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Abstract—With the availability of the recent human skeleton
extraction algorithm introduced by Shotton et al. [1], an interest
for skeleton-based action recognition methods has been renewed.
Despite the importance of the low-latency aspect in applications,
it can be noted that the majority of recent approaches has
not been evaluated in terms of computational cost. In this
paper, a novel fast and accurate human action descriptor named
Kinematic Spline Curves (KSC) is introduced. This descriptor is
built by interpolating the kinematics of joints (position, velocity
and acceleration). To overcome the anthropometric and the
execution rate variabilities, we respectively propose the use of
a skeleton normalization and a temporal normalization. For this
purpose, a new temporal normalization method based on the
Normalized Accumulated kinetic Energy (NAE) of the human
skeleton is suggested. Finally, the classification step is performed
using a linear Support Vector Machine (SVM). Experimental
results on challenging benchmarks show the efficiency of our
approach in terms of recognition accuracy and computational
latency.

I. INTRODUCTION

Nowadays, action recognition is increasingly attracting in-
terest of researchers in the field of computer vision due to its
several applications in Human Computer Interaction (HCI),
e-health, gaming, surveillance, etc. Until now, numerous of
popular methods has been designed using RGB (Red Green
Blue) videos [2]. Nevertheless, this modality has many draw-
backs such as sensitivity to body segmentation, illumination
changes, viewpoint changes and occlusions.

For this reason, the emergence of depth cameras has en-
couraged many scientists to use two other modalities (depth
maps and skeleton sequences). Indeed, RGB-D (Red Green
Blue Depth) cameras provide an additional modality known as
depth maps. Furthermore, with the work of Shotton et al. [1],
it became feasible to extract relatively accurate skeletons from
depth maps in real-time (around 45ms for skeleton extraction
per frame according to [3]). Although motion capture systems
provide more accurate skeletons, the RGB-D cameras remain
an interesting alternative given their lower cost. Thus, RGB-
based action recognition methods can be divided according
to the chosen modality: Depth-based descriptors and skeleton-
based descriptors. While depth-based descriptors are generally
more robust to noise and occlusions and more accurate,

skeleton-based descriptors are faster to compute, less sensitive
to view-point variation and are therefore more adapted to real-
world applications [4][5].

Many recent skeleton-based descriptors have shown their
ability to accurately recognize actions [6], [7], [8]. Nonethe-
less, the low-latency challenge is very often neglected despite
its importance in applications. The performance of motion
descriptors can be seen as a trade-off between good accuracy
of recognition and low latency as formulated in [9]. The la-
tency is defined as the sum of computational latency (the time
required for calculation) and observational latency (the time of
observation necessary before making a good decision). In this
paper, we will mainly focus on computational latency because
the actions are assumed to have already been segmented. Many
off-line applications still require a quick decision such as
medical rehabilitation, coaching, gaming, etc.

Motivated by the challenge of carrying out an accurate
action recognition while retaining low computational latency,
we introduce a novel human skeleton-based descriptor referred
as Kinematic Spline Curves (KSC). To ensure the performance
of KSC, we propose the succession of simple but efficient
processes. First, a skeleton normalization is used to reduce
the negative effect of anthropometric variability. Second, to
overcome the temporal variability whilst avoiding an excessive
increase of computational cost, a temporal normalization algo-
rithm is introduced. The main idea of this normalization is to
interpolate kinematic features considering them as functions
of Normalized Accumulated kinetic Energy (NAE) (8). To
perform the final classification, a linear SVM is used.

This paper is organized as follows: Section II presents an
overview of state-of-the-art skeleton-based human action de-
scriptors. Then, the proposed method is detailed in Section III,
while in Section IV the experimental results are presented.
Finally, conclusions and future work are drawn in Section V.

II. RELATED WORK

In this section, we present a brief review of skeleton-based
methods for human action recognition. These methods can be
categorized as pose-based approaches, geometric approaches
and kinematic-based approaches.



A. Pose-based approaches

They count among the first skeleton-based methods for
action recognition. Li et al. [6] introduced the 3D bag of points
which are used to build an action graph. In [10], a Histogram
Oriented of Joints (HOJ) for each posture is built. Then,
the classification is done based on Hidden Markov Models
(HMM) which describe the evolution of postures. However,
these features have shown their limitations because of their
sensitivity to anthropometric variability. In this way, many
methods began to use relative joint positions. For instance, we
can cite Eigenjoint features[11] which contain the information
of spatial and temporal distances between joints. A Principal
Component Analysis is used to reduce the high dimension of
feature vectors.

B. Geometric approaches

Recently, many papers have been inspired from euclidean
geometry or differential geometry. Evangelidis et al. [8] intro-
duced skeletal quads which represent quadruples containing
the information of similarity transformations between seg-
ments. On the other hand, Vemulapalli et al. [7] chose to
define transformation matrices of the Special Euclidean group
SE(3) between every couple of adjacent segments. Thus, each
pose is represented by an element (a point) of SE™(3), where
n represents the number of segment connections. To obtain
curves on the Lie group SE™(3) which are compared via a
Dynamic Time Warping algorithm (DTW), an interpolation is
done after switching to se™(3) , the Lie algebra associated
with SE™(3). These geometric approaches are theoretically
very interesting. However, numerical calculation of these so-
phisticated methods can lead to an increase in recognition error
and in computational latency.

C. Kinematic-based approaches

Skeleton have been widely used in bio-mechanical studies
[12]. To describe human motion, Zanfir et al. [13] calculated
joint kinematics (position, velocity and acceleration) thanks
to the discrete information of joint positions. Each kinematic
value is empirically weighted to specify its contribution in
the classification. The experiments have shown the efficiency
of this method. However, the influence of weight parameters
is not well clarified in this paper. Furthermore, it seems that
the discontinuity of features can generate limitations in some
cases. For example, noisy skeletons or an important execution
rate variability can negatively impact the results.

In this article, we propose to exploit kinematic features
which do not require an important computational cost. How-
ever, instead of using the aperiodic information of joint kine-
matics, we propose to interpolate and to uniformly sample
them in order to obtain periodic features. In addition, a
temporal normalization is proposed to overcome the execution
rate variability representing an important challenge on action
recognition.

III. KINEMATIC SPLINE CURVES (KSC)

This section presents the novel human action descriptor
called KSC. Figure 1 illustrates an overview of the different
processes carefully selected in order to perform an accurate
and fast action recognition. First, a skeleton normalization
is proposed to alleviate the anthropometric variability. Then,
Kinematic Features (KF) are computed from the discrete
information of normalized joint positions. To overcome the
execution rate variability, a temporal normalization based on
Normalized Accumulated kinetic Energy (NAE) is introduced.
Thus, KF are expressed as functions of NAE (instead of time)
and are then interpolated using a cubic spline interpolation
algorithm. Finally, to obtain KSC descriptor, a periodic sam-
pling of continuous Kinematic Spline Curves KSC€ is carried
out.

A. Spatial Normalization (SN)

An action can be represented by a sequence of N skeletons,
while each skeleton is composed of n joints and contains the
information of 3D position pj(t;) (1) of each joint j. t), refers
to the frame index (t € [t1, ..., tN])-

pi(t) = [x(tr), y;(tr), 2 (tr)] (1)

Therefore, this skeleton sequence can be seen as a multidi-
mensional time series (2).

p(te) = [p1(te), p2(tk)s -y Pa(tr)] 2)

Inspired by bio-mechanical studies, the hip joint is assumed
to be the origin. For this reason, hip joint coordinates are
subtracted from each joint coordinates (3).

P (tr) = [p1(tk) — Phips P2 (L) — Dhips - Pul(tr) — Prip] (3)

It can be easily shown that anthropometric variability neg-
atively affects the recognition task. To palliate this kind of
variability, a skeleton normalization inspired from [13] is
employed. However, it remains some differences between our
algorithm and the normalization of [13]. Zanfir et al. [13]
suggested to learn an average skeleton for each dataset and
constrained all skeletons limbs to have the same size of the
average skeleton limbs. This normalization approach heavily
depends on a specific dataset and makes its adoption in real-
world applications difficult. Here, the euclidean normalization
of each segment is proposed (without imposing an average
length). Hence, we obtain skeletons with unitary segments (4).
Each segment is normalized successively starting with the root
(hip joint) and moving gradually to the connected segments.
This approach has the advantage of preserving the skeleton
angles. Its performance will be proved in Section IV.

pYT () = [P (), P27 (k)5 e oa” ()] (4)
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Fig. 1. An overview of our approach: it describes the different processes used to build Kinematic Spline Curves (KSC). The first step (skeleton normalization)
allows re-sizing skeleton to reduce the effect of anthropometric variability. Using the obtained normalized joint positions, the skeleton joint velocities and
skeleton joint accelerations are calculated. Thus, KF represents the concatenation of the three kinematic values. To make the features invariant to execution
rate variability, t is replaced by NAE and each component of KF is interpolated using a cubic spline algorithm. Therefore, M functions KSC¢ defined on
[0, 1] are obtained. The final step represents the uniform sampling of KSC¢ which allows us to construct the final descriptor KSC.

B. Kinematic Features (KF)

In Section II, it has been mentioned that kinematic values
such as joint positions, joint velocities and joint accelerations
represent an interesting way to describe human motion. Equa-
tions (5) and (6) respectively describe the computation of joint
velocities and joint accelerations from the discrete information
of joint positions [13].

’U(tk-) = pnorm(tk + 1) — pnorm(tk — 1) 5

Thus, the Kinematic Features (KF) result from the con-
catenation of Normalized position p"°™(t), velocity v(t) and
acceleration a(t) (7).

KF(tr) = [p"™ (tr), v(tr), altr))] ™

For each frame, KF are computed. KF vector dimension is
equal to M =9 x n.

C. Temporal Normalization (TN): a novel NAE-based ap-
proach

Temporal variability is mainly due to execution rate vari-
ability. Indeed, changeable action duration as well as different
distribution of motion make action recognition a very challeng-
ing task. Actions are performed in different time slices with
different velocity variations and are consequently difficult to
compare. This is why temporal normalization represents an
important step to include. We introduce a fast temporal nor-
malization based on Normalized Accumulated kinetic Energy
(NAE). We define the NAE at an instant ¢ as the ratio X(¢)

between the kinetic energy E*°(¢) consumed by the human
body until ¢ and the total kinetic energy E'°? consumed by
the human body on the whole video composed of N frames.
Equation (8) depicts this NAE term where E(t) represents the
kinetic energy consumed by the human body at an instant ¢.

S B(el)

Jace (¢ _
E(t) = Etot(al) = Cl]\71 ®)
> E(c2)
c2=1

The idea is to interpolate the KF components according to
NAE, instead of time. In opposition to the time variable, the
NAE variable increases when the velocity of joints increases
and consequently when the displacement quantity increases as
well. If there is no motion, NAE does not increase. We use the
normalization and the accumulation of energy for two essential
reasons. First, the normalization of the energy guarantees that
actions are expressed in the same range (varying between 0
and 1). Second, the accumulation allows obtaining a growing
variable which ensures a coherent interpolation. Figure 2 illus-
trates the interest of the NAE-based temporal normalization.

Skeletons can be considered as a set of n points where
each point corresponds to a joint. Many previous papers [14],
[15], [16] proposed to express the kinetic energy of the human
skeleton FE(t), at an instant ¢, as described by equation (9)
where n represents the number of joints, m; the mass of the
joint 7 and V] its velocity. Since the skeleton joints are fictive,
they are assumed to have a unitary mass in this paper.

n
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Fig. 2. Tllustration of the temporal normalization role by visualizing a joint
component trajectory f(¢). f(t) represents the x-coordinates of a joint. Here,
two instances of a same action are considered (Instancel and Instance2). Top:
the joint component trajectories are plotted as functions of time. We notice
that the two trajectories are expressed in different time slices ( tN; # tn2)-
Bottom: After the NAE-based normalization, we notice that both trajectories
are defined in the same range [0, 1]. Also, it is important to notice that the
two trajectories representing the same action type are more similar.

To calculate the kinetic energy, the instantaneous velocity
v is generally used (V = v in (5)). Nevertheless, joint trajec-
tories include sometimes slight oscillations due to undesired
motion or to noise (caused by the RGB-D cameras or by
the subject himself). These oscillations participate wrongly to
increase the accumulated energy term, and make the energy
calculation biased. The smooth filtering of joints is not con-
sidered relevant because of its parametric nature which makes
it hardly adaptable to real-world applications. Therefore, we
propose to use a second kind of velocity, the average velocity
V =™ (10). This term reduces the influence of oscillations
thanks to the algebraic sum of instantaneous velocity.

o (th) = tlkzv(tl) (10)

1=1
Thus, the kinetic energy is computed following the equa-
tion (11).

n

B(t) = 35 (")

j=1

(1)

Finally, the kinetic energy E described in Equation (11)
allows the calculation of the NAE term > (t) as described
in the introduction by the equation (8). Thanks to a change
of variables (NAE instead of time), the KF are expressed as
variables depending on NAE (12).

KF(3(tk)) = [P (5(tk), v(E(tr)), a(5(tr))]

Hence, the KF extracted from any action vary in a known
range [0, 1]. Nonetheless, the discrete KF of each instance are

(12)

associated to different amounts of NAE. Thus, an interpolation
is needed to make actions comparable.

D. Cubic spline interpolation of Kinematic Features (KF)

Assuming continuity of human action kinematics, we pro-
pose to interpolate KF components depending on NAE as
described in (12). For this purpose, the cubic spline interpo-
lation have been chosen because it connects the points using
polynomials of third degree. Third degree polynomials present
a maximum of one inflexion point and allow obtaining realistic
curves (enough variations, contrary to first or second degree
polynomials, with limited oscillations, contrary to polynomials
with more than three degree). Indeed, oscillations increase
with the polynomial range. Using the discrete information of
each KF component, we obtain continuous functions depend-
ing on NAE, as described in equation (13), where Spline
refers to the cubic spline operator. We recall that M represents
the dimension of KF'.

KSC(S(t)) = Spline(K Fy(S(tr))s-1..x)
Vi=1..M

13)

E. Uniform sampling

Lastly, a periodic sampling is performed in order to obtain
same-size descriptors and to express their components accord-
ing to the same amounts of NAE. The choice of the number
of samples s will be discussed in Section IV. Hence, Equation
(14) depicts the calculation of the final descriptor KSC. The
size of KSC descriptor is equal to 9 x n * s.

KSC = U;—1. .0 Ue=1..5 KSC;(Z(E)) (14)
5

Algorithm 1 summarizes the different steps of KSC descrip-

tor computing.

Algorithm 1: Computation of KSC

Input : skeleton sequence (p;(tx))1<j<n,1<k<N
Output: KSC

1 Normalize Skeleton (p7°"™ (tx))1<j<n1<k<n (4)

2 Compute Kinematic Features (K F;(t;))1<i<m (12)

3 Compute (X(tx))1<k<n (8)

4 for i < 1 to M do

s | Interpolation: KSCE(t) := Spline(KF;(tx))1<k<n

6 end

7 Uniform sampling with a sampling rate s:

KSC :=Uj=1. pm Ue=1..s KSC{(X(%))

F. Action recognition via linear Support Vector Machine

To recognize actions, a linear SVM classifier provided by
1ibSVM library [17] is trained using the KSC descriptors. Our
choice has been motivated by the low computational cost of
linear kernel classifiers compared to non-linear ones [18].



Descriptor MSRAction3D (%)
HOJ3D [10] 78.97
EigenJoints [11] 82.33
Actionlet [19] 88.20
FV skeletal quads [8] | 89.86
LARP [7] 92.46
TABLE 1

ACCURACY OF RECOGNITION ON MSRACTION3D: THE VALUES OF
EARLIER METHODS ARE TAKEN FROM THE STATE-OF-THE-ART
(DIFFERENT CROSS-SPLITTINGS ARE USED)

IV. EXPERIMENTAL EVALUATION

We evaluate our method on two well known RGB-D based
human action recognition benchmarks, namely MSRAction3D
[6] and UTKinect [10] . To ensure fair comparison, we report
only the methods based on skeleton representations.

A. MSRAction3D Dataset

MSRACction3D dataset includes 20 different actions, per-
formed by 10 different subjects, 2 or 3 times. It provides 2
modalities: skeleton joints and depth maps. This dataset is
challenging because of its very similar actions.

Table I reports the recognition accuracy of state-of-the art
methods. However, as mentioned in [20], the experimental
settings are different from a paper to another making a fair
comparison difficult. In addition to that, numerous of earlier
papers do not evaluate their methods in terms of computational
latency. For these reasons, we propose to evaluate some
available descriptors such as Joint Positions (JP) [7] , Relative
Joint Positions (RJP) [7] , Quaternions (Q) [7] and finally Lie
Algebra Relative Pairs (LARP) [7] on MSRAction3D in terms
of accuracy and computational latency with the respect of the
same experimental parameters.

To compare between methods in terms of computational
latency, the mean execution time per descriptor is reported. It
represents the average time necessary to compute a descriptor
(the descriptor represents the feature vector which describes
an action in a whole video). It is important to specify that
calculations were run on the same computer (Dell Inspiron
N5010 with intel Core i7, Windows 7 and 4GB RAM).

For all experiments on MSRAction3D, the same parameters
of [6] are used. The dataset is divided into three groups (ASI,
AS2, AS3). Thus, the classification is realized on each group
separately. A cross-splitting is carried out to separate the data
in training and testing samples. The actions performed by the
subjects 1, 3, 5, 7, 9 are used for training, while the actions
performed by the other subjects are used for testing. Table II
shows that our method outperforms other approaches in terms
of recognition accuracy and computational latency.

B. UTKinect Dataset

UTKinect dataset contains 10 actions which are performed
twice by 10 different subjects. RGB images, depth images and
skeleton joints are provided. A significant intra-class variation
makes this dataset very challenging.

We chose the same settings used in [7], where training
and testing data are also separated following a cross-splitting

Descriptor | AS1(%) | AS2(%) | AS3(%) | Overall(%) Time(s)

JP [7] 82.86 68.75 83.73 78.44 0.58

RJP [7] 81.90 71.43 88.29 80.53 2.15

Q[7] 66.67 59.82 71.48 67.99 1.33

LARP [7] | 83.81 84.82 92.73 87.14 17.61

KSC(ours) | 86.67 89.29 96.40 90.78 0.092
TABLE 11

ACCURACY OF RECOGNITION AND EXECUTION TIME PER DESCRIPTOR(S)
ON MSRACTION3D: AS1, AS2 AND AS3 REPRESENTS THE THREE
GROUPS PROPOSED IN THE EXPERIMENTATION PROTOCOL OF [6]

Descriptor Accuracy (%)

Random Forrest [21] | 87.90

LARP [7] 97.08

KSC (ours) 95.00
TABLE III

ACCURACY RECOGNITION ON UTKINECT DATASET: THE VALUES OF
EARLIER METHODS ARE TAKEN FROM THE STATE-OF-THE-ART

approach. The actions generated by the subjects 1,3,5,7,9 are
used for training while the rest of actions are used for testing.
Table IV and Table I show that our method presents
good performances on UTKinect. Nevertheless, we notice that
LARP[7] presents a better accuracy on UTKinect. This is why
it is important to mention that according to Table II, LARP
is 191 times slower to compute which makes it unsuitable for
applications requiring low computational latency.

C. Effectiveness of Spatial Normalization (SN) and Temporal
Normalization (TN)

In this subsection, the effectiveness of Spatial Normalization
(SN) and Temporal Normalization (TN) is shown. Each line
of Table V reports the accuracy of recognition without the use
of the proposed SN or TN.

SN contributes to improve the accuracy with an increase
of around 6% for MSRAction3D and of around 10% for
UTKinect. Also, the superiority of unitary euclidean normal-
ization is proved by combining our method with the SN
of [13]. The accuracy becomes lower with only 83.26% on
MSRAction3D and 85% on UTKinect.

According to Table V, the contribution of TN is funda-
mental. Without the use of TN, the accuracy decreases from
90.78% to 81.26% on MSRAction 3D and from 95% to 81%
on UTKinect . On the other hand, it is important to highlight

Process MSRAction3D | UTKinect
Spatial Normalization | 0.022 0.016
Descriptor computing | 0.07 0.064
Classification 0.008 0.002
Total 0.1 0.082
TABLE IV
EXECUTION TIME (S) OF EACH PROCESS PER DESCRIPTOR ON THE THREE
BENCHMARKS

Deleted Process | MSRAction3D (%) | UTKinect (%)

Nothing 90.78 95.00

without S.N. 83.83 85.00

without T.N. 81.26 81.00
TABLE V

EFFECT OF EACH PROCESS ON THE ACCURACY OF RECOGNITION



Kinematics | MSRAction3D (%) | UTKinect (%)
P+V+A 90.78 95.00
P+V 87.28 90.00
P 86.63 91.00
\Y% 83.90 81.00
A 81.47 82.00
TABLE VI
EFFECT OF EACH KINEMATIC COMPONENT ON THE ACCURACY OF
RECOGNITION
s 5(%) | 10 (%) | 15 (%) | 20 (%) | 25 (%)
MSRAction3D | 87.22 | 86.9 88.74 90.78 88.74
UTKinect 92.00 | 93.00 95.00 93.00 93.00
TABLE VII
EFFECT OF s THE NUMBER OF SAMPLES s ON THE ACCURACY OF
RECOGNITION

the predominant role of the average velocity term. Indeed, the
accuracy decreases to 67.58% on MSRAction3D and to 86%
on UTKinect with the use of instantaneous velocity.

D. Benefits of kinematic features

Table VI reports the importance of each kinematic value.
It demonstrates that position is the most discriminative term.
It could be due to an error increase caused by the deriva-
tions. However, the combination of the three kinematic values
presents the most accurate results.

E. The influence of the parameter s (number of samples)

Table VII reports the influence of the parameter s on the
accuracy. For each dataset, the parameter s is fixed according
to the best amount of accuracy ( s = 20 for MSRAction3D
and s = 15 for UTKinect). Nevertheless, we notice that our
method is robust to parameter variation. For the values tested
in Table VII, we observe a decrease up to 3% compared with
the highest score of accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel descriptor for action recognition
has been introduced. This descriptor is computed thanks to
the interpolation of joint kinematics. To overcome the an-
thropometric variability, a skeleton normalization is extended
inspired by the work of zanfir et al. [13]. On the other
hand, a novel NAE-based temporal normalization is proposed
in order to alleviate the effect of execution rate variability.
According to the experiments, our method outperforms other
skeleton-based approaches in terms of accuracy of recognition
and computational latency. Therefore, this fast and accurate
human motion representation may be very useful in real-world
applications.

However, our method presents some limitations. For the
time being, it is still not suited for online settings which limits
the use of KSC to offline systems. The extension of a partial
alignment algorithm such as DTW might be an interesting
possibility making an early recognition possible. In future
work, we are planning to raise the issue of observational
latency and online mode by extending our method. This
extension will explore the possibility of putting in place a
real-time action recognition system.
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