N

N

Reliable Broadcast in Dynamic Networks with Locally
Bounded Byzantine Failures

Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil

» To cite this version:

Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil. Reliable Broadcast in Dynamic Networks with
Locally Bounded Byzantine Failures. [Technical Report] Sorbonne Université, CNRS, Laboratoire
d’Informatique de Paris 6, LIP6, F-75005 Paris, France; Dipartimento di Ingegneria Informatica Au-
tomatica e Gestionale ”Antonio Ruberti”, Universita degli Studi di Roma La Sapienza, Rome, Italy.
2018. hal-01712277v1

HAL Id: hal-01712277
https://hal.science/hal-01712277v1
Submitted on 19 Feb 2018 (v1), last revised 31 Oct 2018 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01712277v1
https://hal.archives-ouvertes.fr

Reliable Broadcast in Dynamic Networks
with Locally Bounded Byzantine Failures

Silvia Bonomi*, Giovanni Farina™, Sébastien Tixeuil®

*Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti,
Universita degli Studi di Roma La Sapienza, Rome, Italy
bonomi@diag.uniromal..it
fSorbonne Université,

CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
Giovanni.Farina@lip6.fr, Sebastien. Tixeuil@lip6.fr

Abstract

Ensuring reliable communication despite possibly malicious participants is a primary objec-
tive in any distributed system or network. In this paper, we investigate the possibility of reliable
broadcast in a dynamic network whose topology may evolve while the broadcast is in progress.
In particular, we adapt the Certified Propagation Algorithm (CPA) to make it work on dynamic
networks and we present conditions (on the underlying dynamic graph) to enable safety and
liveness properties of the reliable broadcast. We furthermore explore the complexity of assessing
these conditions for various classes of dynamic networks.

Submission Type: Regular paper.
This paper can also be considered for brief announcement.

Eligible for best student paper award.

1 Introduction

Designing dependable and secure systems and networks that are able to cope with various types of adversaries,
ranging from simple errors to internal or external attackers requires to integrate those risks from the very
early design stages. The most general attack model in a distributed setting is the Byzantine model, where a
subset of nodes participating in the system may behave arbitrarily (including in a malicious manner), while
the rest of processes remain correct. Also, reliable communication primitives are a core building block of
any distributed software. Finally, as current applications are run for extended periods of time with expected
high availability, it becomes mandatory to integrate dynamic changes in the underlying network while the
application is running. In this paper, we address the reliable broadcast problem (where a source node must
send data to every other node) in the context of dynamic networks (whose topology may change while the
broadcast is in progress) that are subject to Byzantine failures (a subset of the nodes may act arbitrarily).
The reliable broadcast primitive is expected to provide two guarantees: (i) safety, namely if a message m is
delivered by a correct process, then m was sent by the source and (ii) liveness, namely if a message m is sent
by the source, it is eventually delivered by every correct process.

This problem can be solved using cryptographic digital signatures [8, 10]. Yet, cryptographic infrastruc-

tures make the assumption that some components cannot be compromised (e.g. secret key distributor, public
key provider, etc.), weakening the generality of the Byzantine model. For this reason, we focus in this paper
on non-cryptographic solutions.
Related Works. In static networks (that is, in networks whose topology remains fixed during the entire
execution of the protocol), a solution for the reliable broadcast problem has been initially provided for
complete networks [14], requiring that no more than one third of the nodes are Byzantine (thatis, n > 3f + 1,
where n denotes the size of the network ad f the maximum number of Byzantine nodes). In multi-hop
networks, a necessary and sufficient condition is due to Dolev [9], and states that reliable broadcast can be
solved if and only if the network is 2k + 1-connected. This global condition was replaced by a local condition
on the number of Byzantine neighbors a node may have [13, 21]. All aforementioned works require high
network connectivity.

Extending reliable broadcast service to sparse networks required to weaken the achieved guaran-
tees [18, 17, 16]: (i) accepting that a small minority of correct nodes may accept invalid messages (thus
compromising safety), or accepting that a small minority of correct nodes may not deliver genuine messages
(thus compromising liveness).

Adapting to dynamic networks proved difficult, as topology assumptions made by the various proposal
may not hold anymore as the topology of the network evolves during execution. Without consideration of
Byzantine failures, the problem of Broadcasting in dynamic networks was extensively studied [4, 6, 5, 3, 1].
Some core problems of distributed computing have been considered in the context of dynamic networks
subject to Byzantine failures [11, 2] but, to the best of our knowledge, there exists a single contribution for
the reliable communication problem, due to Maurer ef al. [19]. This reliable broadcast can be seen as the
dynamic network extension of the Dolev [9] solution for static networks, and assume that no more than f
Byzantine can exist in the entire network. Also, the protocol to be executed by each node upon reception of a
message grows exponentially with the size of the network, as each node computes the minimal cut of a set of
paths traversed by each received message, making it unpractical in practice.

Contributions. In this paper, we investigate the possibility of reliable broadcast in a dynamic network that is
subject to Byzantine faults. More precisely, we address the possibility of a local criterion on the number of
Byzantine (as opposed to a global criterion as in Maurer et al. [19]) in the hope that a practically efficient
protocol can be derived in case the criterion is satisfied. Our starting point is the CPA protocol [13, 21], that

was originally designed for static networks. In particular, our contributions can be summarised as follows: (i)
we extend the CPA algorithm to make it work in dynamic networks; (ii) we prove that the original safety
property of CPA naturally extends to dynamic networks and we define new liveness conditions specifically
suited for the dynamic networks and (iii) we investigate the impact of nodes awareness about the dynamic
network on reliable broadcast possibility and efficiency.

2 System Model & Problem Statement

We consider a distributed system composed by a set of n processes II = {p1, p2, . ..pn}, each one having
a unique integer identifier. The passage of time is measured according to a fictional global clock spanning
over natural numbers N. Processes are arranged in a multi-hop communication network. The network can
be seen as an undirected graph where each node represents a process p; € II and each edge represents a
communication channel between two elements p;, p; € II such that p; and p; can communicate.

Dynamic Network Model. The communication network is dynamic i.e., the set of edges (or available
communication channels) changes along time. More formally, we model the network as a Time Varying
Graph (TVG) [7] i.e., a graph G = (V, E, p, () where:

e 1/ is the set of processes (in our case V' = II);
e I/ CV xV isthe set of edges (i.e., communication channels).

e p: ExN — {0,1} is the presence function. Given an edge e; ; between two nodes p; and pj,
p(e;i j,t) = 1 indicates that edge e; ; is present at time ¢;

e (: Ex N — Nis the latency function that indicates how many time is needed to cross an edge starting
from a given time ¢. In particular, ((e; ;,t) = d; j indicates that a message m sent at time ¢ from p; to
pj takes ¢; j; time units to cross edge e; ;.

The evolution of G can be also described as a sequence of static graphs Sg = Gy, G1, . . . G, where G;
corresponds to the snapshot of G at time ¢; (i.e. G; = (V, E;) where E; = {e € E | p(e,t;) = 1}). No
further assumption on the evolution of the dynamic network are done.

The static graph G = (V, E) that considers all the processes and all the possible existing edges is called
underlying graph of G and it flattens the time dimension indicating only the pairs of nodes that have been
connected at some time ¢'.

In the following, we interchangeably use terms process and node and we will refer to edges and commu-

nication channels interchangeably.
Communication model and Timing assumption. Every process is able to communicate only with its direct
neighbours in the graph through message passing. We call sender of a message m the process p that transmits
m. We assume authenticated and reliable point-to-point channels where (a) authenticated ensures that the
identity of the sender of a message cannot be forged; (b) reliable guarantees that the channel delivers a
message m if and only if (i) m was previously sent by p and (ii) the channel has been up long enough to allow
the reception (i.e. given a message m sent at time ¢ from p; to p; having latency d; ;;, we will have reliable
delivery if p(e; j, 7) = 1 for each 7 € [t,t + 0; ;+]). Notice that these channel assumptions are implicitly
made also on analysis of CPA on static networks.

We assume that the computation time is negligible with respect to communication and we consider it
equal to 0. Let us note that the timing assumption we are considering here model a dynamic synchronous
system. We discuss the implication and consequences of lack of synchrony in the Appendix A.

Failure model. We assume an omniscient adversary able to control several processes of the network allowing
them to behave arbitrarily (including corrupting/dropping messages or simply crashing). We call them
Byzantine processes. Processes that are not Byzantine faulty are said to be correct. Correct processes do not a
priori know which processes are Byzantine.

We considered the f-locally bounded failure model [13] i.e., along time every process p; can be connected
with at most f Byzantine processes. In other words, given the underlying static graph G = (V| E), every
process p; € V has at most f Byzantine neighbours in G.

Problem Statement. In this paper, we consider the problem of Reliable Broadcast over dynamic networks
assuming a f-locally bounded Byzantine failure model from a given correct source ps. We say that a protocol
‘P satisfies reliable broadcast, if a message m broadcast by a correct process ps € 11 (also called source or
author) is eventually delivered (i.e., accepted as a valid message) by every correct process p; € II. Said
differently, a protocol P satisfies reliable broadcast, if the following conditions are met:

o Safety if a message m is delivered by a correct process, then such message has been sent by the source
Dss

e Liveness: if a message m is broadcast by the source ps, it is eventually delivered by every correct
process.

3 The Certified Propagation Algorithm (CPA)

The Certified Propagation Algorithm (CPA) [13, 21] is a protocol enforcing reliable broadcast, from a correct
source ps, in static multi-hop networks with a f-locally bounded Byzantine adversary model, where nodes
have no knowledge on the global network topology. Given a message m to be broadcast, CPA starts the
propagation of m from p, and applies three acceptance policies (denoted by AC) to decide if m should
be delivered and forwarded (i.e., transmitted also by nodes different from the source) by a process p;.
Specifically:

- ps delivers m (AC1), forwards it to all of its neighbours, and stops;

- when receiving m from p;, if p; it the source then p; delivers m (AC2), forwards m to all of its
neighbours and stops; otherwise the message is buffered.

- upon receiving f + 1 copies of m from distinct neighbours, p; delivers m (AC3), then forwards it to
all its neighbours and stops.

CPA correctness on static networks has been proved to be dependent on the network topology. In particular,
Litsas et al. [15] provided topological conditions based on the concept of k-level ordering. Informally, given
a graph G = (V, F) and considering a node p; as the source, we can define a k-level ordering as a partition
of nodes into ordered levels such that: (i) ps belongs to level Lo, (ii) all the neighbours of ps belong to level
L1, and iii) each node in a level L; has at least £ neighbours in a level L, with j < ¢. A k-level ordering is
minimum if every node appears in the minimum level possible, otherwise it is relaxed.

Definition 1 (MKLO) Let G = (V, E) be a graph and let ps be a node of G called source. A minimum
k-level ordering (MKLO) of G is a partition Py of nodes into disjoint subsets called levels L; defined as

Lo Ly L, L3 Ly

Figure 1: A graph G = (V, E) allowing a k-level ordering with k& = 3.

follows:
p€ Lo ifp=ps
pely ifpe Ns

1—1 i—1
peEL; ifpeV\ (,UOLJ) and [Ny 0 ('UOL;‘)I >k
j= j=

An example minimum k-level ordering (with k£ = 3) is shown in Figure 1. A relaxed k-level ordering
for the same graph can be obtained by placing ps in a level and p7 in another. Let us note that multiple
relaxed k-level ordering may exist while the minimum k-level ordering is unique. Also, once a relaxed
k-level ordering is defined, it can be reduced to a minimum k-level ordering.

For CPA to ensure reliable broadcast from pg, a sufficient condition is that a k-level ordering exists, with
k > 2f+1. Conversely, a necessary condition is that £ > f4-1 (see [15]). Considering Figure 1 and assuming
f = 1, CPA ensures reliable broadcast from p; as the sufficient condition is satisfied. Those conditions
can be verified with an algorithm whose time complexity is polynomial in the size of the network through a
modified Breadth-first search. When a graph G = (V, E) satisfies only the necessary condition but not the
sufficient one, then further analysis must be carried out. In particular, in order to verify whether GG enables
reliable broadcast from pg, one should check whether a k-level ordering exists (with k£ = f + 1) in every
sub-graph G’ obtained from G by removing all nodes corresponding to possible Byzantine position in the
f-locally bounded assumption. The verification of the strict condition has been proven to be NP-Hard [12].

The graph G = (V, E) depicted in Figure 2a does not match the sufficient condition but it satisfies the
necessary one for CPA allowing the definition a k-level ordering with £ = f 4 1. Computing all the possible
sub-graphs obtained by GG by removing all the possible placements of a 1-locally bounded adversary, it is
possible to deduce that a k-level ordering, with k = f + 1, still exists on every subgraph. Thus, CPA ensures
reliable broadcast on G. Contrarily, the graph G’ = (V, E’) depicted in Figure 2b has a sub-graph (the one
obtained by removing p4 as a possible faulty process) that does not admit a k-level ordering with k = f 4 1
anymore. Thus, in this case, CPA does not ensure reliable broadcast.

4 The Certified Propagation Algorithm on Dynamic Networks

In this section, we consider how CPA behaves on dynamic networks, i.e. networks whose topology may
evolve through time and how it needs to be extended to work in such settings.

Let us consider the TVG shown in Figure 3, and suppose process p2 is Byzantine. If we consider the
static underlying graph G = (V, E)) shown in Figure 3b, it is easy to verify that running CPA from the source

.

O k=241 T kefn (@IS (T kefr

@G =(V,E) (b) G' = (V, E')

Figure 2: Example of graphs where a k-level ordering exists for £ = f + 1 but not for £ = 2f 4 1 (with
f=D".

fanihg

(a) A Time Varying Graph G = (V, E, p, () (b) Underlying graph G =

Figure 3: Example of a simple TVG and its underlying static graph.

node p; is possible to achieve reliable broadcast in a 1-locally bounded adversary. However, if we consider
snapshots of the TVG at different times' as shown in Figure 3a, one can verify that nodes p3 and p, remain
unable to deliver the message forever. In fact, ps is not a neighbor of the source p; when the message is
broadcast by ps (i.e., at time (), and even if it had happened (e, 3 at time £() the edge connecting p4 with
its correct neighbor p3 appears only before the message would have been delivered and accepted by p3, and
thus it is not available for the retransmission. From this simple example its easy to see that the temporal
dimension plays a fundamental role in the definition of topological constraints that a TVG must satisfy to
enable reliable broadcast.

4.1 CPA Safety in Dynamic Networks

In the following, we show that authenticated and reliable channels are necessary to ensure the reliable
broadcast through CPA.
Lemma 1 The CPA algorithm does not ensure safety of reliable broadcast when channels are not both
authenticated and reliable (even in static graphs).

Proof An authenticated channel guarantees that the identity of the sender of a message cannot be forged.

'For the sake of simplicity, we consider the channel delay always equal to 1 in the example.

Without this assumption a Byzantine process can impersonate an arbitrary number of processes and invalidate
the f-locally bounded assumption. A reliable channel guarantees that a message is received as it sent. Without
this assumption, an unreliable channel can simulate a Byzantine process that is not bound to authenticated
channels, also invalidating the f-locally bounded assumption. Oremma 1

The same channel assumptions are sufficient for ensuring safety also on dynamic networks.

Theorem 1 Let G = (V, E, p, () be the TVG of a network with f-locally bounded Byzantine adversary. If
every correct process p; runs CPA on top of reliable authenticated channels, then if a message m is delivered
by p;, m was previously sent by the correct source p;.

Proof The proof trivially follows from CPA correctness in static networks with f-locally bounded adver-
sary, considering that in the underlying graph G = (V, E), we still have a f-locally bounded adversary.

DTheorem 1

4.2 CPA Liveness in Dynamic Networks

CPA liveness in static networks is based on the availability of a certain topology that supports the message
propagation. Indeed every edge is always up so, once the communication network satisfies the topological
constraints imposed by the protocol, assuming that channels do not loose messages is sufficient to guarantee
their propagation.

In dynamic networks, this is not anymore true. Let us recall that each edge e in a TVG is up according to
its presence function p(e, t). At the same time, the message delivery times are determined by the edge latency
function ((e, t). As a consequence, in order to ensure a message m sent at time ¢ from p; to p; is delivered,
we need that (p;, p;) remains up until time ¢ 4 (e, t). Contrarily, there could exists a communication channel
where every message sent has no guarantee to be delivered as the channel disappears while the message is
still traveling.

Thus, in addition to topological constraints we need to set up other constraints on when edges appear and
for how long they remain up.

Considering that processes have no information about the network evolution, they do not know if and
when a given transmitted message will reach its receiver. Hence, without assuming extra knowledge, a correct
process must re-send messages infinitely often.

As a consequence, CPA must be extended to the dynamic context incorporating the following additional
steps:

- if process p; delivers a message m, it forwards m to all of its neighbours infinitively often.

To ease of explanation, we will refer to this extended version of CPA as Dynamic CPA (DCPA).

We now characterize the conditions enabling a channel to deliver messages in order to argue about
liveness. For this purpose, we define a boolean predicate whose value is true if and only if the TVG allows
the reliable delivery of a message m sent from p; to p; at time ¢.

Definition 2 Let G = (V, E, p, () be a TVG. We define the predicate Reliable Channel Delivery at time ¢/,
RCD(ps, pj, t') as follows:

RCD(pzapja t/)

true if p(<pi,p; >,7) =1, Vr € [t',t' + (e, 1))
false otherwise.

Figure 4: TVG example

Now that we are able to express constraints on each edge through the RCD() predicate, we need to define
those that enable liveness of reliable broadcast. Let us define the k-acceptance function, that encapsulates
temporal aspects for the three acceptance conditions of CPA.

Definition 3 Let p; € 11 be a process that starts a reliable broadcast at time ty,.. The k-acceptance function
Ak (p, t) over the time t € N is defined as follows:

1 ifp; = ps witht > ty, (AK1)

Ay (pj,t) = 1 if3t' >ty : RCD(ps,pj,t') = truewitht > t' + ((es 5, 1) AK2)
1 if3pr,...,pe : Vi€ [LK], Ax(pi,ti) = 1and 3t; > t; : RCD(pj, pi, t;) = true witht > t; + ((e; 5, t;) (AK3)
0 otherwise

Definition4 Let G = (V, E, p,() be a TVG, and let ps be a node called source. A temporal minimum
k-level ordering of G (TMKLO) is a partition the nodes in levels L; defined as follows:

p € Ly, iff t; = mint € Nsuch that Ax(p,t;) =1

Let us denote as Py the partition identifying the temporal minimum k-level ordering.

Let us consider the TVG presented in Figure 4: it evolves in five discrete time instants (i.e., tg, t1, . . ., t4),
its latency function ((e, t) is equal to 1 for every edge e at any time ¢, Now, let us consider process ps as a
source node that broadcasts m at time 5, = 0, and let us assume that £k = 2. Such a TVG admits a temporal
minimum 2-level ordering P = { Ly, = {ps}, L+, = {p1}, L+, = {p3}, Lt, = {p2,pa}}. Indeed:

e The 2-acceptance function Az (ps, t) is equal to 1 for ¢ > ¢, = to according to AK].

e The acceptance function evaluated on process p; is equal to 1 for ¢ > 1 according to AK2 (i.e., t' =0
and RC'D(ps, p1,0) = true due to the presence function p(< ps,p1 >,7) = 1, V7 € [0, 1]).

e On process p3, the acceptance function evaluates to 1 for ¢ > 2, for the same reasons as pj.
e The acceptance function on py4 evaluates to 1 for ¢ > 4 according to AK3 (i.e., RCD(p;, pa, t}) = true
for p; = p1, t; = 1, and for p; = p3, t; = 3).
In the sequel, we present a sufficient condition (Theorem 2) and a necessary condition (Theorem 3) for the

liveness of reliable broadcast based on the TMKLO.

Theorem 2 (DCPA liveness sufficient condition) Ler G = (V, E, p, () be a TVG, let ps be the source which
broadcasts m at time ty,., and let us assume f-locally bounded Byzantine failures. If there exists a partition
Py, ={Ly, Lt ...L,} of nodes in'V representing a TMKLO of G associated to m with k > 2 f then the
message m spread using DCPA is eventually delivered by every correct process in G.

Proof We need to prove that if there exist a TMKLO with k > 2 f associated to message m, then any correct
process eventually satisfies one of the CPA acceptance policies. A TMKLO with k > 2 f implies that there
exist a time instant ¢ such that the 2 f + 1-acceptance function A (p, t) is equal to 1 for every node of the
network.

Now, ps belongs to any TMKLO due to AK1: as the source of the broadcast, ps delivers the message
according to AC1. Remind that the correct processes running DCPA spread the delivered messages over their
neighborhood infinitively often. Then, the other nodes belong to the TMKLO due to the occurrence of AK2
or AK3.

If AK?2 is satisfied by a node p; from time ¢;, then m: (i) can be delivered by the channel interconnecting
ps With p; by definition of RCD, and (ii) it is transmitted by ps, because ¢; is greater than £,.. It follows that
p; delivers m according to AC2: indeed, p; has received m directly from the source.

If AK3 is satisfied on a node pj, it is possible to identify two scenarii:

e Case 1: RCD() is satisfied between p; and 2f + 1 nodes p; where AK2 is already satisfied. We have
shown that the processes satisfying AK 2 accept m, and so they retransmit m. Assuming the f-locally
bounded failure model, at most f nodes among the neighbors of p; can be Byzantine and may not
propagate m. Thus, p; receives at least f + 1 copies of m from distinct neighbors. According to AC'3
of DCPA p; delivers m.

e Case 2: RCD() is satisfied between p; and 2 f + 1 nodes p; where AK2 or AK 3 is already satisfied.
Inductively, as the last considered nodes deliver m, it follows that the nodes p; satisfying AK 3 due to
at least 2f 4+ 1 nodes p; where AK?2 or AK 3 already holds also deliver m.

DTheorem 2

Theorem 3 (DCPA liveness necessary condition) Let G = (V, E, p, () be a TVG, let ps be the source that
starts to broadcast m at time ty,., and let us assume f-locally bounded Byzantine failures. If there does not
exist any partition P, = {Ly, , Ly, ... Ly, } of nodes in V representing a TMKLO of G associated to m with
k > f, then m broadcast using DCPA cannot be delivered by every correct process in G.

Proof Let us assume for the purpose of contradiction that: (i) every correct process in G delivers m, (ii)
the Byzantine failures are f-locally bounded, and (iii) there does not exist a TMKLO associated to m
with & > f. The latter implies that the TMKLO with k¥ = f 4 1 does not include all the nodes, i.e.
dpell|vte N Asii(p,t) =0.

Now, ps is always included in a TMKLO of any k. Thus, p; is included in Py ;. The nodes that deliver
m according to AC?2 have received m from p,. Thus, the RCD predicate evaluated between ps and p; was
true at least once after the delivery of m by p;. It follows that the condition defined in AK?2 is satisfied, and
that nodes are included in Py 1.

The remaining nodes that deliver according to AC3 have received the message from f + 1 distinct
neighbors. Let us initially assume that such neighbors have delivered the message by AC2. Again, the RCD
predicate evaluated between the receiving node p; and the distinct f + 1 neighbors p; has been true at least
once after the respective deliveries of m. We already proved that such neighbors of p; are included in Py 1,
therefore the condition defined in AK2 is satisfied by those p; and they are included in Py ;.

It naturally follows that the remaining nodes (the ones that have received the message from neighbors
satisfying AC2 or AC3) are included in Pyq. This is in contradiction with the assumptions because
eventually every process satisfies one of the conditions AK1,AK?2 or AK3, and the claim follows.

DTheorem 3

5 On the Detection of DCPA Liveness

In Section 4, we proved DCPA always ensure reliable broadcast safety, and provided necessary and sufficient
conditions about the dynamic network to ensure reliable broadcast liveness. In this section, we are investigat-
ing the ability of individual processes to detect whether reliable broadcast liveness is actually achieved in the
current network. In more details, we seek answers to the following questions:

e (Conscious Termination): Given a message m sent by a source p; on TVG G, is p, able to detect if
m is eventually delivered by every correct process?

¢ (Bounded Broadcast Latency): Given a message m sent by a source ps on TVG G, is p, able to
compute upper and lower bounds for reliable broadcast completion?

Obviously, if ps has no knowledge about G, nothing about termination can be detected. As a consequence,
some knowledge about G is required to enable Conscious Termination and Bounded Broadcast Latency. We
now formalise the notion of Broadcast Latency, and introduce oracles that abstract the knowledge a process
may have about G.

Definition 5 (Broadcast Latency (BL)) Let G = (V, E, p,() be a TVG and let ps be a node called source
that broadcasts a message m at time ty,.. We define as Broadcast Latency BL the period between ty, and the
time of the last delivery of m by a correct process.

We define the following knowledge oracles (from more powerful to least powerful):

o Full knowledge Oracle (FKO): FKO provides full knowledge about the TVG, i.e., it provides G =
(V. E,p,Q);

e Partial knowledge Oracle (PKO): given a TVG G = (V, E, p, (), PKO provides the underlying static
graph G = (V, E) of G;

e Size knowledge Oracle (SKO): given a TVG G = (V, E, p, ¢), SKO provides the size of G, that is |V/|.

5.1 Detecting DCPA Liveness on Generic TVGs

In the following we prove that assuming a generic TVG the FKO is sufficient to detect Conscious Termination
and Bounded Broadcast Latency while PKO is not. This is due to the fact that FKO enables a process to
compute a TMKLO.

Lemma 2 Let G = (V, E, p,() be a TVG, let ps be a node called source that broadcasts a message m at
time ty, and let us assume f-locally bounded Byzantine failures. If ps has access to a FKO then it is able to
verify if there exists a TMKLO for the current broadcast on G.

Proof In order to prove the claim it is enough to show an algorithm that verifies if a TMKLO exists, given
the full knowledge of the TVG provided by FKO.

Such algorithm works as follow: initially, the source p; is placed in level t;, of the TMKLO. Then, the
snapshots characterizing the TVG have to be analyzed, starting from Gy, , and following their order. In
particular, for each snapshot ¢, we need to verify that:

1. edges with only one endpoint already included in some level of theTMKLO are up enough to satisfy
RCD() and

2. whenever RCD() is satisfied for a given edge e; j, we need to check if it allows p; to be part of the
TMKLO as it satisfies one condition among AK?2 and AK3.

The algorithm ends when a TMKLO is found or when all the snapshots have been analyzed (and in the latter
case we can infer that no TMKLO exists for the considered message on the given TVG). Assuming that G
spans over 7' time instants, the complexity of this algorithm is:

O(IT[[E) + O([V| + |E]) = O(V| + [T |E])

A more detailed description of the algorithm is delegated to the Appendix B. OLemma 2

Theorem 4 Let G = (V, E, p,() be a TVG, let ps be a node called source that broadcasts a message m at
time ty, and let us assume f-locally bounded Byzantine failures. If ps has access to a FKO then it is able to
detect if eventually every correct process will deliver m.

Proof The claim follows by considering that in order to assess the Conscious Termination of DCPA, the
source process ps (and in general any process in the system) needs to compute a TMKLO (i.e., it needs to
check that eventually each correct process will be placed in a level) and due to Lemma 2 this can be done by
accessing FKO. In particular, to detect Conscious Termination, a process p; can first verify if the necessary
condition holds and this can be done by computing a TMKLO with £ > f 4 1. If not, p; can simply infer
that m will not be delivered by every correct process. Contrarily, it can verify if the sufficient condition holds
computing a TMKLO with k£ > 2f + 1. If it exists, p; can infer that eventually every correct process will
deliver the message otherwise, it needs to verify the necessary condition in every subgraph obtained by G
removing all the possible disposition of Byzantine processes (remind that getting this answer corresponds
to solve an NP-Complete problem even considering a static networks, thus same intractability follows also
on dynamic networks) . If the necessary condition is always satisfied, it can infer Conscious Termination
otherwise not. O heorem 4

Let us note that if a process has the capability of computing the TMKLO for a message m sent at time .,
then it can also establish a lower bound and an upper bound on the time needed by every correct process to
deliver m simply evaluating the maximum level of the TMKLOs that satisfy respectively the necessary and
the sufficient condition for DCPA.

Lemma 3 Let G = (V, E, p,() be a TVG and let ps be a node called source that broadcasts a message m
at time ty, and let us assume f-locally bounded Byzantine failures. Let Py 1 = {L,, Ly, ... Ly, } be the
TMKLO with k = f + 1 associated to m and let tﬁ(}i be the time associated to the last level of Py, 1. The
computed TMKLO provides a lower bound for BL such that:

titl 4 < BL

max

Proof Let us assume by contradiction that BL can be lower than tfni;i — tp,. It follows that the last process

p; delivering m, does it at a time ¢; < tﬁ(}i Given the definition of TMKLO with k = f + 1, alevel L, is
created each time that a process not yet inserted in the TMKLO delivers a message (due to AK2 or AK3). As
a consequence, the last level of the TMKLO is created when the last process delivers the message. Thus,
considering that p; is the last process delivering the message, it follows that ¢; is the time associated to the
last level. Given P 1, it follows that ¢; = tfnfli and we have a contradiction. Oremma 3

10

Remind that, as the sufficient condition we provided is not strict, a TMKLO with £ = 2f + 1 could not
exist even if the reliable broadcast is possible. It is also possible to provide a stricter upper bound for BL as
we explained in Theorem 4, but is not practical to compute.

Lemmad4 Let G = (V, E, p,() be a TVG and let ps be a node called source that broadcasts a message m at
time ty, and let us assume f-locally bounded Byzantine failures. Let assume the existence of the TMKLO
with k = 2f + 1 associated to m, Pagi1 = {Ls, L, ... Ly, }, and let t211 be the time associated to the
last level of Pyy 1. The computed TMKLO provides an upper bound for BL such that:

BL < 2f+1 g,

max

Proof Let us assume by contradiction that BL can be greater than t%{;;l — tp,. It follows that the last process

p; delivering m, does it at a time ¢; > 21 Given the definition of TMKLO with k = 2 f+1,alevel L, is
created each time that a process not yet inserted in the TMKLO delivers a message (due to AK2 or AK3). As
a consequence, the last level of the TMKLO is created when the last process delivers the message. Thus,
considering that p; is the last process delivering the message, it follows that ¢; is the time associated to the

last level. Given P51, it follows that t; = t%{;;l and we have a contradiction. O Lemma 4

Theorem 5 Let G = (V, E, p, () be a TVG and let ps be a node called source that broadcasts a message m
at time ty, and let us assume f-locally bounded Byzantine failures. Let Py = {Ly,, Ly, ... Ly, } be the

TMKLO with k = f + 1 associated to m, let Pyyy1 = { Ly, Ly, ... Ly, } be the TMKLO with k = 2f + 1

associated to m (if exists) and let tfnt;l,; and t?r{:‘;cl be respectively the times associated to the last level of

Py and Poyy1. If ps has access to a FKO then it is able to compute an upper bound and a lower bound on
BL such that:

thth —ty < BL < 2[H1 — 1,

max max

Proof The claim simply follows from Lemma 3 and Lemma 4 Urheorem 5

Theorem 6 Let G = (V, E, p,() be a TVG and let ps be a node called source that broadcasts a message
m at time ty, and let us assume f-locally bounded Byzantine failures. If a process ps has access only to a
PKO (and not to an FKO) then it is not able to detect either Conscious Termination and Bounded Broadcast
Latency.

Proof It has been shown in [15, 20] the necessary and sufficient conditions to argue on the liveness property
of CPA. Such conditions are topological. As it is not possible to argue on liveness of CPA on static networks
without the knowledge of the topology, it follows the same also on dynamic networks. However, moving
on dynamic network, the knowledge on the underlying graph is not enough, because specific sequences of
edge appearances are required in order to guarantee the message propagation (let us take again Figure 3 as
clarifying example). Thus, PKO is not enough arguing on liveness. The same can be said about Bounded
Broadcast Latency as PKO provides no information about the time instants where the edge will appear.

DTheorem 6

In this section, we shown that FKO is sufficient to detect liveness while PKO is not. Given that the
complete knowledge on network topology is required by CPA to argue on liveness on static networks, we
conjecture that it is not possible to detect liveness in generic TVG with an oracle weaker than FKO.

11

5.2 Detecting DCPA Liveness on Restricted TVGs

Casteigts et al. [7] defined a hierarchy of TVG classes based on the strength of the assumptions made on
appearance of edges. So far, we considered the most general TVG?. In the following, we consider two more
specific classes of the hierarchy where we show that liveness can be detected using oracles weaker than FKO.
In particular, we consider the following classes that are suited to model reccurring networks:

e Class recurrence of edges, ER : if an edge e appears once, it appears infinitively often?.

e Class time bounded recurrences, TBER: if an edge e appears once, it appears infinitively often and
there exist an upper bound A between two consecutive appearances of e*.

Let us recall that assuming predicate RCD(e; j,t) = true for every edge e; ; at some time ¢ is necessary to
guarantee liveness. While considering classes ER and TBER, such condition must be satisfied infinitely often
otherwise, it is easy to show that the results presented in the previous section still apply.

5.2.1 Detecting DCPA Liveness in ER TVG

In this section, we prove that considering TVG of class ER, we can get the following results: (i) PKO (an
oracle weaker than FKO) is enough to enable Conscious Termination, (ii) despite the more specific TVG
considered, FKO is still required to establish upper bounds for BL. Intuitively, this results follows from the
fact that PKO allows to determine whether a MKLO exists on the static underlying graph, and this is enough
to detect if eventually, every correct process is able to deliver the message. However, given the absence of
information on when each edge is going to appear, it is impossible to compute an upper bound on the time
required to deliver a message.

Lemma5 Let G = (V, E,p,() be a TVG of class ER, let ps be a node called source that broadcasts a
message m at time ty, and let us assume f-locally bounded Byzantine failures. Let G = (V, E) be the
underlying graph of G. If ps has access to a PKO then it can compute a MKLO on G.

Proof The PKO provides knowledge on the topology of G. We have reminded in Definition 1 that the MKLO
is a partition of the nodes on the base of topological conditions. It follows that it is possible to verify the
MKLO on G with PKO through a modified breath-first search [15]. OLemma 5

Lemma 6 Let G = (V, E, p,() be a TVG, let ps be the source which broadcasts a message m at time ty,
and let us assume f-locally bounded Byzantine failures. If there exists a TMKLO of G associated to m then
there exist also the MKLO of G = (V, E) associated to ps with the same k.

Proof We prove the claim showing a mapping from TMKLO to MKLO. Let us enumerate the parti-
tions of TMKLO with natural numbers starting from 0, namely for P, = {L, ., L, ... Ly, } — P =
{Lo,Ly...Ly}.

Let us analyze Pj.. The source p; is in level L. The processes p; € L; are neighbors of the source. The
processes placed inside the TMKLO due to AK2 are neighbors of the source, thus they can be moved in level
L;. The remaining nodes could be neighbors or not of the source in GG. The former can be moved in ;. The

Class 1 TVG according to Casteigts et al. [7]
3Class 6 TVG in Casteigts et al. [7].
4Class 7 TVG in Casteigts et al. [7].

12

partition P}, is now a relaxed k-level ordering. We reminded in Section 3 that it is possible to obtain a MKLO
from a relaxed k-level ordering. Thus, after the shown shiftings, the partition P}(is a MKLO. Oremma 6

Lemma7 Let G = (V, E, p,() be a TVG of class ER that ensures RCD() infinitively often, let G = (V, E)
be the static underlying graph of G, let ps be a node called source and let us assume f-locally bounded
Byzantine failures. If there exists the MKLO of G = (V, E) associated to ps then there always exists the
TMKLO of G associated to a message m sent by ps with the same k.

Proof We prove the claim showing a mapping from MKLO to TMKLO. The source is placed inside the
TMKLO at level tp,. Then, given the assumption on the channels and that every node in the MKLO has either
(i) an edge connecting it with the source (ii) and/or k neighbors already included in MKLO, it follows that
every node eventually satisfies at least one between AK2 and AK3. Oremma 7

Theorem 7 Let G = (V, E, p,() be a TVG of class ER that ensures RCD() infinitively often, and let ps be a
node called source that broadcasts m at time ty,, and let us assume f-locally bounded Byzantine failures. If
ps has access to a PKO, then it is able to detect if eventually every correct process delivers m.

Proof It follows from Lemma 5 and Lemma 7 UTheorem 7

Theorem 8 Let G = (V, E, p,() be a TVG of class ER that ensures RCD() infinitively often, let 6, =
min({(e,t)) and let ps be a node called source that broadcasts m at time ty,, and let us assume f-locally
bounded Byzantine failures. Let Pryy = {Lyy, Ly, ... Ly, } be the MKLO with k = f + 1 computed on the
underlying graph G = (V, E) and let Sy be size of Py1.

A lower bound for BL can be computed from the MKLO with k = f + 1. In particular:

5minSf+l —ty < BL

Proof It follows from Lemma 3 and Lemma 7. UTheorem 8

Theorem 9 Let G = (V, E, p, () be a TVG of class ER, and let ps be a node called source that broadcasts
m at time ty,, and let us assume f-locally bounded Byzantine failures. If a process ps uses SKO, then it is not
able to detect either Conscious Termination or Bounded Broadcast Latency.

Proof The TVG of class ER guarantees the reappearances of edges without no guarantees about the time
between the appearances. Then, the SKO provides no information about the topology. Thus, the claim follows
considering also Theorem 6. UTheorem 9

5.2.2 Detecting DCPA Liveness in TBER TVG

In this section, we demonstrate that considering a TVG of class TBER, it is possible: (i) to use PKO to enable
Conscious Termination, and (ii) to use SKO to compute Bounded Broadcast Latency.

Theorem 10 Ler G = (V, E, p, () be a TVG of class TBER, and let ps be a node called source that broadcasts
m at time ty,, and let us assume f-locally bounded Byzantine failures. If a process ps uses SKO, then ps is
not able to enable Conscious Termination.

13

A &6 A &6 A & A S

Figure 5: Worst case topology for computing BL.

Proof The TVG of class TBER guarantees timely reappearances of edges but the SKO provides no informa-
tion about the topology. Thus, the claim follows considering also Theorem 6. O7heorem 10

Theorem 11 Let G = (V, E, p, () be a TVG of class TBER and let ps be a node called source that broadcasts
m at time ty,, and let us assume f-locally bounded Byzantine failures. If ps uses PKO, then p; is able to
enable Conscious Termination.

Proof The claim simply follows from Theorem 7 considering that TBER is a class of TVG contained in ER.
UTheorem 11

Lemma 8 Let G = (V, E, p,() be a Class TBER TVG where each edge e; j reappears in at most A time
instants satisfying RCD(e; j,t). Let dpaq = max(((e,t)). Let ps be the source and let us assume f-locally
bounded Byzantine failures. The Broadcast Latency BL is upper bounded by

BL < |V|(8az + A)

Proof Given the assumptions on the TVG we know that every edge reappears in A and satisfies RCD() .
The worst case scenario, with respect the message propagation, is the one in which every node has to wait A
to forward a message. The worst case scenario, with respect the network topology, is the one where every
process has to wait the last one which has delivered to deliver (in other words, the partitions of the MKLO
evaluated over the underlying graph G(V, E'), with the exception of the second level, have size equals to 1).
We depicted such a worst case scenario in Figure 5.

ULemma 8

Lemma9 Let G = (V, E, p,() be a Class TBER TVG where each edge e; j reappears in at most A time
instants satisfying RCD(e; j,t). Let 0paq = max(C(e,t)). Let ps be the source and let us assume f-locally
bounded Byzantine failures. Let Pyy 1 = { Ly, Ly, ... Ly, } be the MKLO with k = 2f + 1 computed on the
underlying graph G = (V, E) (if exists) and let Soy1 be size of Pos 1.

An upper bound for BL can be computed from the MKLO with k = 2f + 1. In particular:

BL < S2f+1(5maz + A)

Proof Given the assumptions on the TVG G we know that every edge reappears in A and guarantees RCD()
. The worst case scenario with respect the message propagation is the one where every node as to wait A to
forward a message.

14

The bound follows by Lemma 4 and Lemma 7, noting that every node in level L; delivers in (0,40 + A)i
time instants. ULemma 9

Theorem 12 Let G = (V, E, p, () be a TVG of class TBER and let ps be a node called source that broadcasts
m at time ty,., and let us assume f-locally bounded Byzantine failures. If ps uses SKO or PKO, then pg is
able to compute an upper bound for BL. Specifically:

BL < |V|(0maz + A))using SKO
BL < S5¢+41(6max + A)using PKO

Proof The claim follows from Lemma 9 and Theorem 8. OTheorem 12

6 Conclusion

We considered the reliable broadcast problem in dynamic networks represented by TVG. We analyzed the
porting conditions enabling CPA to be correctly employed on dynamic network. The analysis of this simple
algorithm is important as it works exploiting only local knowledge. This contrasts to the best result so
far in the same setting [19], that demands an exponential costs to check when a message can be delivered.
Moreover, we presented necessary and sufficient conditions to ensure safety and liveness DCPA. We analysed
how much knowledge of the TVG is needed to detect whether the liveness condition is satisfied, and its
cost. Table 1 summarizes all our results. Our work is a starting point to identify more general parameters of
dynamic networks that guarantees the fulfilment of the conditions we provided, both in a deterministic and
probabilistic way. Another interesting point to address in future work is the possibility to define a f-locally
bounded failure model on a time dimension, considering the failures to be f-locally bounded in a temporal
interval.

Table 1: Solvability Conscious Termination and Broadcast Latency

Conscious Termination | Broadcast Latency

FKO | Generic TVG Th 4 Th 5

Generic TVG Impossible - Th 6 Impossible - Th 6
PKO | ER Th7 Th 8

TBER Th7 Th 12

Generic TVG Impossible - Th 6 Impossible - Th 6
SKO | ER Impossible - Th 9 Impossible - Th 9

TBER Impossible - Th 10 Th 12

15

References

[1]

(2]

(3]

[4]

[11]

[12]

[13]

[14]

Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network protocols to dynamic networks.
In Foundations of Computer Science, 1987., 28th Annual Symposium on, pages 358-370. IEEE, 1987.

John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine agreement in dynamic
networks. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on Principles of
Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 74—83. ACM,
2013.

Baruch Awerbuch. On the effects of feedback in dynamic network protocols. Journal of Algorithms,
11(3):342-373, 1990.

Baruch Awerbuch and Shimon Even. Efficient and reliable broadcast is achievable in an eventually
connected network. In Proceedings of the third annual ACM symposium on Principles of distributed
computing, pages 278-281. ACM, 1984.

Baruch Awerbuch, Yishay Mansour, and Nir Shavit. Polynomial end-to-end communication. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 358-363. IEEE, 1989.

Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast as static networks. In Foundations
of Computer Science, 1988., 29th Annual Symposium on, pages 206-219. IEEE, 1988.

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387-408,
2012.

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99, pages
173-186, 1999.

Danny Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14-30, 1982.

Vadim Drabkin, Roy Friedman, and Marc Segal. Efficient byzantine broadcast in wireless ad-hoc net-
works. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International Conference
on, pages 160-169. IEEE, 2005.

Rachid Guerraoui, Florian Huc, and Anne-Marie Kermarrec. Highly dynamic distributed computing
with byzantine failures. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on
Principles of Distributed Computing, PODC 13, Montreal, QC, Canada, July 22-24, 2013, pages
176-183. ACM, 2013.

Akira Ichimura and Maiko Shigeno. A new parameter for a broadcast algorithm with locally bounded
byzantine faults. Information processing letters, 110(12-13):514-517, 2010.

Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine adversarial behavior. In Proceedings

of the twenty-third annual ACM symposium on Principles of distributed computing, pages 275-282.
ACM, 2004.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 4(3):382-401, 1982.

16

[15] Chris Litsas, Aris Pagourtzis, and Dimitris Sakavalas. A graph parameter that matches the resilience of
the certified propagation algorithm. In International Conference on Ad-Hoc Networks and Wireless,
pages 269-280. Springer, 2013.

[16] Alexandre Maurer and Sébastien Tixeuil. Byzantine broadcast with fixed disjoint paths. J. Parallel
Distrib. Comput., 74(11):3153-3160, 2014.

[17] Alexandre Maurer and Sébastien Tixeuil. Containing byzantine failures with control zones. IEEE Trans.
Parallel Distrib. Syst., 26(2):362-370, 2015.

[18] Alexandre Maurer and Sébastien Tixeuil. Tolerating random byzantine failures in an unbounded network.
Parallel Processing Letters, 26(1), 2016.

[19] Alexandre Maurer, Sébastien Tixeuil, and Xavier Defago. Communicating reliably in multihop dy-
namic networks despite byzantine failures. In Reliable Distributed Systems (SRDS), 2015 IEEE 34th
Symposium on, pages 238-245. IEEE, 2015.

[20] Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas. Reliable broadcast with respect to
topology knowledge. Distributed Computing, 30(2):87-102, 2017.

[21] Andrzej Pelc and David Peleg. Broadcasting with locally bounded byzantine faults. Information
Processing Letters, 93(3):109-115, 2005.

17

Appendix A Moving to an Asynchronous System

In this work we considered a synchronous systems. In this section, we briefly discuss consequences of
asynchrony on the safety and liveness of DCPA.

In Section 4.1, we showed that a reliable and authenticated channel is necessary and sufficient to enforce
safety trough CPA in an f-locally bounded failure model. Such channel properties are independent from the
latency function as they just require that if a message m sent by a correct process is eventually received at
its destination, it has not been compromised by the channel. As a consequence CPA (and DCPA as well)
continues to enforce safety also on asynchronous dynamic networks.

In Section 4.2, we pointed out the need of having channels up long enough to allow the delivery of
messages. This imposes constraints on the presence function that depend on the latency function. The
asynchrony affects the latency function ((e, t) that basically is no more bounded and known by processes.
This makes impossible (in asynchronous system) to establish constraints for the liveness due to the fact that
the latency function is undefined and thus it is not possible to guarantee the propagation of messages. It
follows that it not possible to argue on liveness without making stronger assumptions.

In subsection 5.2 we investigated about liveness in specialised classes of TVG. In particular, we showed
in Theorem 7 that assuming recurrent RCD and having the knowledge on the underlying static graph it is
possible to investigate about. It follows that, although RCDs are not identifiable over the time, if they are
satisfied infinitively often, they enable the verification of liveness also in asynchronous systems.

Appendix B An algorithm for verifying if a TMKLO exists

We present an algorithm enabling a process equipped with a FKO to compute TMKLO, if it exist.
The complete pseudo-code is provided in Figure 6. It is composed by:

e the main part, check_liveness_and_BL_bounds, where the liveness condition is verified and bounds
for BL are computed,

e the code that computes a TMKLO, compute_temporal_minimum_level_ordering.

Going into details of the main part, it leverages on the TMKLO to verify the necessary condition (Theorem
3) on lines 2 — 3 and the sufficient condition (Theorem 2) on lines 5 — 6. It is clear that there exist cases
where the necessary condition is verified while the sufficient one is not and, in order to argue on Conscious
Termination and Bounded Broadcast Latency, we need to verify the necessary condition considering any
possible Byzantine placement over the network (lines 12 — 18) as in [15].

Moving on the part related to the TMKLO computation, the corresponding function analyzes the snapshots
characterizing the TVG have to be analyzed, starting from G/, , and following their order, verifying : (i)
if the edges with only one endpoint already included in some level of theTMKLO are up enough to satisfy
RCD() and (ii) whenever RCD() is satisfied for a given edge e; j, we need to check if it allows p; to be part
of the TMKLO as it satisfies one condition among AK2 and AK3. In the following we provide a summary of
variables used in the algorithm:

e 1 level ordering is a map (process ID, acceptance time instant), it corresponds to the TMKLO;
e transmitting_edges is the set of edges which are under analysis for RCD();

e onGoing RCDs is a map (edge, i) which keeps track of the duration of ongoing RCD();

18

e succeded_RCDis is the set of edges which have succeeded in RCD().
The algorithm takes as input:
e the TVG description;
o the ID of the source node;
e 1., namely the the time instant when the broadcast starts;
e the upper bound for the channel latency §; (v) the value of k for TMKLO.

It computes the k-TMKLO or it returns an incomplete partition. It ends when all processes are included in the
TMKLO (lines 29), or all network snapshots are analyzed and returns an incomplete TMKLO (line 30).

In particular, the k-acceptance function fixes the level of the source (AK1, line 21). Subsequently, the TVG is
analyzed through its consecutive shapshots (line 22). Given a time instant ¢, the edges under analysis are the
ones that interconnect processes who are already in the TMKLO with others not included (Lines 44 — 48).
If an edge does not remain up for ¢ consecutive time instants, it is not possible for such an edge to ensure
RCD(). This means that all ongoing transmissions (edges), registered inside the variable onGoing_RCDs,
have to be compared with the ones included in fransmitting _edges. In lines 42 — 43 all ongoing RCD() over
edges that disappear are dropped. Subsequently, the state of ongoing RCD() is updated considering the
transmitting edges (line 26). When one among AK2 or AK3 is verified, the specific nodes are inserted inside
the TMKLO (lines 36 — 41).

B.1 Algorithm complexity
We analyze the computation complexity of the presented algorithm, focusing on the single functions:

e The get_transmitting_edges(t) function analyses the edges present in a specific time instants, filtering
out the ones that are not relevant for the TMKLO. The filtering process has constant complexity. It
follows that the function has complexity O(|E]).

e The check_ongoing RCDs() performs the set difference of collection of size O(|E|). Thus, this
function has complexity O(|E|).

e The check_ RCD() function accesses an entry map and compares the returned value with §. The i f
condition on line 12 is verified once for every edge and every process is inserted inside the TMKLO
only once. It follows that the function has cost O(|V'| + |E|).

It follows the complexity of computing the TMKLO is:

O(IT||E) + O([V| + |E]) = O(|V| + [T | E])

We have to notice that even assuming reliable channels with instantaneous delivery (namely, 6 = 0
guaranteeing that every message sent over a present channel is delivered) the complexity of the algorithm
does not change, because all the edges included inside the snapshot G, have still to be analyzed.

We have shown that if the sufficient condition is verified, a process has to compute two TMKLO to get
knowledge on conscious termination and bounded broadcast latency. Thus, the complexity of the entire
algorithm is polynomial with respect our metrics (nodes, edges and time). In the worst case scenario, placed
between the gap among the sufficient and necessary conditions, all possible Byzantine placements have to be
verified. This, turn our algorithm in an exponential one as shown in [15].

19

check_liveness_and_BL_bounds(source, ty,, d, f):

(01) graph <+ FKO;

(02) TM K LOnec <+ compute_temporal_minimum_level_ordering(graph, source, ty,, 8, f + 1);
(03) if M K LOne..is_complete(graph.size) then

(04) BLpmin < TMKLOpec.max-value() — ty;

(05) TMKLOg,s + compute_temporal_minimum_level_ordering(graph, source, ty,,8,2f + 1);
06) if TMKLOg,.is.complete(graph.size) then

07) liveness < 1;

(08) BLmaz < TMKLO,,f¢.max.value() — tp,;

(09) else

(10) BLmaz < 05

(11) liveness < 1;

(12) for each (subgraph € get_subgraphs_f_local(graph, source, f)) do
(13) TMKLO; + compute_temporal_minimum_level_ordering(subgraph, source, ty,, 0, f + 1);
(14) if TM K LO;.is_.complete(subgraph.size) then

(15) BLmax < max(BLmaz, TMKLO;.max_value());

(16) else

a7 liveness < 0;

(18) break

(19) else

(20) liveness < 0;

compute_temporal_minimum_level _ordering(graph, source, ty,., 6, k):
(21) t.level_ordering < t_level_ordering U {< source, tp, >1};
(22) for (t < tp,;t <= graph.maz T;t < t+ 1) do

(23) transmitting_edges < get_transmitting_edges(t);

24) check_ongoing-RCDs();

(25) for each (e € transmitting_edges) do

(26) onGoing-RCDs <+ onGoing-RCDs U {< e, +1 >};
27) check_RCD(e, t);

(28) if t_level_ordering.keys = graph.nodes then

(29) return t_level_ordering

(30) return t_level_ordering

check_RCD(e, t):

(31) edge_duration < onGoing-RC Ds.get(e)

(32) if edge_duration = § then

(33) out_node < not_included(e)

(34) succeeded_RC'Ds + succeeded_RCDs U {e}

(35) onGoing-RCDs < onGoing-RCDs \ {e}

(36) if source € e.endpoints then

37) t_level_ordering < t.level_ordering U {< out_node,t >}
(38) else

(39) k_acceptance < k_acceptance{< out_node,+1 >}

(40) if k_acceptance.getout_node) = k then

41) t_level_ordering <+ t_level_ordering U {< out_node,t >}

check_ongoing_RCDs():
(42) interrupted_RC'Ds < onGoing-RC Ds \ transmitting-edges
(43) onGoing-RCDs + onGoing-RCDs \ interrupted_channels

get_transmitting_edges(t):

(44) new_transmitting_edges < 0

(45) for each (e € graph.getSnapshot(t).edges) do

(46) if |e.endpoints N t_level_ordering.keys| = 1 AND e ¢ succeded_RC Ds then
(47) new_transmitting_edges < new_transmitting_edges U {e}

(48) return new_transmitting_edges

not_included(e):

(49) for each (p € e.endpoints) do

(50) if t_level_ordering.keys N p # () then
(51) return p

Figure 6: Process code with FKO

20

Lemma 10 Let G = (V, E, p, () be a TVG and let ps be a node called source that broadcasts a message m
at time ty, and let us assume f-locally bounded Byzantine failures. If ps has access to a FKO then it is able to

o answer about the Conscious Termination of m
e compute upper bound and a lower bound for the broadcast latency of m

with a cost that is polynomial in the best case and exponential in the worst case with respect our metrics
(nodes, edges and time).

Proof It follows from Lemmas 2 and Theorems 4 and 5. The complexity cost derives from the algorithm
computing a TMKLO: If the sufficient condition is verified (Theorem 2), the conscious termination and
bounds for the broadcast latency can be obtained with an algorithm polynomial with respect our metrics
(nodes, edges and time), specifically in O(|V| + |T|| E|).

Otherwise in the worst case scenario, where the necessary condition (Theorem 3) holds but the sufficient
one does not, we have to test any possible Byzantine placement to get our answers: namely the necessary
condition has to be verified on every subgraph where a possible set of Byzantine node (f-locally bounded) is
removed. This verification has an exponential cost [15]. Oremma 10

21

