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Abstract. Ensuring reliable communication despite possibly malicious
participants is a primary objective in any distributed system or network.
In this paper, we investigate the possibility of reliable broadcast in a
dynamic network whose topology may evolve while the broadcast is in
progress. In particular, we adapt the Certified Propagation Algorithm
(CPA) to make it work on dynamic networks and we present conditions
(on the underlying dynamic graph) to enable safety and liveness proper-
ties of the reliable broadcast. We furthermore explore the complexity of
assessing these conditions for various classes of dynamic networks.

Keywords: Byzantine Reliable Broadcast · Locally bounded failures ·
Dynamic Networks.

1 Introduction

Designing dependable and secure systems and networks that are able to cope
with various types of adversaries, ranging from simple errors to internal or ex-
ternal attackers, requires to integrate those risks from the very early design
stages. The most general attack model in a distributed setting is the Byzan-
tine model, where a subset of nodes participating in the system may behave
arbitrarily (including in a malicious manner), while the rest of processes remain
correct. Also, reliable communication primitives are a core building block of any
distributed software. Finally, as current applications are run for extended peri-
ods of time with expected high availability, it becomes mandatory to integrate
dynamic changes in the underlying network while the application is running. In
this paper, we address the reliable broadcast problem (where a source node must
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send data to every other node) in the context of dynamic networks (whose topol-
ogy may change while the broadcast is in progress) that are subject to Byzantine
failures (a subset of the nodes may act arbitrarily). The reliable broadcast prim-
itive is expected to provide two guarantees: (i) safety, namely if a message m is
delivered by a correct process, then m was sent by the source and (ii) liveness,
namely if a message m is sent by the source, it is eventually delivered by every
correct process.
Related Works. In static multi-hop networks (in which the topology remains
fixed during the entire execution of the protocol) the necessary and sufficient
condition enabling reliable broadcast while the maximum number of Byzantine
failure is bounded by f has been identified by Dolev [5], stating that this problem
can be solved if and only if the network is 2f + 1-connected. Subsequently, the
reliable broadcast problem has been analyzed assuming a local condition on the
number of Byzantine neighbors a node may have [10, 16]. All aforementioned
works require high network connectivity. Indeed, extending a reliable broadcast
service to sparse networks required to weaken the achieved guarantees [12–14]:
(i) accepting that a small minority of correct nodes may accept invalid messages
(thus compromising safety), or accepting that a small minority of correct nodes
may not deliver genuine messages (thus compromising liveness).

Adapting to dynamic networks proved difficult, as the topology assumptions
made by the mentioned proposals may no longer hold: the network changes
during the execution. Some core problems of distributed computing have been
considered in the context of dynamic networks subject to Byzantine failures [1,8]
but, to the best of our knowledge, there exists a single contribution for the reli-
able communication problem, due to Maurer et al. [15]. Their work can be seen
as the dynamic network extension of the Dolev [5] solution for static networks,
and assumes that no more than f Byzantine processes are present in the network.
Also, the protocol to be executed spreads an exponential number of messages
with respect to the size of the network and requires each node to compute the
minimal cut over the set of paths traversed by each received message, making
the protocol unpractical for real applications.

The Byzantine tolerant reliable broadcast can also be solved by employing
cryptography (e.g., digital signatures) [4, 6] that enable all nodes to exchange
messages guaranteeing authentication and integrity. The main advantage of cryp-
tographic protocols is that they allow solving the problem with simpler solutions
and weaker conditions (in terms of connectivity requirements). However, on the
negative side, the safety of the protocols is bounded to the crypto-system.
Contributions. In this paper, we investigate the possibility of reliable broadcast
in a dynamic network that is subject to Byzantine faults. More precisely, we
address the possibility of a local criterion on the number of Byzantine (as opposed
to a global criterion as in Maurer et al. [15]) in the hope that a practically efficient
protocol can be derived in case the criterion is satisfied. Our starting point is
the CPA protocol [2,10,16,18], that was originally designed for static networks.
In particular, our contributions can be summarized as follows: (i) we extend the
CPA algorithm to make it work in dynamic networks; (ii) we prove that the



original safety property of CPA naturally extends to dynamic networks and we
define new liveness conditions specifically suited for the dynamic networks and
(iii) we investigate the impact of nodes awareness about the dynamic network
on reliable broadcast possibility and efficiency.

2 System Model & Problem Statement

We consider a distributed system composed by a set of n processes Π = {p1, p2,
. . . pn}, each one having a unique integer identifier. The passage of time is mea-
sured according to a fictional global clock spanning over natural numbers N. The
processes are arranged in a multi-hop communication network. The network can
be seen as an undirected graph where each node represents a process pi ∈ Π and
each edge represents a communication channel between two elements pi, pj ∈ Π
such that pi and pj can communicate.
Dynamic Network Model. The communication network is dynamic i.e., the
set of edges (or available communication channels) changes over time. More for-
mally, we model the network as a Time Varying Graph (TVG) [3] i.e., a graph
G = (V,E, ρ, ζ) where:

– V is the set of processes (in our case V = Π);
– E ⊆ V × V is the set of edges (i.e., communication channels).
– ρ : E ×N→ {0, 1} is the presence function. Given an edge ei,j between two

nodes pi and pj , ρ(ei,j , t) = 1 indicates that edge ei,j is present at time t;
– ζ : E×N→ N is the latency function that indicates how much time is needed

to cross an edge starting from a given time t. In particular, ζ(ei,j , t) = δi,j,t
indicates that a message m sent at time t from pi to pj takes δi,j,t time units
to cross edge ei,j .

The evolution of G can also be described as a sequence of static graphs SG =
G0, G1, . . . GT where Gi corresponds to the snapshot of G at time ti (i.e. Gi =
(V,Ei) where Ei = {e ∈ E | ρ(e, ti) = 1}). No further assumptions on the
evolution of the dynamic network are made. The static graph G = (V,E) that
considers all the processes and all the possible existing edges is called underlying
graph of G and it flattens the time dimension indicating only the pairs of nodes
that have been connected at some time t′. In the following, we interchangeably
use terms process and node and we will refer to edges and communication chan-
nels interchangeably. Let us note that the TVG model is one among the most
general available and it is able to abstract and characterize several real dynamic
networks [3].
Communication model and Timing assumption. Processes communicate
through message exchanges. Every message has (i) a source, which is the id of
the process that has created the message and (ii) a sender, that is the id of the
process that is relaying the message. The source and the sender may coincide.
The sender is always a neighbor in the communication network. The ID of the
source is included inside the message, i.e. any message is composed by its content
and the source ID. We refer with ms to a message m with ps as source.



We assume authenticated and reliable point-to-point channels where (a) au-
thenticated ensures that the identity of the sender cannot be forged; (b) reliable
guarantees that the channel delivers a message m if and only if (i) m was previ-
ously sent by its sender and (ii) the channel has been up long enough to allow the
reception (i.e. given a message m sent at time t from pi to pj and having latency
δi,j,t, we will have reliable delivery if ρ(ei,j , τ) = 1 for each τ ∈ [t, t+ δi,j,t]). No-
tice that these channel assumptions are implicitly made also on analysis of CPA
on static networks and that they are both essential to guarantees the reliable
broadcast properties.

At every time unit t each process takes the following actions: (i) send where
processes send all the messages for the current time unit (potentially none),
(ii) receive where processes receive and store all the messages for the current
time unit (potentially none) and (iii) computation where processes process the
buffer of received messages and compute the messages to be sent during the
next time unit according to the deterministic distributed protocol P that they
are executing. Thus, the system is assumed to be synchronous in the sense that
(i) every channel has a latency function that is bounded and the overall message
delivery time is bounded by the maximum channel latency and (ii) computation
steps are bounded by a constant that is negligible with respect to the overall
message delivery time and we consider it equal to 0. We discuss the implications
and consequences of lack of synchrony inside the full version paper.
Failure model. We assume an omniscient adversary able to control several
processes of the network allowing them to behave arbitrarily (including corrupt-
ing/dropping messages or simply crashing). We call them Byzantine processes.
Processes that are not Byzantine faulty are said to be correct. Correct processes
do not a priori know which processes are Byzantine. Specifically to reliable broad-
cast protocols, a Byzantine process can spread messages carrying a fake source
ID and/or content or it can drop any received message preventing its propaga-
tion.

We considered the f-locally bounded failure model [10] as all CPA related
works, i.e., along time every process pi can be connected with at most f Byzan-
tine processes. In other words, given the underlying static graph G = (V,E),
every process pi ∈ V has at most f Byzantine neighbors in G.
Problem Statement. In this paper, we consider the problem of Reliable Broad-
cast over dynamic networks assuming a f -locally bounded Byzantine failure
model from a given correct 3 source ps. We say that a protocol P satisfies reli-
able broadcast, if a message m broadcast by a correct process ps ∈ Π (also called
source or author) is eventually delivered (i.e., accepted as a valid message) by
every correct process pj ∈ Π. Said differently, a protocol P satisfies reliable
broadcast, if the following conditions are met:

– Safety if a message m is delivered by a correct process, then such message
has been sent by the source ps;

3 note the assumption of a possibly faulty source leads to a more general problem, the
Byzantine Agreement [5]



– Liveness: if a message m is broadcast by the source ps, it is eventually
delivered by every correct process.

In other words, a reliable broadcast protocol extends the guarantees provided
by the communication channels to the message exchanges between a node and
any correct process not directly connected to it.

3 The Certified Propagation Algorithm (CPA)

The Certified Propagation Algorithm (CPA) [10, 16] is a protocol enforcing re-
liable broadcast, from a correct source ps, in static multi-hop networks with a
f -locally bounded Byzantine adversary model, where nodes have no knowledge
on the global network topology. Given a message m to be broadcast, CPA starts
the propagation of ms from ps and applies three acceptance policies (denoted
by AC ) to decide if ms should be accepted and forwarded (i.e., transmitted also
by nodes different from the source) by a process pj . Specifically:

- ps delivers ms (AC1), forwards it to all of its neighbors, and stops;
- when receiving ms from pi, if pi is the source then pj delivers ms (AC2), for-

wards ms to all of its neighbors and stops; otherwise the message is buffered.
- upon receiving f + 1 copies of ms from distinct neighbors, pj delivers ms

(AC3), then forwards it to all its neighbors and stops.

The correctness of CPA on static networks has been proved to be dependent
on the network topology. In particular, Litsas et al. [11] provided topological
conditions based on the concept of k-level ordering. Informally, given a graph
G = (V,E) and considering a node ps as the source, we can define a k-level
ordering as a partition of nodes into ordered levels such that: (i) ps belongs to
level L0, (ii) all the neighbors of ps belong to level L1, and iii) each node in a
level Li has at least k neighbors over levels Lj , with j < i. A k-level ordering is
minimum if every node appears in the minimum level possible.

Definition 1 (MKLO). Let G = (V,E) be a graph and let ps be a node of
G called source. The minimum k-level ordering (MKLO) of G from ps is the
partition Pk of nodes into disjoint subsets called levels Li defined as follows:

p ∈ L0 if p = ps

p ∈ L1 if p ∈ Ns

p ∈ Li>1 if p ∈ V \ (
i−1⋃
j=0

Lj) and |Np ∩ (
i−1⋃
j=0

Lj)| ≥ k

For CPA to ensure reliable broadcast from ps, a sufficient condition is that
a k-level ordering from ps exists, with k ≥ 2f + 1. Conversely, the necessary
condition demands a k-level ordering from ps with k ≥ f + 1 (see [11]). Those
conditions can be verified with an algorithm whose time complexity is polynomial
in the size of the network, specifically with a modified Breadth-First-Search. In
the case that a graph G = (V,E) satisfies the necessary condition from ps but



not the sufficient one, then further analysis must be carried out. In particular, in
order to verify whether G enables reliable broadcast from ps, one should check
whether a k-level ordering from ps exists (with k = f + 1) in every sub-graph
G′ obtained from G by removing all nodes corresponding to possible Byzantine
placement in the f -locally bounded assumption. The verification of the strict
condition has been proven to be NP-Hard [9].

4 The Certified Propagation Algorithm on Dynamic
Networks

In this section, we analyze how CPA behaves on dynamic networks, i.e. networks
whose topology may evolve over time, and how it needs to be extended to work
in such settings.
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Fig. 1: Example of a simple TVG and its underlying static graph.

Let us consider the TVG shown in Figure 1 and suppose process p2 is Byzan-
tine. If we consider the static underlying graph G = (V,E) shown in Figure 1b,
it is easy to verify that running CPA from the source node ps is possible to
achieve reliable broadcast in a 1-locally bounded adversary. However, if we con-
sider snapshots of the TVG at different times4 as shown in Figure 1a, one can
verify that nodes p3 and p4 remain unable to deliver the message forever. In fact,
p3 is not a neighbor of the source ps when the message is broadcast by ps (i.e.,
at time t0), and even if it had happened (es,3 at time t0) the edge connecting p4
with its correct neighbor p3 appears only before the message would have been
delivered and accepted by p3, and thus it is not available for the retransmission.
From this simple example its easy to see that the temporal dimension plays a
fundamental role in the definition of topological constraints that a TVG must
satisfy to enable reliable broadcast.

4 For the sake of simplicity, we consider the channel delay always equal to 1 in the
example.



4.1 CPA Safety in Dynamic Networks

In the following, we show that the authenticated and reliable channels are nec-
essary to ensure the reliable broadcast through CPA.

Lemma 1. The CPA algorithm does not ensure safety of reliable broadcast when
channels are not both authenticated and reliable (even on static graphs).

Proof. An authenticated channel guarantees that the identity of the sender of
a message cannot be forged. Without this assumption a Byzantine process can
impersonate an arbitrary number of processes and invalidate the f-locally bounded
assumption.

A reliable channel guarantees that a message is received as it was sent by its
sender. Without this assumption, an unreliable channel can potentially simulate
a Byzantine process (namely the channel can deliver a message different from
the one that was sent by the sender). �

The same channel assumptions are sufficient for ensuring safety also on dy-
namic networks.

Theorem 1. Let G = (V,E, ρ, ζ) be the TVG of a network with f -locally bounded
Byzantine adversary. If every correct process pi runs CPA on top of reliable au-
thenticated channels, then if a message ms is delivered by pi, ms was previously
sent by the correct source ps.

Proof. The proof trivially follows from CPA correctness in static networks with
f -locally bounded adversary, considering that in the underlying graph G =
(V,E), we still have a f -locally bounded adversary. �

4.2 CPA Liveness in Dynamic Networks

The CPA liveness in static networks is based on the availability of a certain
topology that supports the message propagation. Indeed every edge is always up
so, once the communication network satisfies the topological constraints imposed
by the protocol, the assumption that channels do not lose messages is sufficient
to guarantee their propagation. In dynamic networks, this is no longer true. Let
us recall that each edge e in a TVG is up according to its presence function
ρ(e, t). At the same time, the message delivery latency are determined by the
edge latency function ζ(e, t). As a consequence, in order to ensure that a message
m sent at time t from pi to pj is delivered, we need that (pi, pj) remains up until
time t + ζ(e, t). Contrarily, there could exist a communication channel where
every message sent has no guarantee to be delivered as the edge disappears while
the message is still traveling. Thus, in addition to topological constraints, moving
to dynamic networks we need to set up other constraints on when edges appear
and for how long they remain up. Considering that processes have no information
about the network evolution, they do not know if and when a given transmitted
message will reach its receiver. Hence, without assuming extra knowledge, a
correct process must re-send messages infinitely often.



As a consequence, CPA must be extended to the dynamic context incorpo-
rating the following additional steps:

- if process pi delivers a message m, it forwards m to all of its neighbors
infinitely often, at every time unit.

As a consequence, each time that the neighbors of pi changes, pi attempts to
propagate the message. Let us notice that such an infinite retransmission can be
avoided/stopped only if a process get the acknowledgments about the delivery
of the communication channels. This issue has been analyzed by considering
further assumptions on the dynamic network [7, 17]. To ease of explanation, we
will refer to this extended version of CPA as Dynamic CPA (DCPA).

We now characterize the conditions enabling a communication channel to
deliver messages in order to argue about liveness. For this purpose, we define a
boolean predicate whose value is true if and only if the TVG allows the reliable
delivery of a message m sent from pi to pj at time t.

Definition 2. Let G = (V,E, ρ, ζ) be a TVG. We define the predicate Reliable
Channel Delivery at time t′, RCD(pi, pj , t

′) as follows:

RCD(pi, pj , t
′) =

{
true if ρ(< pi, pj >, τ) = 1, ∀τ ∈ [t′, t′ + ζ(ei,j , t

′)].

false otherwise.

The communication channels do not usually have memory, thus we consider any
message sent while the RCD() predicate is false as dropped.

Now that we are able to express constraints on each edge through the RCD()
predicate, we need to define those RCD() that enable liveness of reliable broad-
cast. Let us define the k-acceptance function, that encapsulates temporal aspects
for the three acceptance conditions of CPA.

Definition 3. Let ps ∈ Π be a process that starts a reliable broadcast at time
tbr. The k-acceptance function Ak(p, t) over the time t ∈ N is defined as follows:

Ak(pj , t) =



1 if pj = ps with t ≥ tbr (AK1)

1 if ∃ t′ ≥ tbr : RCD(ps, pj , t
′) = true with t ≥ t′ + ζ(es,j , t

′) (AK2)

1 if ∃ p1, . . . , pk : ∀i ∈ [1, k], Ak(pi, ti) = 1 and

∃ t′i ≥ ti : RCD(pj , pi, t
′
i) = true with t ≥ t′i + ζ(ei,j , t

′
i) (AK3)

0 otherwise

Definition 4. Let G = (V,E, ρ, ζ) be a TVG, and let ps be a node called source.
A temporal minimum k-level ordering of G (TMKLO) from ps is a partition of
the nodes in levels Lti defined as follows:

p ∈ Lti iff ti = min t ∈ N such that Ak(p, ti) = 1

Let us denote as Pk the partition identifying the temporal minimum k-level
ordering.
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Fig. 2: TVG example.

As an example, let us consider the TVG presented in Figure 2: it evolves in
five discrete time instants (i.e., t0, t1, . . . , t4), its latency function ζ(e, t) is equal
to 1 for every edge e at any time t. Now, let us consider process ps as a source
node that broadcasts m at time tbr = 0, and let us assume that k = 2. Such
a TVG admits a temporal minimum 2-level ordering P2 = {Lt0 = {ps}, Lt1 =
{p1}, Lt2 = {p3}, Lt4 = {p2, p4}}. Indeed:

– The 2-acceptance function A2(ps, t) is equal to 1 for t ≥ tbr = t0 according
to AK1.

– The acceptance function evaluated on process p1 is equal to 1 for t ≥ 1
according to AK2 (i.e., t′ = 0 and RCD(ps, p1, 0) = true due to the presence
function ρ(< ps, p1 >, τ) = 1, ∀τ ∈ [0, 1]).

– On processes p3 and p2, the acceptance function evaluates to 1 respectively
for t ≥ 2 and for t ≥ 4, for the same reasons as p1.

– The acceptance function on p4 evaluates to 1 for t ≥ 4 according to AK3
(i.e., RCD(pi, p4, t

′
i) = true for pi = p1, t′i = 1, and for pi = p3, t′i = 3).

We now present a sufficient condition (Theorem 2) and a necessary condition
(Theorem 3) for the liveness of reliable broadcast based on the TMKLO.

Theorem 2 (DCPA liveness sufficient condition). Let G = (V,E, ρ, ζ)
be a TVG, let ps be the source which broadcasts m at time tbr, and let us
assume f -locally bounded Byzantine failures. If there exists a partition Pk =
{Ltbr , Lt1 . . . Ltx} of the nodes in V representing a TMKLO of G associated to
m with k > 2f , then the message m spread using DCPA is eventually delivered
by every correct process in G.

Proof. We need to prove that if there exist a TMKLO with k > 2f associated
to message m, then any correct process eventually satisfies one of the CPA
acceptance policies. A TMKLO with k > 2f implies that there exist a time t
such that the 2f + 1-acceptance function Ak(p, t) is equal to 1 for every node of
the network.

The process ps belongs to any TMKLO due to AK1: as the source of the
broadcast, ps delivers the message according to AC1. Remind that the correct
processes running DCPA spread the delivered messages over their neighborhood
infinitely often. Then, the other nodes belong to the TMKLO due to the occur-
rence of AK2 or AK3.



If AK2 is satisfied by a node pj from time tj , then m: (i) can be delivered
by the channel interconnecting ps with pj by definition of RCD(), and (ii) it is
transmitted by ps, because tj is greater than tbr. It follows that pj delivers m
according to AC2: indeed, pj has received m directly from the source.

If AK3 is satisfied on a node pj , it is possible to identify two scenarios:

– Case 1: RCD() is satisfied between pj and 2f + 1 nodes pi where AK2 is
already satisfied. We have shown that the processes satisfying AK2 accept
m, and so they retransmit m. Assuming the f -locally bounded failure model,
at most f nodes among the neighbors of pi can be Byzantine and may not
propagate m. Thus, pj receives at least f + 1 copies of m from distinct
neighbors. According to AC3 of DCPA pj delivers m.

– Case 2: RCD() is satisfied between pj and 2f + 1 nodes pi where AK2 or
AK3 is already satisfied. Inductively, as the nodes considered in Case 1
deliver m, it follows that the nodes pj satisfying AK3 due to at least 2f + 1
nodes pi where AK2 or AK3 already holds also deliver m.

�

Theorem 3 (DCPA liveness necessary condition). Let G = (V,E, ρ, ζ) be
a TVG, let ps be the source that starts to broadcast m at time tbr, and let us
assume f -locally bounded Byzantine failures. The message m can be delivered by
every correct process in G only if a partition Pk = {Ltbr , Lt1 . . . Ltx} of nodes in
V representing a TMKLO of G associated to m with k > f exists.

Proof. Let us assume for the purpose of contradiction that: (i) every correct
process in G delivers m, (ii) the Byzantine failures are f -locally bounded, and
(iii) there does not exist a TMKLO associated to m with k > f . The latter
implies that the TMKLO with k = f + 1 does not include all the nodes, i.e.
∃p ∈ Π | ∀t ∈ N,Af+1(p, t) = 0.

The process ps is always included in a TMKLO of any k. Thus, ps is included
in Pf+1. The nodes that deliver m according to AC2 have received m from ps.
Thus, the RCD() predicate evaluated between ps and pi was true at least once
after the delivery of m by ps. It follows that the condition defined in AK2 is
eventually satisfied, and that those nodes are included in Pf+1.

The remaining nodes that deliver according to AC3 have received the message
from f + 1 distinct neighbors. Let us initially assume that such neighbors have
delivered the message by AC2. Again, the RCD predicate evaluated between the
receiving node pj and the distinct f + 1 neighbors pi has been true at least once
after the respective deliveries of m. We already proved that such neighbors of
pi are included in Pf+1, therefore the condition defined in AK2 is satisfied by
those pj and they are included in Pf+1.

It naturally follows that the remaining nodes (the ones that have received the
message from neighbors satisfying AC2 or AC3) are included in Pf+1. This is in
contradiction with the assumptions we made, because eventually every process
satisfies one of the conditions AK1, AK2 or AK3, and the claim follows. �



5 On the Detection of DCPA Liveness

In Section 4, we proved that DCPA always ensure the reliable broadcast safety,
and we provided the necessary and sufficient conditions about the dynamic net-
work to enforce the reliable broadcast liveness. In this section, we are investigat-
ing the ability of individual processes to detect whether the reliable broadcast
liveness is actually achieved in the current network. In more detail, we seek
answers to the following questions:

– (Conscious Termination): Given a message ms sent by a source ps on
TVG G, is ps able to detect if ms will eventually be delivered by every
correct process?

– (Bounded Broadcast Latency): Given a message ms sent by a source
ps on TVG G, is ps able to compute upper and lower bounds for reliable
broadcast completion?

Obviously, if ps has no knowledge about G, nothing about termination can be
detected. As a consequence, some knowledge about G is required to enable Con-
scious Termination and Bounded Broadcast Latency. We now formalize the no-
tion of Broadcast Latency, and introduce oracles that abstract the knowledge a
process may have about G.

Definition 5 (Broadcast Latency (BL)). Let G = (V,E, ρ, ζ) be a TVG and
let ps be a node called source that broadcasts a message m at time tbr. We define
as Broadcast Latency BL the period between tbr and the time of the last delivery
of m by a correct process.

We define the following knowledge oracles (from more powerful to least power-
ful):

– Full knowledge Oracle (FKO): FKO provides full knowledge about the
TVG, i.e., it provides G = (V,E, ρ, ζ);

– Partial knowledge Oracle (PKO): given a TVG G = (V,E, ρ, ζ), PKO
provides the underlying static graph G = (V,E) of G;

– Size knowledge Oracle (SKO): given a TVG G = (V,E, ρ, ζ), SKO pro-
vides the size of G, that is |V |.

5.1 Detecting DCPA Liveness on Generic TVGs

In Section 4 we showed that the conditions guaranteeing the liveness property of
reliable broadcast are strictly bounded to the network evolution. It follows that
the knowledge provided by an FKO, in particular about the network evolution
starting from the broadcast time tbr, is necessary to argue on liveness, unless
further assumptions are taken into account. In the following, we clarify how a
process can employs an FKO to detect Conscious Termination and Bounded
Broadcast Latency.



Lemma 2. Let G = (V,E, ρ, ζ) be a TVG, let ps be a node called source that
broadcasts a message m at time tbr and let us assume f -locally bounded Byzantine
failures. If ps has access to an FKO then it is able to verify if there exists a
TMKLO for the current broadcast on G.

Proof. In order to prove the claim it is enough to show an algorithm that verifies
if a TMKLO exists, given the full knowledge of the TVG provided by FKO.
Such algorithm works as follow: initially, the source ps is placed in level Ltbr of
the TMKLO. Then, the snapshots characterizing the TVG have to be analyzed,
starting from Gtbr and following their order. In particular, for each snapshot Gti ,
ti ≥ tbr, we need to verify that:

1. edges with only one endpoint already included in some level of the TMKLO
are up enough to satisfy RCD() and

2. whenever RCD() is satisfied for a given edge ei,j , we need to check if it allows
pj to be part of the TMKLO as it satisfies one condition among AK2 and
AK3.

The algorithm ends when a TMKLO is found or when all the snapshots have
been analyzed (and in the latter case we can infer that no TMKLO exists for
the considered message on the given TVG). Assuming that G spans over T time
instants, the complexity of this algorithm is:

O(|T ||E) +O(|V |+ |E|) = O(|V |+ |T ||E|)

�

Theorem 4. Let G = (V,E, ρ, ζ) be a TVG, let ps be a node called source that
broadcasts a message m at time tbr and let us assume f -locally bounded Byzantine
failures. If ps has access to an FKO then it is able to detect if eventually every
correct process will deliver m.

Proof. The claim follows by considering that in order to assess the Conscious
Termination of DCPA, the source process ps needs to compute a TMKLO (i.e.,
it needs to check that eventually each correct process will be placed in a level)
and due to Lemma 2 this can be done by accessing FKO. In particular, to detect
Conscious Termination, a process pi can first verify if the necessary condition
holds and this can be done by computing a TMKLO with k ≥ f + 1. If not,
pi can simply infer that m will not be delivered by every correct process. Con-
trarily, it can verify if the sufficient condition holds computing a TMKLO with
k ≥ 2f + 1. If it exists, pi can infer that eventually every correct process will
deliver the message otherwise, it needs to verify the necessary condition in every
subgraph obtained by G removing all the possible disposition of Byzantine pro-
cesses (remind that getting this answer corresponds to solve an NP-Complete
problem even considering a static networks, thus the same intractability follows
also on dynamic networks). If the necessary condition is always satisfied, it can
infer Conscious Termination otherwise not. �



Let us note that if a process has the capability of computing the TMKLO for a
message m sent at time tbr, then it can also establish a lower bound and an upper
bound on the time needed by every correct process to deliver m simply evaluating
the maximum level of the TMKLO that satisfy respectively the necessary and
the sufficient condition for DCPA.

Theorem 5. Let G = (V,E, ρ, ζ) be a TVG and let ps be a node called source
that broadcasts a message m at time tbr and let us assume f -locally bounded
Byzantine failures. Let Pf+1 = {Lt0 , Lt1 . . . Ltx} be the TMKLO with k = f + 1
associated to m and let tf+1

max be the time associated to the last level of Pf+1.
Let assume the existence of the TMKLO with k = 2f + 1 associated to m,
P2f+1 = {Lt0 , Lt1 . . . Ltx}, and let t2f+1

max be the time associated to the last level
of P2f+1. The computed TMKLOs provide respectively a lower bound and an
upper bound for BL such that:

tf+1
max − tbr ≤ BL ≤ t2f+1

max − tbr

Proof. Lower Bound: Let us assume for the purpose of contradiction that BL
can be lower than tf+1

max − tbr. It follows that the last process pi delivering m
does it at a time ti < tf+1

max. Given the definition of TMKLO with k = f + 1,
a level Lx is created each time that a process not yet inserted in the TMKLO
delivers a message (due to AK2 or AK3). As a consequence, the last level of the
TMKLO is created when the last process delivers the message. Thus, considering
that pi is the last process delivering the message, it follows that ti is the time
associated to the last level. Given Pf+1, it follows that ti = tf+1

max and we have a
contradiction.

Upper Bound: Let us assume for the purpose of contradiction that BL can
be greater than t2f+1

max − tbr. It follows that the last process pi delivering m does
it at a time ti > t2f+1

max . Given the definition of TMKLO with k = 2f + 1, a
level Lx is created each time that a process not yet inserted in the TMKLO
delivers a message (due to AK2 or AK3). As a consequence, the last level of the
TMKLO is created when the last process delivers the message. Thus, considering
that pi is the last process delivering the message, it follows that ti is the time
associated to the last level. Given P2f+1, it follows that ti = t2f+1

max and we have
a contradiction. �

Remind that, as the sufficient condition we provided is not strict, a TMKLO
with k = 2f + 1 could not exist even if the reliable broadcast is achievable. It is
also possible to provide a stricter upper bound for BL as we explained inside the
proof of Theorem 4, but is not practical to compute. Finally, let us remark that
the knowledge on the underlying topology is not enough on dynamic networks
to argue on liveness.

Remark 1. Let G = (V,E, ρ, ζ) be a TVG and let ps be a node called source
that broadcasts a message m at time tbr and let us assume f -locally bounded
Byzantine failures. If a process ps has access only to a PKO (and not to an
FKO) then it is not able to detect either Conscious Termination and Bounded



Broadcast Latency. Indeed, as we highlighted in section 4.2, moving on dynamic
network the knowledge on the underlying graph is not enough, because specific
sequences of edge appearances are required in order to guarantee the message
propagation (let us take again Figure 1 as clarifying example). Thus, a PKO
is not enough in arguing on liveness. The same can be said about Bounded
Broadcast Latency as PKO provides no information about the time instants
when the edges will appear.

5.2 Detecting DCPA Liveness on Restricted TVGs

Casteigts et al. [3] defined a hierarchy of TVG classes based on the strength
of the assumptions made about appearance of edges. So far, we considered the
most general TVG5. In the following, we consider two more specific classes of
the hierarchy where we show that liveness can be detected using oracles weaker
than FKO. In particular, we consider the following classes that are suited to
model recurring networks:

– Class recurrence of edges, ER : if an edge e appears once, it appears
infinitively often6.

– Class time bounded recurrences, TBER: if an edge e appears once, it
appears infinitively often and there exist an upper bound ∆ between two
consecutive appearances of e7.

Let us recall that assuming predicate RCD(ei,j , t) = true for every edge ei,j at
some time t is necessary to guarantee liveness. While considering classes ER
and TBER, such condition must be satisfied infinitely often, otherwise it is easy
to show that the results presented in the previous section still apply. Let us
also note that the conditions we defined in Section 4.2 are related to a single
broadcast generated by a specific source ps i.e., for a source ps broadcasting a
message at time tbr the conditions must hold from tbr on. Contrarily, exploiting
the recurrence of edges it is possible to define different conditions that are valid
for every broadcast from the same source ps, independently from when it starts.

Detecting DCPA Liveness in ER TVG In this section, we prove that con-
sidering TVG of class ER, we can get the following results: (i) PKO (an oracle
weaker than FKO) is enough to enable Conscious Termination, (ii) despite the
more specific TVG considered, FKO is still required to establish upper bounds
for BL. Intuitively, this results follows from the fact that PKO allows to deter-
mine whether a MKLO exists on the static underlying graph, and this is enough
to detect if eventually every correct process will be able to deliver the message.
However, given the absence of information on when each edge is going to appear,
it is impossible to compute an upper bound on the time required to accomplish
the broadcast.

5 Class 1 TVG according to Casteigts et al. [3]
6 Class 6 TVG in Casteigts et al. [3].
7 Class 7 TVG in Casteigts et al. [3].



Lemma 3. Let G = (V,E, ρ, ζ) be a TVG and let G = (V,E) be the associated
underlying graph. If ps has access to a PKO then it can compute a MKLO on
G.

Proof. The PKO provides knowledge on the topology of G. We reminded in Def-
inition 1 that the MKLO is a partition of the nodes on the base of a topological
conditions. It follows that it is possible to verify the MKLO on G with PKO
through a modified breath-first search [11]. �

Lemma 4. Let G = (V,E, ρ, ζ) be a TVG of class ER that ensures RCD() in-
finitively often, let G = (V,E) be the static underlying graph of G, let ps be a
node called source and let us assume f -locally bounded Byzantine failures. If
there exists the MKLO of G = (V,E) associated to ps then there always exists
the TMKLO of G associated to a message m sent by ps with the same k.

Proof. We prove the claim showing a mapping from MKLO to TMKLO. The
source is placed inside the TMKLO at level tbr. Then, given the assumption on
the channels and that every node in the MKLO has either (i) an edge connecting
it with the source (ii) and/or k neighbors already included in MKLO, it follows
that every node eventually satisfies at least one between AK2 and AK3. �

Theorem 6. Let G = (V,E, ρ, ζ) be a TVG of class ER that ensures RCD()
infinitively often, and let ps be a node called source that broadcasts m at time
tbr, and let us assume f -locally bounded Byzantine failures. If ps has access to
a PKO, then it is able to detect if eventually every correct process delivers m.

Proof. It follows from Lemma 3 and Lemma 4 �

Detecting DCPA Liveness in TBER TVG The liveness condition enabling
CPA to enforce reliable broadcast relays on the network topology, therefore an
oracle weaker that FKO cannot enable Conscious Termination unless further
assumptions are made. On the other hand, the weaker oracle SKO allows a
process to compute Bounded Broadcast Latency.

Lemma 5. Let G = (V,E, ρ, ζ) be a TVG of class TBER where each edge
ei,j reappears in at most ∆ time instants satisfying RCD(ei,j , t). Let δmax =
max(ζ(e, t)). Let ps be the source and let us assume f -locally bounded Byzantine
failures. The Broadcast Latency BL is upper bounded by

BL ≤ |V |(δmax +∆)

Proof. Given the assumptions on the TVG, we know that every edge reappears
in ∆ and satisfies RCD(). The worst case scenario, with respect the message
propagation, is the one in which every node has to wait ∆ to forward a message.
The worst case scenario, with respect the network topology, is the one where
every process has to wait the last one which has delivered to deliver (in other
words, the partitions of the MKLO evaluated over the underlying graph G(V,E),
with the exception of the second level, have size equals to 1). �



Lemma 6. Let G = (V,E, ρ, ζ) be a TVG of class TBER where each edge
ei,j reappears in at most ∆ time instants satisfying RCD(ei,j , t). Let δmax =
max(ζ(e, t)). Let ps be the source and let us assume f -locally bounded Byzantine
failures. Let P2f+1 = {Lt0 , Lt1 . . . Ltx} be the MKLO with k = 2f + 1 computed
on the underlying graph G = (V,E) (if exists) and let S2f+1 be size of P2f+1.

An upper bound for BL can be computed from the MKLO with k = 2f + 1.
In particular:

BL ≤ S2f+1(δmax +∆)

Proof. Given the assumptions on the TVG G we know that every edge reappears
in ∆ and guarantees RCD() . The worst case scenario with respect the message
propagation is the one where every node as to wait ∆ to forward a message.

The bound follows by Theorem 5 and Lemma 4, noting that every node in
level Li delivers in (δmax +∆)i time instants. �

Theorem 7. Let G = (V,E, ρ, ζ) be a TVG of class TBER where each edge
ei,j reappears in at most ∆ time instants satisfying RCD(ei,j , t). Let δmax =
max(ζ(e, t)). Let ps be a node called source that broadcasts m at time tbr, and
let us assume f -locally bounded Byzantine failures. Let P2f+1 = {Lt0 , Lt1 . . . Ltx}
be the MKLO with k = 2f + 1 associated to m and computed on the underlying
graph G = (V,E) (if exists) and let S2f+1 be size of P2f+1. If ps uses SKO or
PKO, then ps is able to compute an upper bound for BL. Specifically:

BL ≤ |V |(δmax +∆))using SKO

BL ≤ S2f+1(δmax +∆)using PKO

Proof. The claim follows from Lemmas 6 and 5. �

6 Moving to an Asynchronous System

In this work we assumed a synchronous distributed systems. In this section, we
briefly discuss consequences of asynchrony on the safety and liveness of DCPA.

In Section 4.1, we showed that a reliable and authenticated channel is neces-
sary and sufficient to enforce safety through CPA in an f-locally bounded failure
model. Such channel properties are independent of the latency function. Indeed,
they require that if a message m sent by a correct process is eventually received
at its destination, it has not been compromised by the channel. As a consequence
CPA (and DCPA as well) continues to enforce safety also on asynchronous dy-
namic networks.

In Section 4.2, we pointed out the need of having channels up long enough to
allow the delivery of messages. This imposes constraints on the presence function
due to the latency function. The asynchrony affects the latency function ζ(e, t)
that basically is no more bounded. This makes impossible (in asynchronous sys-
tem) to establish constraints for the liveness due to the fact it is no longer guar-
anteed the propagation of messages. It follows that we cannot argue on liveness
of reliable broadcast on general TVG without making further assumptions.



In Section 5.2 we investigated about liveness in specialised classes of TVG.
In particular, we showed in Theorem 6 that assuming recurrent RCD and hav-
ing the knowledge on the underlying static graph it is possible to investigate
about. It follows that, although RCDs are not identifiable over the time, if they
are satisfied infinitively often, they enable the verification of liveness also in
asynchronous systems.

7 Conclusion

We considered the reliable broadcast problem in dynamic networks represented
by TVG. We analyzed the porting conditions enabling CPA to be correctly em-
ployed on dynamic networks. The analysis of this simple algorithm is important
as it works exploiting only local knowledge. This contrasts to the best result so
far in the same setting [15], that demands an exponential costs to check when a
message can be delivered. Moreover, we presented necessary and sufficient con-
ditions to ensure safety and liveness DCPA. We analyzed how much knowledge
of the TVG is needed to detect whether the liveness condition is satisfied, and
its cost. Our work is a starting point to identify more general parameters of
dynamic networks that guarantees the fulfillment of the conditions we provided,
both in a deterministic and probabilistic way. Other interesting points to ad-
dress in future works are: i) the definition of a more realistic locally bounded
failure model that takes also the time dimension into account, ii) the research
of conditions on the dynamic network enabling nodes to conscious termination
with just local information.
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