r p c ; ; add pte permis s ion index
| Remove pte vaddr => i n c r p c ; ; remove pte vaddr
end

| Some n => i n t e r r u p t n
end .

28

	Introduction
	Formal model of a microkernel
	Background on MMU-based microkernels
	State of the system
	Dynamic evolution of the system

	Isolation and consistency
	Memory isolation
	Consistency
	Software consistency
	Hardware consistency

	Isolation proof
	Hoare logic on top of the H monad
	Preservation of isolation and consistency
	Initial state and process creation

	Overview of the formalization
	Conclusions and future work
	The formal model in Coq
	The state of the system
	The dynamic evolution of the system

