
HAL Id: hal-01712346
https://hal.science/hal-01712346

Submitted on 19 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CUDA-based SeqSLAM for Real-Time Place
Recognition

Safa Ouerghi, Rémi Boutteau, Fethi Tlili, Xavier Savatier

To cite this version:
Safa Ouerghi, Rémi Boutteau, Fethi Tlili, Xavier Savatier. CUDA-based SeqSLAM for Real-Time
Place Recognition. International Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision, May 2017, Plzen, Czech Republic. �hal-01712346�

https://hal.science/hal-01712346
https://hal.archives-ouvertes.fr

CUDA-based SeqSLAM for Real-Time Place Recognition

Safa Ouerghi
Carthage Univ,

Sup’Com, GRESCOM,
2083 El Ghazela,

Tunisia
safa.ouerghi@supcom.tn

Remi Boutteau
Normandie Univ,

UNIROUEN
ESIGELEC, IRSEEM
76000 Rouen, France
Remi.Boutteau@esigelec.fr

Fethi Tlili
Carthage Univ,

Sup’Com, GRESCOM,
2083 El Ghazela,

Tunisia
fethi.tlili@supcom.tn

Xavier Savatier
Normandie Univ,

UNIROUEN
ESIGELEC, IRSEEM
76000 Rouen, France
Xavier.Savatier@esigelec.fr

ABSTRACT
Vehicle localization is a fundamental issue in autonomous navigation that has been extensively studied by the
Robotics community. An important paradigm for vehicle localization is based on visual place recognition which
relies on learning a database, then consecutively trying to find matchings between this database and the actual
visual input. An increasing interest has been directed to visual place recognition in varying conditions like day
and night cycles and seasonal changes. A major approach dealing with such challenges is Sequence SLAM (Se-
qSLAM) based on matching a sequence of images to the database instead of a single image. This algorithm allows
global pose recovery at the expense of a higher computational time. To solve this problem with a certain amount
of speedup, we propose in this work, a CUDA-based solution for real-time place recognition with SeqSLAM.
We design a mapping of SeqSLAM to CUDA architecture and we describe, in detail, our hardware-specific im-
plementation considerations as well as the parallelization methods. Performance analysis against existing CPU
implementation is also given, showing a speedup to six times faster than the CPU for common sized databases.
More speedup could be obtained when dealing with bigger databases.

Keywords
Place recognition, global localization, SeqSLAM, robotics, CUDA, GPU.

1 INTRODUCTION
Visual place recognition systems have become increas-
ingly important for a variety of mobile robotic plat-
forms and applications. A typical setup of a visual
recognition system contains a given database of im-
ages (the map) and the robot consecutively tries to find
matchings between this database and the actual visual
input (query images). The query is either a single im-
age, which is most common, or an organized set of im-
ages i.e. a sequence. Recently, there has been an in-
creasing focus on visual place recognition in varying
conditions which promoted the design of vision-based
systems that can work across common real-world per-
ceptual changes such as varying weather conditions and
day and night cycles [4, 16, 10, 11].

A well-known successful approach is SeqSLAM (Se-
quence SLAM) for visual place recognition introduced
by Milford and Weyth in [10] and also described in [9].
This work puts forward the concept of camera-based
GPS, which means performing global localization with
ensuring to never lose again and aims at matching im-
age sequences under strong seasonal changes. SeqS-
LAM is based on the computation of image-by-image
dissimilarity scores between all query and database im-
ages, stored in a so-called difference matrix, then, com-
puting a straight-line path through the full matching
matrix to finally select the path with the smallest sum
of dissimilarity scores. Despite the quite remarkable

results achieved by SeqSLAM, building a full matching
matrix introduces substantial computational complexity
and enhancing it then computing scores for all straight
lines presents an additional computational bottleneck.

However, many problems are being solved using
programmable graphics hardware to achieve a certain
amount of speedup and the usage of GPU computation
has become a popular topic in the community. In fact,
the Compute Unified Device Architecture (CUDA)
has enabled graphics processors to be explicitly
programmed as general purpose shared-memory
multi-core processors with a high level of parallelism
[6].

In this paper, we focus on an efficient parallelization
of the state-of-the-art visual place recognition SeqS-
LAM to achieve a certain amout of speedup. We con-
sider a single GPU implementation and we describe the
strategies to efficiently map the problem components to
CUDA architecture.

The paper proceeds as follows: Section II presents
some related work. Section III summarises the SeqS-
LAM algorithm, and brievly reviews GPU architecture
and performance considerations. Implementation de-
tails are, subsequently, presented in Section IV. Finally,
Section IV, presents the results, discusses the outcomes
of this paper and presents suggestions for future work.

2 RELATED WORK
Visual place recognition is a well-defined but very
broad problem. State of the art techniques for visual
place recognition based on features, fall generally into
two categories: those that selectively extract parts of
the image and those that use the whole image without
a selection phase. Examples of the first category
are local feature descriptors such as scale-invariant
feature transforms (SIFT) [7] and speeded-up robust
features (SURF) [1]. In the second category, we find
global descriptors such as HOG [3] and GIST [13]
that use to process the whole image regardless of its
content. In fact, a considerable emphasis was placed
on accelerating image descriptors for visual place
recognition using CUDA GPUs that many problems
are recently being solved with. In [20], Scale-invariant
feature transform (SIFT) has been accelerated using
CUDA GPU. Speeded-up robust features (SURF) has
also been ported to CUDA to achieve a certain amount
of speedup [19]. In addition, GIST and HOG global
descriptors have been GPU accelerated in [18] and [15]
respectively. We find, as well, another broad category
of methods for visual place recognition based on a pure
image retrieval. This process can be accelerated using
inverted indices where image ID numbers are stored
against words that appear in the image. FabMAP,
a well known technique for visual place recognition
along a 1000-km path [2] has relied on an inverted
index with a bag-of-words model. Inverted index
technique has been recently implemented on GPU
demonstrating its efficiency [21]. The bag-of-words
technique has also been GPU-implemented [17].
Furthermore, image retrieval systems can be enhanced
by adding topological information as both FabMap
and SeqSLAM do. Topological maps have in turn
been improved by incorporating metric odometry
information such as SMART [14] and CAT-SLAM [8].
The metric information within the topological place
node can be stored as a sparse landmark map or as a
dense occupancy grid map. However, dense spatial
modeling has only become feasible in the past few
years with the advent of GPU technology [12].

3 BACKGOUND

3.1 SeqSLAM
The SeqSLAM algorithm demonstrated impressive
place recognition performance across significant
condition variance such as seasonal changes and in
case of low quality imagery (low resolution, low depth,
and image blur). In order to increase the discriminative
nature of the observation and to avoid the problem of
false-positives, location is represented in SeqSLAM as
a sequence of images, rather than a single image from
one pose. Images are, beforehand, resolution-reduced

and patch-normalised to enhance contrast. Then, Se-
qSLAM builds a difference matrix holding SAD (Sum
of Absolute Differences) scores between all query and
database image sequences. A key processing step is
to normalize the image difference values within their
(spatially) local image neighborhoods. Subsequently,
a search for diagonals of low difference values is
performed over the defined sequence length. However,
SeqSLAM assumes similar speeds in repeated route
traversals and negligible accelerations, limiting its
performance in certain application contexts where
these criteria are not met.

3.2 GPU architecture summary and per-
formance considerations

NVIDIA GPUs comprise a set of SMs (Streaming Mul-
tiprocessors). Each SM consists of many SPs (Stream-
ing Processors) and SFUs (Special Function Units),
which are simple but energy-efficient processing units
that execute instructions in a SIMD fashion (Single In-
struction Multiple Data). The main memory of GPUs,
called global memory, can be accessed from all the SPs
in every SM. Furthermore, each SM has a set of regis-
ters and a small memory (shared memory). This shared
memory is much faster than global memory. Each ker-
nel is invoked by a set of threads that are grouped
into thread blocks. The blocks are distributed by the
hardware among the available SMs. Depending on the
amount of required resources, each SM may be able to
simultaneously execute several blocks. Each block has
assigned an amount of shared memory that allows the
exchanging of data among threads of the same block.
A more detailed description of NVIDIA’s GPU archi-
tecture can be found in [5]. The main important fea-
tures influencing GPU performance are synchroniza-
tion barriers, the trade-off between available thread-
ing and shared resources, coalescence issues in global
memory access and shared memory bank conflicts.

4 CUDA-BASED SEQSLAM IMPLE-
MENTATION

In this section, we present the mapping strategies of
SeqSLAM to the CUDA architecture. In total, we
deal with three different kernels, each having a specific
launch configuration that optimizes the use of the hard-
ware. The first kernel is dedicated to the difference ma-
trix computation, the second to contrast enhancement
of the obtained difference matrix and the last one per-
forms route searching in order to find the best match.

4.1 Difference Matrix Computation
The SeqSLAM algorithm uses Sum of Absolute Dif-
ferences (SAD) to compare each query image Iq from
the query sequence Q = (I1, ..., IQ) with Q = |Q| to
each database image ID from the database Sequence

D = (I1, ..., ID) with D = |D | and calculates the dif-
ference score:

d =
1

RxRy
|IQ− ID| (1)

where d is the difference score and Rx and Ry are the
horizontal and vertical image dimensions, respectively.
The difference scores are assembled into the so-called
difference matrix M of size D×Q.

We assume that the database and query sequences re-
side in the GPU’s global memory as unsigned char
types. In fact, database images are cropped, converted
to grayscale and resolution-reduced during the prepro-
cessing step done offline and could therefore easily fit
into GPU’s global memory. On another note, it has
been reported in [16, 10] that, the longer the query se-
quences are, the more difficult is to localize the precise
match of a specific frame. This stems from the fact
that although longer sequences are more distinguish-
able, the weight of each frame decreases with the se-
quence length. These considerations show that both the
database and the query sequences could be stored in
global memory, the first at the initialization of the GPU
after an offline preprocessing, and the second, online
acquired, is transferred from host to GPU after prepro-
cessing as well.

Our parallelization strategy is based on a common strat-
egy called tiling. This strategy consists in the partition
of the data into subsets called tiles, such that each tile
fits into the shared memory of a block. We apply this
technique to the difference matrix computation where
each tile of the difference matrix is handled by a 2-
dimensional block. The tiling process requires for each
block to load TileQ query images into shared memory
and TileD database images as described in Algorithm
1. Due to shared memory size limitations, we use the
unsigned char type for the allocated buffers in shared
memory. Although the use of 1-byte unsigned char
type is not recommended in shared memory as bank
conflicts occur when threads in the same half warp ac-
cess the same 4 or 8 bytes wide memory banks, the
limited size of shared memory imposes its use. In our
implementation, we use the buit-in type uchar1 denot-
ing an unsigned char. We empirically adjust the pair
(TileD, TileQ) through a time vs (TileD, TileQ) evalua-
tion. The best performance, overall, was achieved by
(TileD, TileQ)= (4,4).

4.2 Difference Matrix Contrast Enhance-
ment

After creating a difference matrix comparing all previ-
ously seen locations to each other using SAD scores,
SeqSLAM employs local neighbourhood normalisation
to remove biases from lighting variations between route
traversals. Each element Mi in the difference matrix M

input : D , Q
output: Difference Matrix M

__shared__ uchar1 Bu fD[TileD×Rx×Ry];
__shared__ uchar1 Bu fQ[TileQ×Rx×Ry];
__shared__ int temp[Rx×Ry/2],Mt [TileD×TileQ];
blockIdx.x← Bx, blockIdx.y← By;
sd ←min(TileD,D−Bx×TileD);
sq←min(TileQ,D−By×TileQ);
threadIdx.x← Idx, Dim← Rx×Ry;
for i← Idx to sd ×Dim do

Bu fD[i]←D [i+Bx×TileD×Dim];
i← i+8×warpSize;

end
synchronise the threads ;

for i← Idx to sq×Dim do
Bu fQ[i]←Q[i+By×TileD×Dim];
i← i+8×warpSize;

end
synchronise the threads ;

for i← 0 to sd do
for j← 0 to sq do

Initialize temp ;
for k← Idx to Dim do

id← mod(k,8×WarpiSize);
temp[id]← temp[id]+ |Bu fD[i×Dim+
k]−Bu fQ[j×Dim+ k]|;
i← i+8×warpSize;

end
synchronise the threads ;
Mt [i× sq + j]← Reduction(temp);

end
end
synchronise the threads ;
Copy Mt to global memory;

Algorithm 1: Parallel difference matrix computation

is normalised within a fixed range l by subtracting the
local mean and dividing by the local standard deviation
to enhance the local matching contrast. This process
gives the new difference matrix M̂:

M̂i =
Mi− M̄l

σl
(2)

where M̄l is the local mean and σl is the local standard
deviation, in a range l templates around template i.

We apply, as well, the tiling technique to enhance
the previously calculated difference matrix, stored in
global memory in a row major order. The tile size
is fixed to Tile×Q. The threads within each block
handle the computation of a tile and are designed to be
two-dimensional. In our design, each block of index
0<blockIdx.x<gridDim.x-1 will load Tile+l of M.
The blocks handling the border tiles, i.e. block0 and
blockgridDim.x-1 only load Tile+ 1

2 l.

The cuda kernel begins with loading a tile of M into
a preallocated shared memory of size (Tile+l)× Q.

Next, the computation of Q means for Tile rows of
the enhanced M̂ is handled by Q×Tile threads where
threadIdx.x<Tile and threadIdx.y<Q. Each thread sums
(1+ l) values of M in a column where the y-coordinate
is threadIdx.y and the x-coordinate starts from threa-
dIdx.x to finally divide the sum by the number of values
summed up i.e., (1+ l). After the kernel has finished
computing the means, threads are synchronised to sub-
sequently perform the computation of standard devia-
tions the same way they did for the means computation
thus described using the formula of standard deviation
and the means already calculated. However, border tiles
handled by blockIdx.x=0 and blockIdx.x=gridDim.x-1
are special cases. In this way, for the first block, if
threadIdx.x≤ 1

2 l the local neighbourhood would be be-
low (1+ l) and have thus to adapt its range with each
row of M̂, i.e. each threadIdx.x. The same principle ap-
plies to the last block. If threaIdx.x≥ 1

2 l the range has
to be adapted as well. In our implementation, we com-
pute the range for each thread using thread registers. Fi-
nally, each block writes in column major the tile of M̂ to
global memory. Implementation details thus described
are presented in Algorithm 2. However, we only de-
scribe the means computation given that the same prin-
ciple applies to standard deviations computation. The
final straightforward step is also not presented and it
consists in substracting the mean and dividing by the
standard deviation each element Mi to obtain M̂i.

4.3 Route Searching
The inputs to the localization algorithm are the query
sequence locally acquired and the database Sequence
that serves as the visual memory of the robot. The al-
gorithm attempts to find a subsequence of equal length
in the database that is the most similar to all regarded
subsequences. This is performed by building the image
difference matrix as stated above, contrast enhancing it
and then searching for the minimizing sub-route refer-
ring to connected regions of low difference in the differ-
ence matrix resembling to lines shapes. This process is
presented in Figure 1 where, for each starting search po-
sition in left column (marked by a green dot), a range of
slopes is traversed (highlighted by the semi-transparent
green area) modelizing possible other sub-routes that
will be traversed for other slopes. For each matrix en-
try that is traversed during a sub-route traversal, its dif-
ference value is added to an accumulative value that
is initialized with zero in the beginning. This value is
called sub-route score. Since there is a range of possible
slopes for each starting point there is an equal number
of scores for each sub-route starting point. When all
scores are calculated for one starting point the minimal
score of them is selected. Finally, the sub-route with the
smallest score and the second smallest score are used to
compute the best database matching to the input query
sequence.

input : Difference Matrix M, l
output: Enhanced Difference Matrix M̂

__shared__ M̂sh[Tile][Q], Msh[l +Tile][Q];
__shared__ Mean[Tile][Q];
Initialize Msh to 0;

Idx← threadIdx.x, Idy← threadIdx.y,
Bid ← blockIdx.x, grid← gridDim.x;

a←max(0,Tile×Blid − 1
2 l);

b←min(D,Tile×Blid +(Tile−1)+ 1
2 l);

if Idx≤ b−a and Idy < Q then
Msh[Idx][Idy]←M[a+ Idx][Idy];

end
synchronise the threads ;

if (Idx≤ Q) and (Idy < Tile) and (Bid = 0) then
a←max(0, Idx− 1

2 l);
b←min(1+ l, 1+ Idx+ 1

2 l);
Mean[Idx][Idy]← 1

b .∑
b
i=0 Msh[a+ i][Idy];

end
synchronise the threads ;

if (Idx≤ Q) and (Idy < Tile) and (0 < Bid < grid)
then

Mean[Idx][Idy]← 1
1+l .∑

1+l
i=0 Msh[Idx+ i][Idy];

end
synchronise the threads ;

if (Idx≤Q) and (Idy < Tile) and (Bid = grid−1) then
b← (1+ 1

2 l)+min(D−Bid ×Tile−1− Idx, 1
2 l);

Mean[Idx][Idy]← 1
b .∑

1+l
i=0 Msh[Idx+ i][Idy];

end
synchronise the threads ;

Algorithm 2: Parallel mean computation for Differ-
ence Matrix contrast enhancement

Figure 1: Minimal slope search in the difference matrix.

One of the main important features influencing GPU
performance is coalescence issues in global memory
access. However, subroute scores computation require
multiple non coalesced global memory accesses (to
sum up values in diagonals). We hence aim to design
a novel subroute score computation that enables coa-
lesced accesses.

One common solution to coalescence issues is the use
of shared memory to load data from global memory in a
coalesced fashion, then, have contiguous threads stride
through it. Unlike global memory, there is no penalty
for strided access in shared memory especially when
there is no bank conflict. We assume that the difference

matrix sizes are bigger than the shared memory of a sin-
gle block, which would be the case for the majority of
real applications. It is also worth noting that depending
on the database size is not a limiting factor in our imple-
mentation as the whole process of SeqSLAM is based
on a learning phase where several learnable parameters
have to be tuned.
We present our design using the mapping vector tech-
nique that assigns CUDA ressources including blocks,
threads and registers to SeqSLAM data. We will first
begin with presenting the global memory mapping vec-
tor followed by the SM mapping vector. The main
structure of SeqSLAM; the difference Matrix M of size
D×Q, is stored in global memory in a column major
order according to the following mapping vector:

[M0 M1 ...MD−1︸ ︷︷ ︸
col 0

MD MD+1 ...M2D−1︸ ︷︷ ︸
col 1

... MD(Q−1)−1 ...MDQ−1︸ ︷︷ ︸
col Q-1

]

(3)

This means that columns of size D are contiguously
stored in global memory. Hence M(0,0) starts at lo-
cation 0, M(0,1) at location D and M(i, j) at location
j×D+ i.

The proposed mapping vector of data on the SM
ressources is the following:

[M0, ...,M2D−1︸ ︷︷ ︸
block 0

,M2D, ...,M4D−1︸ ︷︷ ︸
block 1

, ...,M2×i×D, ...,M2×(i+1)×D−1︸ ︷︷ ︸
block i

,

...,MD(Q−2+MOD(Q,2))−1, ...,MDQ−1︸ ︷︷ ︸
block ceil(Q/2)

]

(4)

This means that each block i performs a coalesced
memory access to global memory in order to load data
from location 2× i×D to location 2× (i+ 1)×D− 1
into its shared memory which is equivalent to 2
columns of the difference Matrix M. The last block
of index blockIdx.x = ceil(Q/2) loads the remaining
columns which would be either two if MOD(Q,2) = 0
or only one column if not. Thus, a total number of
ceil(Q/2) + 1 one-dimensional blocks is used in the
launch configuration of the kernel and 4 warps of
threads per block.

As shown in Algorithm 3, the function of each block
is, therefore, to compute a subscore for each sub-route
where the used values are only strided by D+offset
with offset∈ {0,1,2}. Within a block, the subscore of
a given sub-route for all slope possibilities is handled
by a thread. We note that simultaneous accesses of
threads within a block to shared memory are done to
consecutive values, i.e. a column of the matrix M to
minimize bank conflicts. As only 4 warps are used
per block, 128× k subscores are computed in paral-
lel by the active threads, where k designs the number

of slope possibilities. The process is, hence, repeated
(1+ f loor(D/128)) times to account for the D possi-
ble subroutes. The 128× k subscores are then written
to global memory via an atomicAdd between the active
blocks. We note that the atomicAdd is done inside the
loop due to the limited size of shared memory and only
128× k floats are allocated for Scores vector. The final
Score for each sub-route would be equal to the sum of
the calculated subscores for the slope possibility k.

5 RESULTS
In this section, we describe the conducted experiments
to evaluate the performance of porting SeqSLAM to
CUDA GPU. We will first begin with exposing the
experimental setup, then, discuss the performance ex-
pressed in terms of timing of our implementation versus
exsisting CPU implementation.

5.1 Experimental Setup
For the experiments described in the following, we ex-
tracted still frames from the original video of the Nord-
land dataset1, downsampled them to 64× 32 and con-
verted them into grayscale. It is worth noting that in
related litterature, the downscaling was 64×32 for not
only the Nordland dataset, but also the Alderley2. The
downscaling was even greater for other datasets such as
the Nurburgring dataset, equal to 32× 24 and the ap-
proach of SeqSLAM is fundamentally based on impor-
tant downscaling ratios.

Furthermore, all the data reside in the GPU device
memory at the beginning of each test, so there are no
data transfers to CPU during the benchmarks to prevent
interactions with other factors in the study. The per-
formance of the experiments for Parallel SeqSLAM is
measured in time t in milliseconds(ms). The system on
which our implementation was evaluated is equipped
with an i7 CPU running at up to 3.5 GHz, the intel i7
CORE. The CUDA device is an NVIDIA GeForce GTX
850M running at 876 MHz with 4096 MB of GDDR5
device memory. The evaluation has been performed
with CUDA version 7.5 integrated with VisualStudio
2012. At the first execution of SeqSLAM, memory al-
locations have to be performed. This is required only
once and takes about 10ms. All the experiments were
run for 5 database sequence lengths as presented in Ta-
ble 1. Morever, 3 query sequences were used with 3
different lengths as presented in Table 2. As stated be-
fore, database sequences were obtained using the open-
Source Code OpenseqSLAM3 by varying the param-
eter imageSkip. However, the CPU-based code used

1 http://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-
minute-season-by-season/

2 https://wiki.qut.edu.au/display/cyphy/
Michael+Milford+Datasets+and+Downloads

3 https://openslam.org/openseqslam.html

input : M̂, movmin, movmax
output: Matchindex, Matchscore

slopes← movmax−movmin +1;
Idx← threadIdx.x;
Bid ← blockIdx.x;
__shared__ Icremindices[slopes][Q],Score[slopes][Q];
__shared__ Bu f f er[2×D],Score[D][128];
if Idx = 0 then

Slopes← FindSlopePossibilities(movmin,movmax);
Icremindices← SlopeIndices(Slopes);

end
synchronise the threads ;
for i← Idx+2×D×Bid to 2×D× (1+Bid) do

Bu f f er[i−2×D×Bid]← M̂[i];
i← i+4×warpSize;

end
synchronise the threads ;
for s← Idx to D do

intindices[slopes][Q];
for i← 0 to slopes do

for j← 0 to Q do
indices[i][j]← j×D+ s+
min(Icremindices[i×Q+ j],D− s);

end
end
synchronise the threads ;
for i← 0 to slopes do

sum← 0; for j← 0 to 2 do
index← indices[i][j+2×Bid];
sum← sum+Bu f f er[index−2×D×Bid];

end
Subscore[i][mod(s,128)]← sum;

end
synchronise the threads ;

atomicAdd of Subscore in Temp of size D× slopes
in global memory;
s← s+4×warpSize;

end
Idx← threadIdx.x×blockDim.x+blockIdx.x;
for k← Idx to D do

Score[k]← MinOverSlopes(Temp);
k← k+blockDim.x×gridDim.x;

end
synchronise the threads ;
min1← FindMinWithShuffle(Score);
index1← FindIndexOfMin(min1);
Set values in Score around min1 of radius Rwindow to
max machine value;

min2← FindMinWithShuffle(Score);
Matchindex← index1 ;
Matchscore← min1/min2;

Algorithm 3: Parallel Route Searching

in benchmarking is a C++/OpenCV port of OpenSeqS-
LAM 4.

Database Database Seq Length imageSkip
D1 714 50
D2 1428 25
D3 2747 13
D4 3570 10
D5 5100 7

Table 1: Database Sequences

Query Query Seq Length
query 1 11
query 2 20
query 3 32

Table 2: Query Sequences

5.2 CUDA based implementation vs CPU
based implementation

5.2.1 Difference Matrix Computation timing
In the first experiment, we measured the execution
time of difference matrix computation kernel using
the query and the database sequences presented in
Table 1 and Table 2 respectively. We selected the pair
(TileD,TileQ) = (4,4). The evaluation is depicted
in Figure 2 for query = 32 showing an increasingly
important speedup of CUDA-based parallel SeqSLAM
with the database sequence length. The speedup is
averaged at 4×.

Figure 2: Difference matrix computaion.

5.2.2 Difference Matrix Enhancement timing
We subsequently evaluated the performance of paral-
lel SeqSLAM contrast enhancement over Sequential
contrast enhancement. The optimal tile selected is
Tile = 20 and the performance for both sequential and
parallel implementations is presented in Figure 3 for
query = 32. The obtained speedup exceeds 16× for D1
and almost 13× for D5. Overall, a good speedup was
shown with parallel seqSLAM averaged at 14×.

4 https://github.com/subokita/OpenSeqSLAM

Figure 3: Difference matrix enhancement.

5.2.3 Route searching timing
The third experiment was dedicated to the comparison
of the Route searching execution time for both CPU-
based and CUDA GPU- based implementations. The
speedup of GPU over CPU is clearly visible averaged
at almost 6× for the datasets used in the evaluation and
is depicted in Figure 4 for query = 32. An interesting
point is that the route searching is not a botteleneck for
CPU when attempting to localize a single image using
a short query sequence as recommended. However, we
aim to design a GPU only solution and a good speedup
was though shown.

Figure 4: Route searching.

5.2.4 Performance anlalysis of CUDA based Se-
qSLAM

In Figure 5, we show the performance results of par-
allel SeqSLAM using a CUDA GPU. Firstly, in Figure
5a, we compare the mean computation time of CPU and
GPU implementations, for the different database and
query sequences used in this evaluation. We show a
computation time even more important for CPU reach-
ing 298ms for D5 and query3 against 51ms for GPU. In
figure 5b we demonstrate that the speedup is about 6×
compared to the CPU implementation.

5.3 Discussion
A special feature of the Nordland dataset is that the
viewpoint for the database and query sequences is ex-
actly the same. The camera has only one degree of

(a) GPU vs CPU time

(b) Speedup

Figure 5: Performance of CUDA based SeqSLAM.

freedom along its track and corresponding images from
two traverses in different conditions overlap almost per-
fectly. This condition is only met for certain applica-
tions where the camera has only one degree of freedom
and SeqSLAM remains a major approach from which
many recent approaches are being built upon. Hence,
since our aim is to enhance timing and not localization
precision, we have relied on the Nordland dataset im-
ages as input for different database and query sequences
sizes. Furthermore, we aimed to design a GPU only
solution as in a real application for a robotic platform,
several modules are required and we can put some tasks
that do not depend on the results of the kernel on the
CPU while the GPU is executing a different task in
order to achieve a better performance and reduce the
hardware complexity. In fact, this is possible thanks to
the asynchronous execution feature between the CPU
and the GPU of CUDA systems meaning that the con-
trol returns to the CPU immediately after the kernel is
launched.

6 CONCLUSION
In this paper, we have proposed a parallel CUDA GPU
based implementation of Sequence SLAM (SeqSLAM)
for visual place recognition. SeqSLAM is a well-known
successful approach for mobile localization and place
recognition in varying conditions like seasonal changes
and day and night cycles when certain conditions are
met. Our parallelization method was based on the al-
location of the three major steps of the approach to
three GPU kernels, each of which with a specific launch

configuration promoting the best possible performance.
Experimentations showed promising results thanks to
the parallel exploitation of CUDA ressources that of-
fered a good overall speedup averaged at 6 times bet-
ter than its CPU counterpart. As future work, we plan
to apply other algorithmic techniques instead of simple
image difference to deal better with a reasonable view-
point change. We plan also to use a multi-GPU sys-
tem to scale with bigger databases and achieve a greater
speedup.

7 REFERENCES
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.

Speeded-up robust features (surf). In. Elsevier
Computer Vision Image Understanding, 110:346–
359, 2008.

[2] M. Cummins and P. Newman. Appearance-only
slam at large scale with fab-map 2.0. In. The In-
ternational Journal of Robotics Research (IJRR),
30:1100–1123, 2011.

[3] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. Proc. of IEEE
Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Washing-
ton, DC, USA, 110:886–893, 2005.

[4] E. Johns and G. Z. Yang. Feature co-occurrence
maps: Appearance-based localisation throughout
the day. pages 3212–3218, 2013.

[5] D. B. Kirk and W. W. Hwu. Programming Mas-
sively Parallel Processors: a Hands-on Approach.
2010.

[6] E. Lindholm, J. Nickolls, S. Oberman, and
J. Montrym. Nvidia tesla: A unified graphics
and computing architecture. In. IEEE Microwave
Magazine (IEEE Micro), 28:39–55, 2008.

[7] D. G. Lowe. Object recognition from local scale-
invariant features. Proc. of the International Con-
ference on Computer Vision (ICCV), Washington,
DC, USA, 2:1150–, 1999.

[8] W. Maddern, M. Milford, and G. Wyeth. Cat-
slam: probabilistic localisation and mapping us-
ing a continuous appearance-based trajectory. In.
The International Journal of Robotics Research
(IJRR), 31:429–451, 2012.

[9] M. Milford. Vision-based place recognition: how
low can you go? In. The International Journal of
Robotics Research (IJRR), 32:766–789, 2013.

[10] M. Milford and G. Wyeth. Seqslam: Visual route-
based navigation for sunny summer days and
stormy winter nights. pages 1643–1649, 2012.

[11] T. Naseer, L. Spinello, W. Burgard, and C. Stach-
nis. Robust visual robot localization across sea-
sons using network flows. pages 2564–2570,
2014.

[12] R. A. Newcombe, S. J. Lovegrove, and A. J.
Davison. Dtam: Dense tracking and mapping
in real-time. Proc. of International Conference
on Computer Vision (ICCV), Barcelona, Spain,
pages 2320–2327, 2011.

[13] A. Oliva and A. Torralba. Building the gist of a
scene: the role of global image features in recog-
nition. In. Visual Perception, Progress in Brain
Research, 155, Part B:23 – 36, 2006.

[14] E. Pepperell, P. Corke, and M. Milford. All-
environment visual place recognition with
SMART. Proc. of IEEE International Confer-
ence on Robotics and Automation (ICRA), Hong
Kong, China, pages 1612–1618, 2014.

[15] V. Prisacariu and I. Reid. fasthog - a real-time
gpu implementation of hog. Technical Report
2310/09, Department of Engineering Science,
Oxford University, 2009.

[16] N. Sunderhauf, P. Neubert, and P. Protzel. Predict-
ing the change, a step towards life-long operation
in everyday environments. 2013.

[17] K. E. A. van de Sande, T. Gevers, and C. G. M.
Snoek. Empowering visual categorization with
the gpu. In. IEEE Transactions on Multimedia
(IEEE Trans. Multimedia), 13:60–70, 2011.

[18] Y. Wang, Z. Feng, H. Guo, C. He, and Y. Yang.
Scene recognition acceleration using cuda and
openmp. Proc. of First International Conference
on Information Science and Engineering (ICISE),
Nanjing, China, pages 1422–1425, 2009.

[19] W. Yan, X. Shi, X. Yan, and L. Wang. Comput-
ing opensurf on opencl and general purpose gpu.
In. International Journal of Advanced Robotic
Systems (IJARS), 10:375, 2013.

[20] Z. Yonglong, M. Kuizhi, J. Xiang, and D. Peix-
iang. Parallelization and optimization of sift on
gpu using cuda. Proc. of IEEE International
Conference on High Performance Computing and
Communications (HPCC), Zhangjiajie, China,
pages 1351–1358, 2013.

[21] J. Zhou, Q. Guo, H. V. Jagadish, W. Luan,
A. K. H. Tung, Y. Yang, and Y. Zheng. Generic in-
verted index on the GPU. In. Computing Research
Repository (CoRR), abs/1603.08390, 2016.

