Narjes Jomaa

David Nowak

Gilles Grimaud

Samuel Hym

Formal Proof of Dynamic Memory Isolation Based on MMU $,$$

Keywords: Formal proof, Memory isolation, Microkernel, Coq

For security and safety reasons, it is essential to ensure memory isolation between processes. The memory manager is thus a critical part of the kernel of an operating system. It is common for kernels to ensure memory isolation through a piece of hardware called memory management unit (MMU). However an MMU by itself does not provide memory isolation. It is only a tool the kernel can use to ensure this property. In this paper we show how a proof assistant such as Coq can be used to model a hardware architecture with an MMU, and an abstract model of microkernel supporting preemptive scheduling and memory management. We proceed by making formally explicit the consistency properties that must be preserved in order for memory isolation to be preserved.

Introduction

Modern operating-system kernels make it possible to share computer resources between untrusted processes, and to rapidly deal with external events, e.g., arrival of a network packet that would be lost if not dealt with immediately. In this context, both for safety and security reasons, it is important to respectively prevent accidental and malevolent access by a process to an address outside its own address space. On modern computers, kernels ensure memory isolation with the help of a piece of hardware called memory management unit (MMU). An MMU is a hardware component through which all memory accesses must go. It translates a virtual memory address to a physical address if there is indeed a corresponding one in the current setting. It also checks whether in the current setting accessing this address is allowed. It is indeed a common design to have the kernel space always mapped for efficiency reasons but not accessible while in user mode. For this to work properly, the kernel has to maintain page tables which encode for each process the mapping between virtual addresses and physical addresses, and the access rights. It is important to note here that an MMU does not ensure memory isolation by itself, but it is only a tool the kernel can use to ensure the isolation property. A bug in the code of the kernel that deals with memory management (i.e. the memory manager) may lead to serious security and safety issues.

Since a kernel is executed in the so-called kernel mode (i.e. the privileged mode of the hardware), it is better from a security point of view to keep it as small as possible. This stems from the general principle that the trusted computing base (TCB) should be kept minimal. This is the reason why in this paper we focus on an abstract model of a microkernel [START_REF] Liedtke | On micro-kernel construction[END_REF] which supports preemptive scheduling and ensures memory isolation.

Contributions

Our main contribution is a formally proved model in the Coq proof assistant of dynamic memory isolation based on the MMU. More precisely, it consists of:

• A formal model of a hardware architecture as a monad: the parts that are important for memory isolation (e.g., the MMU and CPU) are modeled in all their relevant minutiae, while less relevant parts are abstracted away.

• A formal model of a microkernel supporting:

a memory management at an appropriate abstraction level so that it remains a realistic model without being linked to a particular implementation,

the basic principles of interrupts, in particular to support a preemptive scheduler.

• An explicit description of the consistency properties that must be preserved by a microkernel dealing with an MMU in order for the memory isolation to be preserved.

Related work

There have been many efforts to make formal proofs of security for kernels. Here are the most closely related to ours.

One of the most significant is the formal proof in the Isabelle/HOL proof assistant of the memory protection model of the microkernel seL4 [START_REF] Elkaduwe | Verified protection model of the sel4 microkernel[END_REF]. It is proved that the assembly code emitted by the compiler is correct in the sense that it implements the abstract model of memory isolation [START_REF] Klein | Comprehensive formal verification of an OS microkernel[END_REF]. This work was the first complete formal proof of an operating system kernel.

There is also CertiKOS which is a hypervisor dedicated to cloud computing that is formally verified [START_REF] Gu | Certikos: a certified kernel for secure cloud computing[END_REF][START_REF] Gu | Certikos: An extensible architecture for building certified concurrent OS kernels[END_REF]. In particular, its memory manager BabyVMM is constructed in layers so as to allow for formal verification by a series of refinements that are formalized in the Coq proof assistant [START_REF] Vaynberg | Compositional verification of a baby virtual memory manager[END_REF].

In contrast to those related work above, our goal is not to formally prove properties of a specific microkernel but to clarify what is needed to be assumed by microkernels about the hardware architecture and what are the constraints a microkernel must respect in order for memory isolation to be guaranteed at all times.

Moreover, a novel framework is developed in [START_REF] Chen | Toward compositional verification of interruptible OS kernels and device drivers[END_REF]. It gives the possibility to extend a verified non-interruptible kernel to a verified interruptible kernel where device drivers are implemented inside the kernel, their approach was successfully applied on the kernel mCertiKOS. In our case, device drivers are kept outside the microkernel, and the isolation between these components, like any process user, is ensured by the virtual memory manager which is implemented inside the microkernel on top of the physical memory. In the mCertiKOS kernel a different isolation property is defined and verified in order to ensure separation between different device objects and the kernel inside the kernel without relying on the virtual memory manager.

In [START_REF] Barthe | Formally verified implementation of an idealized model of virtualization[END_REF], an idealized model of a hypervisor was formalized in Coq and isolation properties were proved. While we also consider an abstract model, we are not treating isolation from the point of view of the information flow but at the lower level of page table management (information access). We are thus led to a model that includes an MMU and deals with page allocation.

In [START_REF] Marti | Formal verification of the heap manager of an operating system using separation logic[END_REF], the operations of allocation and deallocation of a microkernel were proved correct. However, those operations live in a higher layer of the operating system than the lower-level layer we consider here. Our work shows that the correct implementation of those operations is essential to ensure memory isolation.

Guo and Zhang proposed in [START_REF] Guo | Verifying preemptive kernel code with preemption control support[END_REF] a verification framework for verifying preemption control operations in a preemptive kernel. In our case, we focus on proving memory isolation between processes.

Outline

We first describe in Section 2 our formal model of a microkernel. We then make explicit in Section 3 our formal definition of memory isolation and the consistency properties that are to be preserved in order for memory isolation to hold. In Section 4, we present our proof methodology and discuss the difficulties met and their solutions. We finally give a brief overview of our Coq code in Section 5, before concluding in Section 6.

Formal model of a microkernel

In this section, we first briefly recall some basic facts on how microkernels control hardware components in order to manage CPU time and MMU resources and then we describe our formal model of the dynamic evolution of the system based on interrupts.

Background on MMU-based microkernels

The purpose of a microkernel is to manage several executing programs known as runnable processes. To provide preemptive scheduling, the microkernel must share CPU time between them giving the illusion that the processes run simultaneously. Each runnable process should have access only to its own address space, so the microkernel should control execution to prevent illegal accesses. This architecture of a microkernel is, for instance, detailed on pages 17 and 18 in the MINIX book [START_REF] Tanenbaum | Operating systems -design and implementation[END_REF] and illustrated in Fig. 1. We have designed a model for a microkernel that includes these major mechanisms.

To ensure security (in particular memory isolation), processes cannot directly access the physical memory which is divided into fixed-length blocks called physical pages. All their accesses to memory use virtual addresses and go through the MMU that translates virtual addresses to physical addresses. We illustrate the internal operation of the MMU with one level of indirection (cf. Fig. 2 taken from [START_REF] Tanenbaum | Operating systems -design and implementation[END_REF]). This translation mechanism is implemented using page tables. A page table is a physical page which is managed by the memory manager of the kernel. Each process has an address space large enough to store its code and data. The memory manager should ensure that any physical page allocated to a given process is referenced only in its page table. Using the virtual address, translate starts by finding the corresponding entry in page table. It then checks whether accessing that virtual address is allowed, i.e. there is a mapped page in this entry, using the present bit. It also verifies whether this page is accessible or not using the kernel only bit and the execution mode. When a process tries to violate these protection rules, the MMU raises an exception which will be handled by the microkernel.

Finally, in order to perform some operations that do require a higher level of privileges (read data from a file, get access to more physical memory, etc.), a process may request the microkernel to perform it on its behalf. To that end, the microkernel provides a set of system calls.

Since these mechanisms are clearly crucial to ensure memory isolation among processes, the memory manager and the scheduling mechanism used by the microkernel must be verified.

State of the system

In real implementations of operating systems, the state of the system is complex and includes the internal state of each hardware device and all the kernel data structures. In our formal model, the state s is a tuple containing many components; it is divided into two parts, the hardware state and the software state. For each part, we focus only on the components which are relevant to prove the properties we are interested in. The actual definitions of the state and its components are given in Appendix A.1 in Gallina syntax for reference. The formal definition of the type of the state is a record containing the following fields.

Hardware state. The following information about hardware devices (mostly processor and memory) is necessary to reason about memory isolation.

• currentptp(s) is the number of the physical page containing the page table of the current process.

• kernel mode(s) is a boolean that will be true when the processor is executing in kernel mode and false, otherwise.

• currentpc(s) (current program counter) is the position of the current instruction to be executed.

• memory(s) is the physical memory that we model as a list; it contains in particular two crucial data structures for the memory management: the page tables of the current processes used by the MMU address space translation and the list of the free pages (which is detailed below).

• interrupts(s) models hardware interrupts in a simple way since modeling hardware itself is out-of-scope of this work; they are modeled as an infinite list (or stream) containing one element per clock tick ; each element indicates whether a hardware interrupt is to be triggered at that tick and which interrupt it is, if any.

Software state. During execution, the system needs to store some information in physical memory and it must be accessible only in kernel mode. We modeled that information separately from the memory itself in order to simplify the proof of our property. Real implementations do ensure that it is kept separate by storing it in some part of memory which is reserved to the kernel and thus never accessible for processes. In the following, we provide some details concerning the most important fields :

• processes(s) is the list of runnable processes. Note that a process type is a record which contains information about a runnable process P in this list such as the reference to its page table ptp(P) and the address of the next instruction to execute pc(P). When we switch between processes the value of currentptp(s) should be updated with the value of ptp(P) of the selected process P and the value of currentpc(s) should be updated with the value of its pc(P).

• code(s) is a list that contains all the instructions of the system and of the user processes. The main property we are interested in here is to ensure data security. The proof of isolation for the code would be similar.

• intr table(s) represents the interrupt descriptor table. It is a list associating to each interrupt number its handler code such that each position into the list corresponds to the interrupt number and the associated value represents the address (as a position) into code(s).

• stack (s) is the system stack used to store the context of the current runnable program when an interrupt occurs.

• first free page(s) is the first page of the list of free pages. A page is said free when it is not allocated to any process (either as its page table or as a regular page, to store its data). A memory manager is obviously required to determine which pages are available for allocation and which are not.

In our model, this is done using the available pages themselves to store the linked list of free pages (cf. Fig. 3): since a free page does not contain any process data, we can use it to store the position of the next free page. That way, the microkernel needs to keep only the position of the first page of that linked list in its state per se to manage the free pages.

On system startup, all available physical pages are initialized so that they are in the free-page list.

Dynamic evolution of the system

During the lifetime of the system many processes may be created and executed and several events could occur generating state updates. So, the microkernel should provide an efficient mechanism to ensure correct state transitions. In this section we show how we formally model this dynamic evolution by using a monad.

H monad. Gallina, the specification language of Coq, is a purely functional language and thus does not provide imperative features such as updatable state, undefined behaviors and halting. In such a language, it is thus common to implement such features using a monad [START_REF] Moggi | Notions of computation and monads[END_REF][START_REF] Wadler | Comprehending monads[END_REF]. For our model, we have defined a monad that we call H monad and that provides states (as described in Section 2.2) and support for undefined behaviors and halting.

Our H monad is a kind of state monad where M (A) is the type of a computation that may have side effects and returns a result of type A: M (A) = def S → result(A × S) where S is the type of the state of the system and result(X) is an inductive type with three constructors: one to return a result of type A and the new state of type S, and two others to denote an undefined behavior and halting. In the following, we will use s to denote a state in S. In our model, we identify three different kinds of computations:

• a hardware component models the behavior of a relevant piece of hardware; indeed, we need to model the pieces of hardware involved in the memory management (namely the operations performed by the MMU);

• an instruction corresponds to a single CPU instruction; it is modeled as a sequence of more elementary steps (for instance involving hardware components);

• a subroutine is an atomic sequence of instructions of the microkernel that cannot be interrupted.

System calls and interrupts. Our model of the CPU, in particular regarding how system calls and interrupts work, aims at being as general as possible.

Fig. 4 (taken from Stallings' book on Computer Organization and Architecture [START_REF] Stallings | Computer Organization and Architecture: Designing for Performance, 10th Edition, Always learning[END_REF]) outlines the dynamic evolution of the system with and without interrupt and Fig. 5 represents the formal model implemented in Coq.

Our model of the kernel provides a very simple API, focused on our topic of interest: memory isolation of processes. So its API provides only the subroutines create process, switch process, add pte, and remove pte which will be detailed later in this paper. The actual definitions of the step hardware component in Gallina syntax is given for reference in Appendix A.2. We can see in Fig. 4 that instruction execution operates mainly in three steps:

Start

1. Fetch instruction: read or extract the instruction from memory. Our hardware component fetch instruction corresponds to this step. 2. Execute instruction: execute the sequence of elementary steps of that CPU instruction. For instance, the instruction may require the CPU to determine some effective (physical) address to load or store some data, such as when a process stores a value in memory using the instruction write. Before storing data in memory, using the hardware component translate, this instruction determines the physical address that corresponds to the virtual address provided by the process.

3. Check for interrupt: check whether there is an interrupt to handle before moving on to the next instruction. We modeled this operation by the hardware component fetch interrupt (Fig. 6): it pops the head element of the hardware-interrupt stream in order to check if an interrupt has been triggered. If some interrupt needs to be dealt with, using the hardware component interrupt (Fig. 7), the current context is pushed on top of the system stack, does switching to kernel mode and branching to the code of the handler for the triggered interrupt. The hardware finds the right handler using the interrupt number as index in intr table(s). To continue the execution of the current process properly after an interrupt, the hardware component return from interrupt (Fig. 8) needs to be executed to return from the interrupt handler.

Hardware component fetch interrupt : M (option integer) Action: pop the head of the hardware interrupt stream; return it; Processes invoke system calls to interact with the microkernel by triggering software interrupts. In our model, thus, the instruction trap allows processes to trigger software interrupts which are then processed as explained in Fig. 7.

Isolation and consistency

In this section, we present our memory isolation property, then we introduce the consistency properties and motivate them with counterexamples that show how a simple breach of consistency would invalidate memory isolation.

Consistency is the conjunction of multiple properties that must be preserved in order for isolation to be preserved. Testing at runtime that these properties are preserved is not realistic since it would take too much time. Indeed, it would for instance require checking if all the entries of a set of tables match some condition on every system call. We rather characterize the consistency properties required for isolation and prove that they are always preserved.

Memory isolation

Each process has its own page table which is located in memory. Our model for page-table entries follows closely the description given in Section 2.1. Each entry of a page table corresponds to a virtual address and contains the corresponding physical-page number and some bits for access control such as the present bit and the kernel only bit. The former should have the value 1 if there is a mapped page in this entry and the latter should have the value 0 if the mapped page should only be accessible to the microkernel. Unfortunately, the MMU cannot ensure separation between process address spaces all by itself. Instruction write : integer → integer → M (unit) Input : val : the value to be written vaddr : the virtual address at which it should be written Action: paddr ← translate(vaddr) ; if paddr is not an exception then write phy(val, paddr) ; (*write val at physical address paddr*) end Indeed, if the page tables are not configured correctly then the translation function could translate a virtual address to a physical address which is also used by another process. Let us consider how this could happen by looking at what happens when a process runs the write instruction. That instruction, illustrated in Fig. 9, writes a value val to some virtual address vaddr. In order to perform that action, it relies on the hardware component translate (cf. Fig. 10) to compute the physical address paddr for the virtual address vaddr according to the page table of the current process. Considering how these operations are performed, the MMU will translate addresses without raising any exception even if the physical page is also mapped in another process page table and so the current process will access and modify the content of that page. This clearly shows that the two processes are not properly isolated. To ensure isolation then, we need to guarantee that all page tables are always soundly configured. That is the aim of our memory isolation property (Def. 1). Intuitively, we want to show that for any state s there is no interference between any two runnable processes: if P 1 and P 2 are two runnable processes then any page which is used by P 1 is different from any page used by P 2 .

Definition 1 (Memory isolation property).

A state s is isolated iff for all P 1 , P 2 ∈ Processes(s) such that P 1 = P 2 (i.e. ptp(P 1) = ptp(P 2)) and for all p ∈ UsedPages(P 1), we have p / ∈ UsedPages(P 2), where

• Processes(s) is the set of runnable processes in the state s,

• ptp(P i) is the number of the physical page containing the page table of the process P i ,

• UsedPages(P i) is the list of all the pages referenced in the page table ptp(P i) plus ptp(P i) itself.

Consistency

In this section, we explain and justify the various properties composing the consistency. We organize them into two categories: software consistency and hardware consistency.

The consistency is required to prove the isolation property. It precisely capture some properties about the functional correctness of the system. The aim of our work is not to list and prove all possible consistency properties about the API and the hardware but only those which are necessary to prove that isolation is preserved. In other words, the consistency properties give another view of what it actually means for isolation to be preserved.

Many of the consistency properties are related to the list of free pages. So we define the following notation:

Notation. Given a state s, FreePageList(s) stands for the linked list of all physical pages available for allocation.

That list is encoded in memory and in the microkernel state as described in Section 2.2.

Software consistency All free pages are really free

The following consistency property really free ensures that all free pages are never mapped in any runnable-process page table.

Definition 2. Given a state s, really free(s) holds iff for all p ∈ FreePageList(s), p / ∈ AllUsedPages(s) and p < nb pages, where nb pages is the number of pages in physical memory and AllUsedPages(s) is the list of pages used by all processes in Processes(s). By adding the property really free in consistency we must verify that on each system step, all free pages are not mapped in any runnable-process page table. For instance, without such a property, we cannot prove that the subroutine add pte (which adds an entry to a page table, cf. Fig. 12) preserves isolation. Indeed, this subroutine allocates the first free page selected from FreePageList(s), then adds it into the process page table. If this page was already used by another process (cf. Fig. 11), the execution of add pte would result in a state in which the page tables of two processes would reference the same page: consequently, the isolation property would no longer hold.

No cycle in the free-page list

The following consistency property not cyclic means that no page appears more than once in the free-page list. Definition 3. Given a state s, not cyclic(s) holds iff by traversing the FreePageList(s) list until reaching the end of the list, we never encounter the same node. The search of the list is performed using an accumulator list called seen, by traversing the FreePageList(s) list until the end, we pop each encountered node into the list seen. If the current node is already seen (i.e. present into seen) that means the FreePageList(s) list is cyclic. As we have detailed above, free pages are referenced through a linked list in physical memory. If such a property did not hold, the subroutine add pte could allocate twice the same physical page (to the same process or a different one): consequently, isolation property would no longer hold. Fig. 13 illustrates such counterexample.

No duplicate in process used pages

The following consistency property noDuplic processPages property (Def. 4) ensures that for any process, all its used pages appear only once in its page table. Definition 4. The consistency property noDuplic processPages holds of a state s iff for all process P ∈ Processes(s), there is no duplicate in UsedPages(P).

The need for this property arises when proving the isolation property of subroutine remove pte (Fig. 14). This subroutine removes the content of a page-table entry and frees the page p of that entry by adding it to the free-page list. We use the present bit to check if the page-table entry is in use or free. After the execution of remove pte, p must be really free. However, if there were another entry which mapped the same physical page p, after remove pte p would be considered both used and free at the same time. Then another process might allocate p, and isolation property would no longer hold. Fig. 15 illustrates an inconsistent state produced after the execution of remove pte when a physical page is mapped twice by the current process.

Subroutine remove pte : integer → M (unit) Input : vaddr : virtual address to be removed Action: index ← the entry position corresponding to vaddr ; if index is valid and there is a mapped page at index then Remove the entry content and return the page number p which was mapped in this entry; At the first word of p write the value of the first free page of s then return p ; Update the first free page of s with the value p; end

The current page table is of a process

The following consistency property currProcess inProcessList (Def. 5) ensures that the number currentptp(s) of the physical page storing the page table of the current process is indeed the ptp of one of the runnable processes. Definition 5. Given a state s, the property currProcess inProcessList(s) holds iff there exists P ∈ Processes(s) such that ptp(P) = currentptp(s).

This property is required to preserve the isolation property for some subroutines which depend on this part of the state, the current page table. For instance, when the scheduler switches between processes, it calls the subroutine switch process which sequentially execute the subroutines save process (Fig. 16) and restore process (Fig. 17). The first one removes the first process (which is the currently running process) from the runnable-process list to then add it at the end of the list with its ptp(P) value and the updated current pc. On the other hand, the second subroutine sets the next process into the runnableprocess list as the new current process by mainly updating the currentptp(s) with the corresponding process page table and jumping to the next instruction of that process.

The isolation property requires that the used pages should be different, thus when the save process subroutine adds a process to the process list, each of its 14 mapped page must be different from any mapped page of other processes. Consequently, to prove isolation, adding the current process to process list requires that it matches a process in Processes(s), precisely the first one which has been removed previously. Note that because of this property the list of processes can never be empty even in the initial state.

Subroutine save process : M (unit) Action: remove the first process from the runnable-process list; add the current process to the end of the runnable-process list; set the first process of the runnable-process list as the current process; update the current page table with the value of the page table of the new current process; replace the head of the kernel stack by the next instruction to execute by the new current process and its execution mode;

Hardware consistency

Page 0 is never used or free Physical memory may contain several kinds of pages such as used pages, free pages and pages which are reserved by the kernel (and therefore not available for allocation to any process). The latter is very important to isolate some part of the memory from all processes during all possible executions, for instance to store the code of the microkernel and its data. Thus, this information must be stated in consistency properties. So we need to make sure that the pages which are not available for allocation are indeed never used by a process or considered free. In our model, we chose page 0 as a simple example of this kind of pages. Of course, it could readily be generalized to any set of memory locations which should never be allocated to process.

Two specific consistency properties, Free notZero (Def. 7) and Used notZero (Def. 6), serve to check that page 0 stays unavailable for allocation. In a generalization to any set of unavailable locations, those properties would check that used and free pages stay within the range of valid page numbers. Definition 6. Given a state s, used notZero(s) holds iff for all process P ∈ Processes(s), for all page p ∈ UsedPages(P) then 0 < p < nb pages. Definition 7. Given a state s, Free notZero(s) holds iff for all p ∈ FreePageList(s), p = 0.

Physical memory large enough

The following consistency property ensures that the memory is large enough.

Definition 8. Given a state s, memory length(s) holds iff nb pages × page size ≤ length(data(s))

where length(memory(s)) to denote the size (in bytes) of the physical memory and page size to denote the size of a page in memory.

Obviously, an undefined hardware behavior can cause vulnerabilities and hence render a proof of security impossible. Commonly, it is the programmer that should ensure that the code never invokes any undefined hardware behavior. In particular, we cannot determine the result of accessing a physical page which is not defined in memory. Consequently, we need to define some property that ensures that all available physical pages are valid and we prove that our model never causes this security issue.

Isolation proof

Hoare logic on top of the H monad

In order to reason about our code, we define a Hoare logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] on top of our H monad. A similar approach was used in [START_REF] Cock | Secure microkernels, state monads and scalable refinement[END_REF][START_REF] Swierstra | A hoare logic for the state monad[END_REF]. Properties of computations are specified by Hoare triples of the form {P } c {Q} where:

• P is a precondition, i.e. a unary predicate on the starting state;

• c is a computation returning a result of type A, i.e. the computation c is of type M (A);

• Q is a postcondition, i.e. a binary predicate on the returned value and on the ending state.

By definition, a triple {P } c {Q} holds iff: for all state s, if P holds for s then either c(s) denotes the halting of the system or it denotes a pair (a, s) where a is a returned value and s is an ending state such that the postcondition Q holds for this pair. In the case of c(s) denoting an undefined behavior, the triple does not hold.

The weakest precondition for a computation c and a postcondition Q is the unary predicate on state wp(Q, c) such that:

• the triple {wp(Q, c)} c {Q} holds, and

• for any precondition P such that {P } c {Q} holds we have, for all state s, P (s) implies wp(Q, c)(s).

Preservation of isolation and consistency

We have formally proved in Coq that all the instructions, subroutines and hardware components that we model preserve the isolation and the consistency properties. For the most basic computations used as building blocks for our instructions and subroutines, we first prove their weakest precondition triples, and then use it to prove their invariant triples that state preservation of isolation and consistency.

Then we combine those basic invariant triples to obtain invariant triples for the more complex instructions, subroutines and hardware components. We start this section by detailing the formal proof sketch of the basic instruction trap, followed by a more involved one, write, and give some details about our approach.

Detailed example: the trap instruction

Of course, processes are running in a low-privileged mode called user mode, while the microkernel is running in a high-privileged mode called kernel mode. In our model, a process can invoke a system call by triggering a software interrupt trap (cf. Fig. 18) in order to request the microkernel to perform some operations that do require a higher level of privilege. The intended behavior of this instruction is to increment the currentpc position then call the instruction interrupt (cf. Fig. 7) which save the context of the current running program (the next instruction to execute and the execution mode) in the stack, switch to the kernel mode, then branches to the involved interrupt handler instruction identified by the interrupt argument. The proof of this instruction is fairly straightforward. So, we start by proving its weakest precondition then we prove that isolation and consistency properties are preserved after the execution of trap. None of these properties depend on the state fields updated by this instruction such as the system stack, the execution mode kernel mode and the current instruction to execute. Consequently, this invariant is trivial.

Detailed example: writing in memory

The intended behavior of write is to store a given value at a given virtual address in memory. First, this instruction invokes the hardware instruction Instruction trap : integer → M (unit) Input : n: the number of the interrupt to execute Action: increment the current instruction to execute; interrupt(n); translate. If there is a mapping that corresponds to the given virtual address vaddr, translate returns the physical address paddr, otherwise it returns an exception. In the first case, write then executes the instruction write phy (cf. Fig. 19) which stores a value v at the memory address paddr of the current process.

Hardware component write phy : integer → integer → M (unit) Input : v: value to be stored at paddr paddr: physical address Action : p ← the page of paddr; i ← the position of paddr in p; update memory(v, i, p); Our aim is to ensure that the instruction write preserves isolation and consistency. So, we must prove the correctness of the Hoare triple write invariant.

Proposition (write invariant). If the isolation property I and the consistency property C hold for the state before the execution of write, then I and C also hold afterwards. Formally, we write:

{I ∧ C} write(v, vaddr) {I ∧ C}
translate is invoked first. It can return an exception. In that case, write ends and the final state will be identical to the initial state: isolation and consistency are then trivially preserved.

Let us then consider when translate succeeds. Since translate is invoked first, its precondition must be the same as the precondition of the instruction write. The instruction write phy is the last instruction invoked by write so its postcondition must be the same postcondition as write.

Since the whole instruction write is the sequence of those two functions translate and write phy, the postcondition of the first must match the precondition of the second. translate should preserve isolation and consistency, so its postcondition will include both these properties.

Another relevant point is that write phy uses the value paddr returned by translate as a parameter, so to prove that isolation and consistency hold after the execution of write phy, we must define some property R that depends on this value and the state produced by translate. Therefore, the challenge here is to determine the property R and prove the Hoare triples for translate invariant (Lemma 1) and write phy invariant (Lemma 2). 19) must calculate the corresponding page number p of the physical address paddr and the offset i of paddr in page p, then store v at the position i in the page p. To preserve isolation and consistency, the page p must be mapped in the current process and i must be an offset in this page. So, the property R is defined as follows:

Given a physical address paddr, R holds of a state s and a physical address paddr iff there exists a physical page p and an offset i such that:

• paddr = p × page size + i,

• p ∈ MappedPages(ptp(s)), and

• i < page size.
where MappedPages(ptp(s)) is the list of all the pages referenced in the page table ptp(s).

After the execution of translate, the new state is equal to the previous state. So, it is straightforward to prove that isolation and consistency are preserved. On the other hand, we have to prove that R(paddr, s) holds afterwards (where paddr is the physical address returned by translate). For such needs, we use its weakest precondition triple.

Contrary to translate, write phy modifies the current state and does not return any value. Consequently, the postcondition will depend on the new state that we denote s . This instruction stores the value v in physical memory. Thus, only memory(s) will be changed.

Therefore we have to prove that if isolation I, consistency C and R hold of the parameter paddr and the state before the execution of write phy then isolation and consistency hold afterwards. This proof requires eight cases, one for isolation, and one per consistency property. In the following we sketch the proof of all properties.

• isolation(s) : This case amounts to the fact that if the current process writes a value in physical memory, it cannot modify a page table of a runnable process. The challenge is to prove that the position of the page p (cf. Fig. 19) is different from all positions of runnable-process page tables and mapped pages into these tables.

Let P 1 and P 2 be two distinct processes from Processes(s). The consistency property currProcess inProcessList(s) (Def. 5) ensures that the page table of the current process is a page table of a process in Processes(s). Consequently we have three cases (two of which are symmetric). The first case is when currentptp(s) is different from both ptp(P 1) and ptp(P 2). Isolation and consistency are trivially preserved in this case. The two other cases are respectively when currentptp(s) is equal to ptp(P 1) or, symmetrically, ptp(P 2). In those cases, we need the property R to ensure that the page p is a mapped page in the current-process page table and i is a position in this page. In addition we need the consistency property noDuplic processPages to ensure that the position of a mapped page is different from the position of the current page table and thus that the page table will not be modified. Also, we use the isolation property of the previous state to prove that this instruction cannot modify any other runnable-process page table.

• really free(s) : This property depends on the free-page list and process page tables. So, in this case we prove that if a process writes a value in physical memory, it cannot modify this kernel data. We use the property R to ensure that the page p which will be modified is a mapped page and thus using the property really free on the previous state, we ensure that it is not a free page. Also, we use the property noDuplic processPages to ensure that this instruction cannot modify the current process page table . Finally we use the isolation property on the previous state to prove that it cannot modify any runnable-process page table.

• not cyclic(s) : To prove that there is no cycle in the free-page list on the ending state, we first use the property not cyclic of the previous state. Then, using a reasoning similar to the one used for really free, we prove that this instruction cannot modify the free-page list using mainly R and really free.

• noDuplic processPages(s): To prove that there is no duplication in the pages used by the processes on the ending state, we use noDuplic processPages to ensure that this instruction cannot modify the current-process page table and the isolation property in the previous state to ensure that this instruction cannot modify any runnable-process page table.

• free notZero(s): To prove that all free pages remain different from the page 0 during the execution of write phy, we use a reasoning similar to the one used for not cyclic (which depends only upon this list, too) to prove that the free-page list is unchanged on the ending state.

• used notZero(s): To prove that the page 0 is never used by any process during the execution of write phy, we have to prove that the page table of any process is not modified on the ending state. Both, isolation(s) and used notZero(s) depend on this data, consequently the proof is the same as in isolation(s).

• memory length(s): In this case we need to prove that the physicalmemory length does not vary during the execution of write phy.

• currProcess inProcessList(s): The proof of this property is trivial because it does not depend on memory(s).

Other example: adding a new PTE

The proof sketch of write invariant above was set out to explore the most relevant points necessary to understand our approach to establish the expected properties of our model. There are however more involved subroutines that need more effort to prove their expected properties because of their complexity. In this section, we will briefly discuss another example.

The expected behavior of the subroutine add pte (Fig. 12) is to add a new entry to the page table of the currently-running process: it maps a new physical page at a given index in the page table of the currently-running process. More precisely, if there is no mapping yet at that index, it invokes a subroutine called alloc page. This subroutine allocates a new page then adds a new mapping corresponding to this page and to a given permission. The latter one requires a precondition ensuring that there is no mapping in the involved entry which is, notably, ensured by the second test in Fig. 12. The difficulty is that between this test and the second instruction which adds the mapping in pte, the subroutine alloc page changes the state. Consequently, we have to propagate this property by proving that if it holds at the state before the execution of alloc page then it holds afterwards. In our model, alloc page is used in several subroutines. Therefore, we have defined and proved a new invariant for alloc page which preserves isolation and consistency and propagates the necessary property.

Initial state and process creation

In our approach we consider that the isolation and consistency properties are invariant. So, when the system starts up, its first task is to reach the first, initial, state in which those properties are verified. This is the goal of the boot subroutine.

An example of a consistent initial state could be the initialization of the list of processes with a single process P which is also the current process. The value of currentpc(s) would be initialized with the value of pc(P) (i.e. the pointer to the first instruction to execute by P) and the value of currentptp(s) would be initialized with the value of ptp(P) (i.e. the page table of the process P).

Similarly, physical memory should be initialized so that the consistency of the free pages linked list (as detailed in Fig. 3) is ensured and so that the value of first free page(s) corresponds to the value of the first free page. Finally, the intr table(s) list should contain the entry points of all the interrupt handlers in code(s). An example of this list is to set the switch process subroutine as the interrupt number 0 and the create process subroutine as the interrupt number 1.

In order to verify this initial state we prove the Hoare triple for boot invariant (Lemma 3).

Lemma 3 (boot invariant). The isolation property I and the consistency property C hold for the state after the execution of boot {T rue} boot {I ∧ C} After booting up, any process can create new processes using the create process subroutine which allocates a new page as the page table of this process and adds it to the list of processes.

Subroutine create process : integer → M (unit) Input : pc: the first instruction to execute by the process Action : table ← allocate new physical page; set table as the page table of the process; set pc as the pointer to the first instruction to execute by the process; add the new process to processes(s); It is also during start-up that the system configures the timer to trigger preemptive scheduling. This can be implemented in our model by building (during the boot subroutine) an initial state such that:

• some interrupt number (the one used by the timer) is associated in intr table

to the scheduler,

• and the hardware interrupts stream periodically contains the timer interrupt number.

Overview of the formalization

In this section we describe the structure of our development in Coq. The Coq code of our formalization is available at: https://github.com/jomaa/MIMIC. It can be compiled with the version 8.5pl2 of Coq. It consists of about 2400 lines of specification and 9700 lines of proof. The size of each file can be found in Table 1. Our development is organized in the following way:

• The definition of our hardware monad that provides states is split in the two files StateMonad.v and HMonad.v.

• Our model of a microkernel is split into different files:

-Subroutines add pte and remove pte to modify process page tables are in PageTableManager.v.

-Subroutines save process, restore process and switch process for preemptive CPU-time sharing are in Scheduler.v.

-The process creation subroutine create process is defined in Process-Manager.v.

• The file Properties.v contains the definitions of isolation and consistency.

• The proofs of preservation of isolation and consistency are spread between the files MMU invariant.v, Access invariants.v, Scheduler invariant.v, Instructions invariants.v, ProcessManager invariant.v, Step invariant.v, Alloc invariants.v, Addpte invariant.v, Removepte invariant.v.

Conclusions and future work

In this paper we developed an approach based on a variant of the Hoare logic in order to verify an abstract model of a microkernel in the Coq proof assistant. This formal model is implemented using a monadic style in order to represent stateful programs. The physical memory of user processes is guaranteed to be isolated. Indeed, we first formalize the model of the relevant part of both MMU and CPU behaviors that are required for the memory isolation property. Then we implement an abstract model of a virtual memory manager and the basic principles of interrupts in order to support preemptive scheduling.

Several consistency properties about the microkernel kernel behavior and the corresponding hardware architecture were discovered incrementally during the proof, that must be preserved by the microkernel in order for the memory isolation to be preserved. Our proofs consist in proving that both isolation and consistency properties are preserved along the execution of the microkernel.

One conclusion we can draw from this formalization is that many details about the architecture and the microkernel are to be taken into account in order to prove memory isolation between processes. This is thus a typical example of a proof that would be hard for a human to conduct without a proof assistant, because there would be too many details to keep in mind at all times. But with the help of the Coq proof assistant that keeps track rigorously of all the minutiae of the proof, one can be sure not to overlook any corner case.

Also we arrived at the current list of consistency properties listed in Section 3 after a few iterations. And each time we were extending this list, we had to go through all the invariant proofs again to prove that consistency was preserved. We benefited from the simple but useful mechanism called bullets which allows to structure proof script and thus easily find where to insert the additional cases to be dealt with.

One possible future work is to use the insights we gained from this formalization to design kernels that are more amenable to formal proof. We are r e g i s t e r : nat ; memory : l i s t nat ; f i r s t f r e e p a g e : nat } .

Figure 1 :

 1 Figure 1: Architecture of a microkernel

Figure 2 :

 2 Figure 2: Memory management unit (MMU)

Figure 3 :

 3 Figure 3: Memory model

Figure 5 :

 5 Figure 5: The specification of the dynamic evolution of the system

Figure 6 :

 6 Figure 6: Check for interrupt

Figure 7 :

 7 Figure 7: Handling the interrupt

Figure 8 :

 8 Figure 8: Returning from an interrupt

Figure 9 :

 9 Figure 9: Writing a value in memory

Figure 10 :

 10 Figure 10: Translating virtual addresses to physical addresses

 position (as a number) of the next free page Physical memory a used page is marked as the next free page of the 4 th free page

Figure 11 :

 11 Figure 11: Counterexample for really free

Figure 12 :

 12 Figure 12: Adding an entry in page table

Figure 13 :

 13 Figure 13: Counterexample for not cyclic

Figure 14 :

 14 Figure 14: Remove a page table entry content

Figure 15 :

 15 Figure 15: Counterexample for noDuplic processPages

Figure 16 :

 16 Figure 16: Saving the current process to the process list

Figure 17 :

 17 Figure 17: Restoring the state of a process

Figure 18 :

 18 Figure 18: triggering a software interrupt

Figure 19 :

 19 Figure 19: writing a value at a physical address

Lemma 1 (

 1 translate invariant). If the isolation property I and the consistency property C hold for the state before the execution of translate, then I, C and R also hold afterwards. Formally, we write: {I ∧ C} translate(vaddr) {I ∧ C ∧ R} Lemma 2 (write phy invariant). If the isolation property I, the consistency property C and the property R hold for the state before the execution of write phy, then I and C also hold afterwards. Formally, we write: {I ∧ C ∧ R} write phy(v, paddr) {I ∧ C} Determining the intermediate property R. Before storing a value in memory, write phy (Fig.

Figure 20 :

 20 Figure 20: create a new process

 Hardware component translate : integer → M (integer + exception) Input : vaddr : a virtual address Output: the corresponding physical address or an exception Action : if the vaddr size is valid then calculate the address of page table entry pte and the offset in this page corresponding to vaddr ; if there is a mapped page in pte and (the kernel mode(s) = true or kernel only(pte) = 1) then calculate the physical address and return it;

	else
	return an exception
	end
	else
	return an exception
	end

 Subroutine add pte : integer → integer → M (unit) Input : permission: access rights for the new mapped page index: entry in the page table Action: if permission and index are valid then pte ← get the entry at position index ; if there is a mapped page in pte then remove the entry content of pte; end allocate a new physical page p ; add a mapping in pte according to p and permission; end

$ This work was partially supported by the Celtic-Plus Project ODSI C2014/2-12, CNRS Action Spécifique Sécurité, and IRCICA USR 3380. $$ A preliminary version of this work appeared in the proceedings of the 10th International

-The hardware component translate for the MMU is singled out in MMU.v.

-Memory allocation is modeled in MemoryManager.v by the alloc page subroutine.

-Access to physical memory is modeled in Access.v where the instructions write and read are defined.

-The dynamic evolution of the system (i.e. step), including interrupt management (interrupt, fetch interrupt, fetch instruction and return from interrupt), is modeled in Instructions.v and Step.v.

in particular interested in exokernels [START_REF] Engler | Exokernel: An operating system architecture for application-level resource management[END_REF] because they push much further the minimality principle [START_REF] Liedtke | On micro-kernel construction[END_REF] while still ensuring fundamental security properties that would be interesting to formally prove.