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A Monte Carlo approach to radiative transfer in participating media is described and tested. It solves to a large extent the well known problem of Monte Carlo simulation of optically thick absorption conÿgurations. The approach which is based on a net-exchange formulation and on adapted optical path sampling procedures is carefully designed to insure satisfactory convergence for all types of optical thicknesses. The need for such adapted algorithms is mainly related to the problem of gaseous line spectra representation in which extremely large ranges of optical thicknesses may be simultaneously encountered. The algorithm is tested against various band average computations for simple geometries using the Malkmus statistical narrow band model.

Introduction

Since the emergence of computational physics, Monte Carlo methods have been extensively used for numerical simulation of radiative heat transfer in participating media. They ÿrst appeared as strict numerical implementations of photon transport stochastical models [START_REF] Howell | Application of Monte Carlo to heat transfer problems[END_REF][START_REF] Hammersley | Les mà ethodes de Monte Carlo[END_REF]. As such, they were commonly qualiÿed by "exactness" and were mainly used for production of reference solutions in the process of validating other numerically more e cient simulation techniques.

Recent research e orts depart from this original position in three ways [START_REF] Howell | The Monte Carlo method in radiative transfer[END_REF][START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF]:

(1) underlying physical formulations are intensively rediscussed (reverse formulations, net-exchange formulations), sometimes preserving very little similitude with photon transport models; (2) intensive use is made of all available convergence enhancement techniques;

(3) the emergence of massively parallel hardware allows one to seriously consider statistical methods for operational use (and not only for reference solution production), in particular when thinking of the di culties encountered with deterministic techniques in front of detailed three-dimensional geometries and complex spectral properties.

Among the strongest handicaps of today's Monte Carlo algorithms, are the di culties related to numerical behavior in the optically thick limit [START_REF] Farmer | Hybrid Monte Carlo=di usion method for enhanced solution of radiative transfer in optically thick non-gray media[END_REF][START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF]. In case of very short photon mean free paths, most bundles are absorbed in the vicinity of their emission positions which means that only very few bundles e ectively participate to distant radiative transfers. The consequence is that Monte Carlo algorithms based on bundle transport formulations require very large numbers of statistical realizations for su ciently accurate radiative exchange estimations. For less intuitive reasons, as we will illustrate hereafter, path integrated Monte Carlo algorithms encounter similar di culties. 1The other numerical di culty encountered with optically thick media is related to spatial discretization. Computational costs impose constraints to geometrical grid sizes that cannot be reduced su ciently for the optically thin assumption to be valid. It therefore becomes essential to account for sub-grid scale temperature proÿles. In the optically thick limit indeed, the radiative net-exchange between adjacent volumes is proportional to temperature gradients at the interface (di usion assumption) and the assumption of isothermal meshes would lead to strong energy net-exchange overestimations. This constraint requires that Monte Carlo algorithms do not consider global mesh emissions, starting from mesh boundaries, but instead reduce the physical description to local sub-grid emissions, as a function of sub-grid temperature proÿles, through random generations of emission positions [START_REF] Cherkaoui | Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation[END_REF].

These questions are particularly sensitive in gaseous media as line spectra induce wide ranges of optical thicknesses; the optically thick limit being rapidly encountered in the spectral vicinity of absorption line centers. Solutions were proposed in [START_REF] Farmer | Hybrid Monte Carlo=di usion method for enhanced solution of radiative transfer in optically thick non-gray media[END_REF][START_REF] Farmer | Monte Carlo algorithms for predicting radiative heat transport in optically thick participating media[END_REF][START_REF] Surzhikov | Monte Carlo simulation of radiation in scattering volumes with line structure[END_REF] to overcome this speciÿc di culty on the basis of hybrid algorithms, combining Monte Carlo with di usion algorithms. However, such hybrid algorithms face two new di culties: that related to the criteria used when switching from one model to the other, and that related to the behavior of di usion models in the vicinity of surface boundaries. Among recent attempts, Cherkaoui et al. [START_REF] Cherkaoui | Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation[END_REF][START_REF] Cherkaoui | Radiative net exchange formulation within one-dimensional gas enclosures with re ective surfaces[END_REF] showed, for quasi-isothermal H 2 O-CO 2air mixtures, using a narrow band statistical model [START_REF] Malkmus | Random lorentz band model with exponential-tailed s-1 line-intensity distribution function[END_REF], that thanks to intrinsic reciprocity principle satisfaction, net exchange Monte Carlo algorithms were much less sensitive to optical thickness than standard or reverse Monte Carlo algorithms. However, the spatial integration procedure could not be simply optimized on the basis of average transmission functions. The required computational e ort, although much smaller than for standard algorithms, still increased signiÿcantly as a function of optical thickness.

We now present such a net exchange Monte Carlo approach devoted to gaseous radiation simulation. Di erences with [START_REF] Cherkaoui | Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation[END_REF] are essentially that:

• spectral integrations are performed with a k-distribution model, randomly generating monochromatic absorption coe cients [START_REF] Domoto | Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function[END_REF][START_REF] Dufresne | Inverse gaussian k-distributions[END_REF] instead of using narrow-band average transmission functions; • a path integrated algorithm is used instead of a bundle transport algorithm;

• sub-grid temperature integrations are signiÿcantly optimized by physical and mathematical simpliÿcations associated with the k-distribution spectral formulation (exponential extinction and bypassing of spectral correlation di culties [START_REF] Goody | Atmospheric radiation theorical basis[END_REF][START_REF] Goody | The correlated k method for radiation calculations in nonhomogeneous atmospheres[END_REF][START_REF] Gerstell | Obtaining the cumulative k-distribution of a gas mixture from those of its components[END_REF][START_REF] Lacis | A description of the correlated-k distribution method for modeling nongray gaseous absorption, thermal emission and multiple scattering in vertically inhomogeneous atmospheres[END_REF][START_REF] Taine | Gas irradiative properties: From spectroscopic data to approximate models[END_REF][START_REF] Modest | The Monte Carlo method aplied to gases with spectral line structure[END_REF]).

Section 2 begins on a monochromatic basis with simple one-dimensional geometries, discussing spatial integration procedures. Generalization is then made to any geometries. At this stage a net-exchange re-formulation is further introduced and convergence illustrations are made on the basis of simple one-dimensional slab conÿgurations. Section 3 introduces the k-distributions Monte Carlo spectral integration approach, discussing sampling probability choices. The same test case is used for convergence illustrations considering narrow-band integrated radiative powers, on the basis of Malkmus model [START_REF] Malkmus | Random lorentz band model with exponential-tailed s-1 line-intensity distribution function[END_REF], for a wide range of line overlap parameters and average optical thicknesses.

Optics and geometries

Using k-distribution approaches for spectral integration allows one to consider all optic and geometric integrations on a pseudo-monochromatic basis (see Section 3). Transmission functions are therefore exponential functions, which in the frame of MC integration allows simple variance reduction techniques to be implemented, in particular as far as sub-grid integration is concerned. For the sake of clarity, in the present section, optic and geometry are discussed assuming a non-scattering, uniformly absorbing medium. Both assumptions may be easily relaxed as in any standard Monte Carlo algorithm. 2

Sub-grid integration

In order to illustrate the behavior of standard MC algorithms as function of optical thickness and to introduce the principle of the proposed algorithm, the simple problem of monochromatic slab emission is ÿrst analysed. This permits the derivation of analytical solutions and associated variances from which our choices of optimized probability density functions may be physically discussed and tested.

Consider a horizontal slab of semi-transparent medium between black boundaries. The slab thickness is L and the downward unit vector normal to the slab is written ñ (see Fig. 1). The temperature proÿle is such that the monochromatic blackbody intensity at the considered frequency follows a linear proÿle from B 0 at the bottom to 0 at the top.

Downward radiative ux at the bottom can be expressed as

F = 2 d!(ũ) L 0 d z k exp - kz ũ • ñ B 0 (1 -z=L) = 2 B 0 1=2 - 1 3kL + E 4 (kL) kL ; (1) 
where E n is the nth exponential integral.

Algorithm 1. In the most straightforward MC algorithm; sampling events are randomly generated in a way that preserves a close analogy with photon transport statistics. As far as the present test case is concerned; z and ũ are sampled according to respectively uniform and isotropic probability density functions. F is then estimated counting bundles reaching the bottom boundary before absorption; which may be formally represented via the following expression:

F = L 0 d z p Z (z) 2 d!(ũ)p (ũ) +∞ 0 d p ( ) w 1 (z;ũ; ) (2) 
with

w 1 (z;ũ; ) = 2kL B 0 (1 -z=L)S - z ũ • ñ ;
where S is a step function: S(a) = 0 if a ¡ 0 and S(a) = 1 otherwise. The position of emission in the one-dimensional slab is produced by generating randomly the abscissa z according to p Z (z)=1=L.

The direction of emission is generated according to p (ũ)=1=2 . Then z and ũ deÿne a line of sight along which a virtual absorption position is generated according to an exponential pdf between 0 and +∞: p ( )=k exp(-k ). This leads to a bundle weight w 1 = w * 1 (z)=2kL B 0 (1 -z=L) when the bundle reaches the bottom boundary; w 1 = 0 otherwise. The radiative ux addressed corresponds to the average weight: F = ⟨w 1 ⟩. The practical algorithm uses a ÿnite number N of emission-absorption events to estimate F as the average of corresponding weights and such an estimate is associated with a statistical error

E ; 1 = 1 N (⟨w 2 1 ⟩ -⟨w 1 ⟩ 2 ): (3) 
In the present simple case; this error can be obtained analytically as

E ; 1 = 2 B 0 √ N kL 2 - 2 kL E 5 (kL) - 2 3 + 1 4kL - F 2 B 0 2 :
The "pathological" behavior of such MC algorithms for strong optical thicknesses can be seen noticing that E ; 1 =F ≃ 2kL=N when kL1 and therefore that the relative error tends to inÿnity when optical thickness tends to inÿnity. Fig. 2 displays the number of random generations required for a 1% relative error as a function of optical thickness. In terms of physical images, this behavior can be explained by the fact that for strong optical thicknesses, most bundles are absorbed within the slab; therefore only a few bundles contribute to the radiative ux at the boundary and the statistics require large numbers of emitted bundles for satisfactory accuracies.

Algorithm 2. This interpretation could lead one to believe that path integrated MC algorithms; in which all bundles leave the emitting volume element (no complete self absorption); would have better statistical behaviors. In these algorithms; bundles are emitted as described above with the same initial weight w * 2 (z) = w * 1 (z); but instead of being absorbed at one single absorption position; each bundle undergoes an exponential attenuation along the deÿned ray until the bottom boundary is encountered. In our case; such an algorithm corresponds to the following formulation:

F = L 0 d z p Z (z) 2 d!(ũ)p (ũ)w 2 (z;ũ) (4) 
with

w 2 (z;ũ) = 2kL B 0 (1 -z=L) exp - kz ũ • ñ :
Events are deÿned with only two random generations (emission position and direction; no absorption position). As before; F = ⟨w 2 ⟩ and for a practical MC calculation with N events; the statistical error is

E ; 2 = 2 B 0 √ N kL 4 - 1 4kL E 5 (2kL) - 1 6 + 1 16kL - F 2 B 0 2 :
For strong optical thicknesses; this relative error simpliÿes to E ; 2 =F ≃ kL=N ; which is better than that of a straightforward bundle transport algorithm but still tends to inÿnity with increasing optical thicknesses. Path integrated algorithms therefore encounter equivalent bad behaviors. The reason is that; although complete auto-absorptions have been suppressed; only bundles emitted in the immediate vicinity of the boundary leave the volume with a signiÿcant weight; all other bundles are strongly attenuated and reach the boundary with a quasi-zero weight. The statistical di culties are therefore very similar. The number of bundles required for a one percent relative error with Algorithm 2 are displayed in Fig. 2 and can be compared with that of Algorithm 1.

Algorithm 3. In both the above cases; the di culties are obviously associated with emission position random generations. These di culties can be relieved by modiÿcation of p Z (z) to choose emission positions close to the boundaries. However; exponential extinction depends on emission angles and radiation may come from further inside the slab for quasi-normal directions whereas only the very bottom of the slab contributes to quasi-tangential uxes. It appears therefore that angular and spatial integrals ought to be inverted and emission directions generated before emission positions. If the direction ũ is generated ÿrst; an adapted pdf of z knowing ũ can be chosen to match exactly the exponential attenuation from z to the boundary. This adapted pdf is:

p Z; a (z;ũ) = k ũ • ñ exp - kz ũ • ñ 1 -exp - kL ũ • ñ : (5) 
As for all biased MC algorithms; the bundle weight must be adjusted in accordance with the new pdf choice; which implies here that the previous bundle weight w * 2 (z) should be replaced by

1 -exp - kL ũ • ñ exp - kz ũ • ñ 2 (ũ • ñ)B 0 (1 -z=L):
The fact that ũ •ñ appears as product in this bundle weight expression would introduce an undesired distribution width in the optically thick limit. As a ÿrst step; to illustrate that MC algorithms may be simply adapted to deal with optically thick conÿgurations; this di culty can be bypassed via a modiÿcation of the angular distribution using p ; l (ũ;ñ) = ũ • ñ= . The initial bundle weight then becomes

w * 3 (z) = 1 -exp - kL ũ • ñ exp - kz ũ • ñ B 0 (1 -z=L):
Altogether; the corresponding optimized algorithm consists of the following: (i) directions are generated randomly according to p ; l (ũ;ñ) which corresponds to a Lambert angular distribution; (ii) positions are alloted randomly according to the exponential distribution p Z; a (z;ũ); (iii) bundles are alloted the initial weight w * 3 (z); (iv) the rest of the algorithm is kept unchanged; either a bundle transport or a path integrated algorithm. Applying this algorithm in its ray-tracing form to the same test case as above corresponds formally to the following expression:

F = 2 d!(ũ) p ; l (ũ;ñ) L 0 d z p Z; a (z;ũ)w 3 (z;ũ) (6) 
with

w 3 (z;ũ) = 1 -exp - kL ũ • ñ B 0 (1 -z=L)
and the corresponding statistical error is

E 3 = 2 B 0 √ N 1 4 - 1 3kL + 1 4(kL) 2 - 2E 5 (kL) k 2 L 2 - E 3 (kL) 2 - 1 kL E 4 (kL) + E 5 (2kL) k 2 L 2 - F 2 B 0 2 :
Unlike the other two algorithms; the relative error does not tend to inÿnity with increasing optical thickness; but instead decreases to zero as E 3 =F ≃ (1=3kL) 5=N . Fig. 2 displays the numbers of bundles required to reach a 1% relative error and illustrates that the adapted algorithm encounters no speciÿc di culty for strong optical thicknesses.

Algorithm 4. This last Algorithm 3 shows however worse behavior than the two preceding in the optically thin limit. Such behavior is due to angular integration: the Lambert distribution (p ; l (ũ;ñ) = ũ • ñ= ) is indeed adapted to optically thick system emissions but not to thin ones that tend to isotropy (p (ũ) = 1=2 ). This dependence on optical thickness may for instance be approached using an angular pdf that combines both limit cases:

• The Lambert law is kept for systems with optical thickness greater than unity:

p ; a (ũ;ñ; kL) = p ; l (ũ) if kL ¿ 1
• For systems with optical thickness lower than unity; a Lambert like distribution is used for slab tangential directions and a uniform distribution for close to normal directions:

p ; a (ũ;ñ; kL) = 1 1 -kL=2 S(kL -ũ • ñ) 1 2kL ũ • ñ + S(ũ • ñ -kL) 1 2 : (7) 
The algorithm then formally corresponds to

F = 2 d!(ũ)p ; a (ũ;ñ; kL) L 0 d z p Z; a (z;ũ)w 4 (z;ũ) (8) 
with

w 4 (z;ũ) = w 3 (z;ũ) p ; l (ũ;ñ) p ; a (ũ;ñ; kL) :
Numerical results obtained with Algorithm 4 are reported in Fig. 2 showing good behavior in both optically thin and optically thick limits.

Generalized algorithmic procedure

The preceding simple example (Monte Carlo estimation of the power emitted from a non-isothermal slab to a surface) illustrated how important it is to work on both the formulation choice and the pdf adaptations to deal with optically thick conditions. A general three-dimensional Monte Carlo algorithm is presented hereafter that beneÿts from these observations concerning sub-grid integration optimization, generalizing the principle of Algorithm 4 to any geometry. For the sake of clarity, the algorithm is formally enunciated assuming black system boundaries, and the required extension associated with surface re exions are rapidly treated via independent footnotes.

Let us consider a system divided into N V volume elements V i of semi-transparent material and N S opaque surface elements S i . Volume and surface elements are non-isothermal and the volume elements cannot be assumed optically thin. The temperature ÿeld will be described as a continuous ÿeld and the corresponding blackbody intensity ÿeld at the considered frequency will be noted B(x) where x is the coordinate vector.

When computing exchange rates from a volume to a surface, '(V i ; S j ) (the radiative power emitted by V i that is absorbed by S j ), or between two volume elements, '(V i ; V j ), with bundles starting from V i , the ÿrst step is the random generation of an emission position ẽ within V i and of an emission direction ũ. The most direct extension of Algorithm 4 to three-dimensional geometries consists in the following procedure (see Appendix and Fig. 3a):

(1) A position x1 is uniformly and randomly generated on V i 's envelope, noted3 S i : p S (x 1 )=1=S i .

(2) The emission direction ũ is randomly generated on the outward hemisphere at x1 according to the previously deÿned pdf adapted as function of V i 's optical thickness: p (ũ;ñ 1 ; kL) (see Eq. ( 7)) where ñ1 is the outward oriented unit vector normal to S i at x1 . In the one dimensional case the length L was chosen as the slab thickness, but in the general case L should be taken as a length scale characteristic of V i 's thickness from x1 's view point. (3) x1 and ũ are used to deÿne a continuous segment within V i from x1 to x2 , where x2 is the ÿrst intersection with S i starting from x1 in the direction -ũ. (4) The emission position ẽ is randomly generated along the segment [x 1 ;x 2 ] according to an exponential distribution:

ẽ = x1 -ũ with p ( ) = k exp(-k ) 1 -exp(-k∥x 2 -x1 ∥) :
At this stage, emission position and direction have been randomly generated to deÿne a line of sight leaving V i at x1 . A bundle is then followed along this direction starting at x1 with the following initial bundle weight:

w * 0 = S i [1 -exp(-k∥x 2 -x1 ∥)]
p ; l (ũ;ñ 1 ) p ; a (ũ;ñ 1 ; kL) :

As in any ray-tracing algorithm, the bundle weight is exponentially attenuated along its path as a function of the amount of encountered absorber. At any location ỹ, the remaining bundle weight is noted w * (ỹ) and satisÿes w * (ỹ) ¡ w * 0 . When computing '(V i ; S j ) with N such emission events, each bundle is followed until S j is encountered at location ã. The Monte Carlo weight is then computed as

w(ẽ;ã) = w * (ã)B(ẽ) (10) 
and '(V i ; S j ) is estimated as the average weight ⟨w⟩ N . For optical paths where complete absorption occurs before S j is encountered, the event is attributed a weight 4 w = 0. Generally speaking, the line of sight intersects any volume element V j in m segments [ỹ 2l-1 ; ỹ 2l ] with l=1; : : : ; m (see Fig. 4). When computing '(V i ; V j ), the ray is therefore followed until complete absorption, deÿning these m segments and the Monte Carlo weight is computed as

w(ẽ; ỹ 1 ; : : : ; ỹ 2m ) = m l=1 w * (ỹ 2l-1 )[1 -exp(-k∥ỹ 2l -ỹ 2l-1 ∥)]B(ẽ): (11) 
When computing '(S i ; S j ) and '(S i ; V j ) starting from S i , the algorithm is strictly similar in the limit case of L = +∞: emission positions are generated uniformly on S i ( = 0); the angular distribution becomes Lambert distribution (p ; a (ũ;ñ 1 ; +∞) = p ; l (ũ;ñ 1 )); and the initial weight becomes 5 w * 0 = S i . The proposed algorithm allows therefore a continuous treatment of sub-system emissions, from optically thin volumes to opaque surfaces, via optimized pdf choices for the total range of system optical thicknesses.

At this stage the algorithm is a forward algorithm in the sense that quantities addressed are exchange rates from one geometrical element to another. As discussed in the introduction section, net-exchange algorithms have been shown to ensure better convergence in numerous conÿgurations. 4 When simulating black boundary cavities, complete absorption occurs at the ÿrst boundary encounter and S j may only be encountered once. In the case of re ecting boundaries, the optical path is continued after each surface encounter generating randomly a re exion direction according to the local directional-directional re ectivity function. At each such re exion, the weight is attenuated according to the directional absorptivity (w * → (1 -)w * ) and the path is interrupted when w * ¡ = B max is satisÿed, where is the required accuracy and B max the maximum absolute blackbody intensity di erence between the emission point and any other location in the cavity. Such a multiple broken line optical path may encounter S j at several locations ã1 ; : : : ;ã m under incident directions corresponding to directional absorptivities 1 ; : : : ; m and the MC weight is computed as w(ẽ;ã 1 ; : : : ;ã m ) = m l=1 l w * (ã l )B(ẽ): 5 In case of a non-black surface, w * 0 is multiplied by the directional emissivity.

For the sake of numerical quality, it is therefore preferable to further add this net-exchange reformulation step to the preceding algorithm which may be very simply performed thanks to the reciprocity principle. One may refer to [START_REF] Cherkaoui | Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation[END_REF][START_REF] Dufresne | Mà ethode de Monte Carlo par à echanges pour le calcul des bilans radiatifs au sein d'une cavità e 2d remplie de gaz[END_REF] and [START_REF] Tessã E | Simulation of radiative transfer in real gases using a Monte-Carlo method and a correlated-k approach[END_REF] for details concerning net-exchange formulations, but the essential picture is that quantities addressed are net-exchange rates between geometrical elements. The net-exchange rate (V i ; V j ) between volumes V i and V j is the power emitted by V i and absorbed by V j minus the power emitted by V j and absorbed by V i :

(V i ; V j ) = '(V i ; V j ) -'(V j ; V i ):
The radiative balance of any element is therefore the sum of all net-exchange rates with other discretization elements. Independently of the physical insight that net-exchange formulations may provide to radiative transfer problems, numerical beneÿt associated with this formulation is that it intrinsically satisÿes the reciprocity principle. Apart from conÿgurations in which strongly irregular discretizations are required, one may think of conÿgurations in which dominant radiative exchanges occur between elements at similar temperature levels. The reason why in such cases net-exchange formulations lead to better numerical behavior than standard forward formulations is simply that when two elements are at similar temperature levels the two reciprocal exchange rates are numerically close to each other. The di erence between these two exchange rates, that is the contribution to the radiative balance, may therefore be very small compared to exchange rates themselves. A numerical estimation procedure based on independent exchange rates estimations may therefore lead to very high levels of uncertainties (di erence of two approximate quantities of similar magnitudes). In numerical methods based on net-exchange formulations, the quantities addressed are directly the net-exchange rates between elements and this di erence taking step is bypassed. This is particularly relevant to optically thick conÿgurations in which main radiative exchanges occur between adjacent elements and correspond to exchange locations that are very close to the interface. These locations are therefore likely to correspond to very similar temperature levels.

As shown in [START_REF] Dufresne | Mà ethode de Monte Carlo par à echanges pour le calcul des bilans radiatifs au sein d'une cavità e 2d remplie de gaz[END_REF] our forward Monte Carlo algorithm may be turned into a net-exchange algorithm via an additional step of absorption location random generation within each absorption segment. In practice, this means that the algorithm is kept strictly identical to what was presented above except that each time an absorption segment [ỹ 2l-1 ; ỹ 2l ] is identiÿed. An absorption position ãl is randomly generated (as for emission) according to an exponential distribution:

ãl = ỹ 2l-1 + ũ with p ( ) = k exp(-k ) 1 -exp(-k∥ỹ 2l -ỹ 2l-1 ∥) :
Monte Carlo weights are then modiÿed by replacing blackbody intensities at the emission position B(ẽ) by blackbody intensity di erences between emission and absorption positions. Eqs. ( 10) and ( 11) therefore simply become

w(ẽ;ã) = w * (ã)[B(ẽ) -B(ã)] (12) 
for interaction with a surface and w(ẽ; ỹ 1 ; : : : ; ỹ 2m ;ã 1 ; : : :

;ã m ) = m l=1 w * (ỹ 2l-1 )[1 -exp(-k∥ỹ 2l -ỹ 2l-1 ∥)][B(ẽ) -B(ã l )] (13) 
for interaction with a volume. The average values of these new Monte Carlo weights are now estimated from N realizations to approximate the net exchange rates (V i ; S j ) and (V i ; V j ) directly.

Convergence illustration (monochromatic)

Simple conÿgurations (one dimension slab) are used for convergence quality illustration. Simulations are ÿrst performed on a monochromatic basis and similar examples are later reconsidered in Section 3 with an additional integration over gaseous line spectra.

The slab geometry is that of Fig. 1. The boundaries are black and absorption coe cient is uniform. The ÿrst test case is that proposed in [START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF] for comparison of forward bundle transport algorithm, forward path integrated algorithm and reverse path integrated algorithm. 6 The temperature proÿle is such that the monochromatic blackbody intensity at the considered frequency is B 0 at the boundaries and uniform at B 0 + B across the slab. Estimated quantities are radiative ux divergence averages within each of the 10 regular layers used for slab discretization.

For slab optical thickness kL=10, Fig. 5 presents successively the exact and Monte Carlo solutions, the percent error presented in [START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF] for the three tested strategies (in the speciÿc case of B 0 =0) and the percent error reached with our proposed adapted net-exchange methodology (which is independent of B 0 owing to the net-exchange formulation). All corresponding simulations are performed using 10,000 ray sampling per element. The conclusion of this ÿrst exercise is undoubtedly the same as that of Fig. 2: a simple reformulation of the emission position and emission angle integrals allows one to solve the well known problem of Monte Carlo convergence for optically thick conÿgurations. To further illustrate this point, Fig. 6 displays the radiative ux divergence averages (and statistical error) within layer 1 (against the boundary) and layer 5 (one of the two central layers) as a function of optical thickness widely above kL = 10. These simulations conÿrm that in the proposed scheme statistical errors are insensitive to optical thickness in the optically thick limit.

However, this ÿrst test case is not very representative of practical optically thick conÿgurations in which most of the physics lies in the energy redistribution process within the medium via short distance photon exchanges. Treatment of non-uniform temperature proÿles is essential keeping in mind the limiting case of the Rosseland approximation in which energy transfers are modeled on the basis of second order spatial derivatives (as for any di usion process). In our second test case, the temperature proÿle is therefore chosen such that the monochromatic blackbody intensity at the considered frequency follows a parabolic proÿle across the slab, from B 0 at the boundary to B 0 + B at the slab center. Slab discretization is now performed on the basis of 20 layers of equal width. Fig. 7 displays simulation results and statistical errors for three optical thicknesses (kL = 0:1, kL = 1 and kL = 10) for 10,000 ray samplings per element. Similarly, Fig. 8 displays the results obtained for layer 3 and layer 10 as a function of optical thickness.

Statistical errors are necessarily higher for this second test case than for the isothermal slab: sub-grid temperature proÿle integration is now essential whereas only the angular integration had to be statistically reconstructed in preceding test case. Worth some attention is the fact that errors are higher close to the boundaries than at the center of the slab. After a close look at this behavioral di erence, it appears that this is not a boundary e ect. It is related to the temperature proÿle only: Fig. 5. Comparison of the proposed net-exchange Monte-Carlo (NEMC) approach against "collision based", "pathlength" and "reverse" algorithms as reported in [START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF]. The computations are on a monochromatic basis. The test case is a uniform one-dimensional slab at B 0 + B with black boundaries at B 0 discretized in 10 regular layers. Presented quantities are radiative ux divergence averages for each layer normalized by B. 10,000 sampling events per discretization element are used for each algorithm. In [START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF] this proÿle is such that the second order spatial derivative of the monochromatic blackbody intensity is constant (which explains why the radiative ux divergence tends to a at proÿle when increasing optical thickness), but the net energy transfer rate of each layer is being computed essentially as the sum of two net-exchange rates with neighboring layers. Numerical conditions are very distinct for layer 3 and layer 10 for instance. For layer 3, blackbody intensity gradients are of similar magnitude at both interfaces and the net energy transfer rate is therefore computed as the di erence of two uncertain net-exchange rates of similar magnitudes. Statistical errors on radiative net-exchanges are therefore ampliÿed by this di erence taking step. This di culty is not encountered with layer 10 because the parabolic proÿle is at at the slab center which means that the net-exchange rate between layer 10 and layer 11 tends to zero with increasing absorption. Reducing this sensitivity of the algorithm to the sub-grid temperature proÿle could be partly achieved via an explicit representation of this spatial dependence in the pdf choice for emission position sampling. But at the present stage, without a speciÿc high accuracy requirement, the results seem quite acceptable (never more than a few percent error with 10,000 ray samplings), especially when thinking of complete divergences as are commonly encountered with standard Monte Carlo algorithms in the optically thick limit.

Spectral integration

Principles

In the preceding section, MC integrations were considered on a monochromatic basis, optimizing the algorithm in such a way that satisfactory convergence is ensured for all types of optical thicknesses. The motivation for this optimization attempt was that when considering spectral integration over line spectra, a large range of optical thicknesses may be encountered from very high thicknesses at line centers to optically thin conÿgurations between lines. When computing integrated exchange (or net-exchange) rates over a spectral interval [ min ; max ] with a MC algorithm, the only step to be added to the preceding algorithms is the random generation of a frequency within [ min ; max ] according to an arbitrarily chosen pdf. As for optic and geometric considerations, this pdf is essential in the sense that numerical convergence depends on its choice. In order to formalise this point, let us write the spectrally integrated net-exchange rate between volumes V i and V j using a synthetic path-integral formulation in which (V i ; V j ) is the space of all possible optical paths , at frequency , and h ( ; ) is the contribution of monochromatic net exchange along :

(V i ; V j ) = max min d (V i ; V j ) = max min d (V i ;V j ) d h ( ; ): (14) 
As before, pdf 's are introduced for integration variables and and Monte Carlo estimates are obtained on the basis of corresponding sampling events:

(V i ; V j ) = max min d pdf N ( ) (V i ;V j ) d pdf ( )w ( ; ) ≈ 1 N N n=1 w ( n ; n ); (15) 
where n and n are N random generations of optical path and frequency according to pdf and pdf N , and where the MC weight w is computed as

w ( ; ) = h ( ; ) pdf N ( )pdf ( ) :
For a given frequency, optimizing optical path sampling was the object of Section 2: pdf ( ) is therefore nothing but a formal representation of spatial and angular sampling procedures that were carefully discussed above as a function of optical thickness. The remaining question is therefore that of optimizing the frequency pdf choice. In this optimization exercise, the variance of w ( n ; n ) must be as low as possible, keeping pdf N ( ) simple enough to handle for practical random sampling. This compromise is extremely di cult to reach when dealing with gaseous infrared spectra such as those of water vapor and carbon dioxide. The spectral variations of the radiative transfer functions to be integrated are so sharp and irregular that it seems not feasible to design su ciently simple spectral pdf 's that could compensate for h 's variations. Very strong simpliÿcations may however be introduced when the spectral interval is narrow enough for blackbody intensities, surface re exion properties and scattering properties to be assumed independent of frequency: this is the narrow band assumption that is a common basis for all so-called narrow band spectral integration models. Under this assumption, the function to be integrated depends only on frequency through the spectral dependence of absorption coe cients, which o ers the opportunity for narrow band k-distribution methodology to be applied:

• A new function h is introduced that explicitly deÿnes the absorption coe cient dependence:

h ( ; ) = h ( ; k ).
• The distribution of absorption coe cients within the interval [ min ; max ] is noted f(k) (the inverse transmission function [START_REF] Domoto | Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function[END_REF]) and is modeled to the level of required accuracy. • (V i ; V j ) may then be re-written in a way that justiÿes a new MC algorithm in which random absorption coe cients are generated instead of random frequencies:

(V i ; V j ) = [ max -min ] k max k min d k f(k) (V i ;V j ) d h ( ; k) = k max k min d k pdf K (k) (V i ;V j ) d pdf ( ) w ( ; k) ≈ 1 N N n=1 w ( n ; k n ) (16) with w 
( ; k) = [ max -min ] f(k) pdf K (k) h ( ; k) pdf ( ) :
Note that the frequency dependence of optical path domain (V i ; V j ) vanishes owing to the narrow band assumption.

The main advantage of such a formulation is that the variations of the product h ( ; k)f(k) with k are much less erratic than those of h ( ; ) with frequency, so that optimizing the choice of pdf K becomes realistic. 7 The task of adapting the k-sampling pdf choice to the considered conÿguration type was studied and illustrated in [START_REF] Dufresne | Inverse gaussian k-distributions[END_REF] and three limit cases were identiÿed:

• For computation of net exchange rates between two black surfaces at distance l:

pdf K (k) = f ss (k; l) = e -kl f(k)= (l): (17) 
• For computation of net exchange rates between an optically thin volume and a black surface at distance l:

pdf K (k) = f gs (k; l) = ke -kl f(k)= ′ (l): (18) 
• For computation of net exchange rates between two optically thin volumes at distance l:

pdf K (k) = f gg (k; l) = k 2 e -kl f(k)= ′′ (l); (19) 
where (l) is the average transmission function. Thanks to inverse Gaussian distribution properties, these pdf 's are mathematically easy to handle, provided that the considered spectrum follows the Malkmus model [START_REF] Dufresne | Inverse gaussian k-distributions[END_REF]. In the general case, the best ÿtted Malkmus spectrum may be used, insuring ÿrst order representation of emission=absorption spectral correlations. As illustrated later, linear combinations of such limit case pdf 's may be used for intermediate cases, but nevertheless the design of adapted k-sampling pdf 's for each new conÿguration family remains a key step of such MC simulation e orts to insure fast numerical convergence.

When the spectral interval [ min ; max ] is not narrow enough for the narrow band assumption to be valid, the interval may be divided in N b narrow bands of width j around j . Di erent inverse transmission functions f j (k) are introduced for each narrow band and Eq. ( 14) is written:

(V i ; V j ) = N b b=1 b k max;b k min;b d k f b (k) b (V i ;V j ) d h ; b ( ; k) = N b b=1 P b k max;b k min;b d k pdf K; b (k) b (V i ;V j ) d pdf ; b ( ) w ( ; k; b) ≈ 1 N N n=1 w ( n ; k n ; b n ) (20) with w ( ; k; b) = b P b f b (k) pdf K; b (k) h ; b ( ; k) pdf ; b ( ) :
As for continuous integrals, in the frame of MC methods, discrete sums may be handled via arbitrary choices of discrete probabilities. Here N b probabilities P 1 ; : : : ; P N b are introduced ( N b b=1 P b = 1) and narrow band index random generation are performed according to this weighting, which should be chosen to match as accurately as possible the relative contribution of each band to the ÿnal result. As discussed in [START_REF] Cherkaoui | Monte Carlo simulation of radiation in gases with a narrow-band model and a net-exchange formulation[END_REF] this unknown contribution may be estimated on the basis of simple physical reasoning, but here again the choice remains problem-dependant, and may require substantial e ort for non-intuitive new conÿgurations.

Convergence illustrations (narrow band)

This general methodology was implemented practically and tested in [START_REF] De Guilhem De Lataillade | Modà elisation dà etaillà ee des transferts radiatifs et couplage avec la cinà etique chimique dans des syst emes en combustion[END_REF] for application to combustion conÿgurations. We conÿne ourselves to academic test cases similar to those used in the preceding section in order to illustrate statistical convergence qualities as functions of average optical thickness for di erent types of gaseous spectra. Spectral integration is performed over a spectral band of width for which the narrow band assumption is valid. The Malkmus statistical narrow band model is used so that parametric analysis is performed by varying the band average absorption coe cient k and the shape parameter 8 . This model is used here under its k-distribution form [START_REF] Domoto | Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function[END_REF][START_REF] Dufresne | Inverse gaussian k-distributions[END_REF].

With the same 20 layer discretization as for monochromatic simulations, Fig. 8 displays radiative ux divergence averages and percent statistical errors for layer 3 and layer 10 as functions of average optical thickness kL, for two values of the shape parameter that are typical of spectrally separated gaseous spectra ( = 10 -2 and = 10 -1 ). Convergence qualities associated with two distinct k-sampling pdf 's are compared in terms of statistical errors for a given number of sampling events. The ÿrst one corresponds to straightforward k-sampling according to the physical distribution of absorption coe cient within the considered spectral interval: pdf K; 1 (k) = f(k) (Fig. 8c-d). The second was proposed in [START_REF] De Guilhem De Lataillade | Modà elisation dà etaillà ee des transferts radiatifs et couplage avec la cinà etique chimique dans des syst emes en combustion[END_REF], for combustion applications, as an attempt to account for the dependence on k of pseudo-monochromatic radiative exchanges (Fig. 8e-f):

pdf K; 2 (k) = K (l)f gs (k; 0) + [1 -K (l)]f ss (k; 0) (21) 
with

K (l) = g ss (1=l; 0) -(l)g ss (1=l; l) 1 -(l) ;
where g ss is the cumulative distribution of f ss (see Eqs. ( 17) and ( 18)) and where the length l is taken as l = L for surface emissions and l = L=20 for volume emission.

The physical reasoning leading to this adapted pdf choice is the following. In the present systems the net radiative ux at each boundary is the result of a net-exchange with a gas volume of characteristic length scale L. There is indeed no net-exchange with the opposite boundary surface because the surfaces are at the same temperature. In the case where the system may be considered optically thin, the net radiative ux at each boundary may then be seen as a net-exchange between a black surface and an adjacent optically thin gas volume; consequently, not taking into account volume temperature inhomogeneities, the best adapted k-sampling pdf is pdf K (k) = f gs (k; 0). At the other extreme, where the system may be considered optically thick, always putting aside volume temperature inhomogeneities, the net radiative ux may be seen as the result of a net-exchange between two adjacent black surfaces (the boundary itself and the optically thick volume behaving like an opaque surface) and the best adapted k-sampling pdf is therefore pdf K (k) = f ss (k; 0). For intermediate cases, a linear combination of both limit pdf 's may be used as presented in Eq. ( 21). The weighting factor K (L) was chosen to re ect the fraction of the considered net-exchange due to k-values for which kL ¡ 1 is satisÿed:

K (L) = 1=L k min (1 -e -kL )f(k) dk k max k min (1 -e -kL
)f(k) dk which leads to the above deÿnition. When using the Malkmus model, the cumulative function g ssand therefore K (L)-take an analytical form to be found in [START_REF] Dufresne | Inverse gaussian k-distributions[END_REF].

When considering the net radiative power of a layer, a similar reasoning may be used with the physical image of a gaseous volume of characteristic length L=20 exchanging radiation with the rest of the gas plus the black boundaries. Again putting aside temperature inhomogeneities, there remains a simple net-exchange between a gaseous volume and an adjacent isothermal perfect absorber, which means that we return to the same optimization problem replacing system scale L with layer thickness.

The conclusion of Fig. 8 is essentially that the net-exchange procedure for integration of optics and geometrics dimensions described above, combined with the k-sampling procedure, leads to satisfactory convergence qualities for an extremely wide range of average optical thicknesses, even for spectrally marked line spectra. This is obviously directly related to the conclusions of Section 2 concerning the ability of our algorithm to deal with optically thick conditions (that are here rapidly encountered at line center frequencies). However, it is still worth comparing Fig. 8c-d and Fig. 8e-f to illustrate how statistical convergence depends on the k-sampling pdf choice. In the optically thick limit, both the k-sampling pdf 's considered are identical as lim kl→+∞ pdf K; 2 (k) = pdf K; 1 (k) = f(k). From the comparison of statistical errors obtained with = 10 -2 and = 10 -1 with those obtained for monochromatic simulations, it may be concluded that this pdf choice is well adapted to the physics of high optical thickness gaseous radiative exchanges. The additional spectral dimension is indeed only responsible of a factor 2 or 3 increase (for the same number of sampling events) of the statistical error, which means that f(k) is a realistic model of the contribution of k in the [0; +∞[ interval.

Observations are quite di erent in the small to moderate optical thickness ranges. Under such conditions, when using pdf K; 1 (k) = f(k) for k-sampling, the additional spectral dimension may induce as high as a two orders of magnitude increase of the statistical error, which means that f(k) is a poor model of the contribution of k to radiative exchanges in the optically thin limit. It is the object of pdf K; 2 (k) to try to better model these k-contributions as functions of system optical thickness, which appears to be successful in the present test case. Similar observations were made in [START_REF] De Guilhem De Lataillade | Modà elisation dà etaillà ee des transferts radiatifs et couplage avec la cinà etique chimique dans des syst emes en combustion[END_REF] for a wide range of combustion conÿgurations, but we should emphasize that this pdf choice should receive some critical attention when considering distinct conÿguration types.

Conclusion

In this paper we presented a MC method that overcomes the di culties encountered by classical MC methods when computing radiative transfers in optically thick media. In order to develop this method, we made a permanent link between the various MC algorithms, the corresponding integral equations and the corresponding statistical errors. Analytic expressions of these errors allowed us to formalize the interpretation of general algorithmic properties.

We ÿrst considered the computation of the energy emitted by a volume of participating media in a simple one-dimensional case. For current MC algorithms, we showed a monotonic increase of statistical error with optical thickness. The reason was identiÿed as the random sampling of emission positions, which is uniform over the volume for classical MC methods. A new sampling procedure was designed that closely combines the generation of emission angles and emission positions in order to optimize the computation of the energy emitted by the volume. It takes into account the continuous change of the distribution emission directions at volume boundaries, which is isotropic when the medium is thin, and is lambertian when the medium is thick. It also favors emission positions close to the volume boundaries in such a way that there is again a continuous change of the sampling distribution of emission positions from a uniform distribution in the optically thin limit to an opaque surface-like emission in the optically thick limit.

For this ÿrst simple case, the new algorithm dramatically changes the behavior of the MC integration: the error now decreases when optical thickness increases. The reason is that when the medium is optically thin, the temperature and the optical properties have to be sampled inside the whole volume. But when the optical thickness is very high, the energy emitted by the volume is perfectly known and corresponds to the energy emitted by an equivalent black surface whose temperature is the temperature of the edge of the medium. Our algorithm takes advantage of this property and thus a few photons are enough to sample this edge.

Our algorithm was deÿned in order to optimize the computation of the energy emitted by a volume of participating media. Nevertheless one is often more concerned with computing the energy budget of a volume and of determining the distribution of corresponding internal radiative sources or loss. We therefore computed radiative budgets for various test proÿles. Our method appears to be more accurate than previous MC algorithms, and overall we demonstrated that, with a constant number of sampling events, the relative statistical errors of estimated radiative budgets ÿrst increases slowly with optical thickness and ÿnally reaches an asymptotic value for optically very thick conÿgurations. The MC algorithm therefore remains e cient even for very high optical thicknesses.

We next considered the question of the required additional spectral integration when the medium is a gas with a separated line spectrum. We used a k-distribution approach based on the Malkmus narrow band statistical model. The ÿrst straightforward algorithm was to sample the absorption coe cient according to the k-distribution function. This method is far from being the most e cient but still produces acceptable results. For a given accuracy, the required number of sampling events is almost independent of optical thickness and is comparable to the number of sampling events required in the monochromatic case in the optically thick limit. This is consistent with the fact that within a narrow band, for separated line spectra, the absorption coe cient varies over a few orders of magnitude and thus the optically thick limit is always reached in some spectral regions. The design of a more adequate k-sampling procedure was the next step. Based on an empirical hypothesis, we showed that signiÿcant improvements can be obtained for low and intermediate optical thicknesses. Nevertheless a general methodology does not currently exist and further investigations are needed.
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 1 Fig. 1. Non isothermal 1D slab conÿguration --: linear blackbody intensity proÿle; ---parabolic blackbody intensity proÿle.
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 2 Fig. 2. Number of required bundle realizations for MC estimation of inhomogeneous slab emission with a 1% relative error, as function of slab optical thickness. Results corresponding to Algorithms 1, 2 and 3 are analytical, whereas the results of Algorithm 4 were obtained with e ective MC simulations.
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 3 Fig. 3. Emission positions and emission directions. (a) Integration over the envelope. (b) Integration over a convex surrounding surface (see Appendix A).
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 4 Fig. 4. Absorption segments and exchange positions.

  Fig.5. Comparison of the proposed net-exchange Monte-Carlo (NEMC) approach against "collision based", "pathlength" and "reverse" algorithms as reported in[START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF]. The computations are on a monochromatic basis. The test case is a uniform one-dimensional slab at B 0 + B with black boundaries at B 0 discretized in 10 regular layers. Presented quantities are radiative ux divergence averages for each layer normalized by B. 10,000 sampling events per discretization element are used for each algorithm. In[START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF] computations were performed with B 0 = 0 whereas NEMC behaviors are insensitive to B 0 . (a) Analytical and NEMC solutions. (b) Percent errors as reported in[START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF]. (c) Percent errors as obtained with NEMC.

Fig. 6 .

 6 Fig. 6. (a) Radiative ux divergence averages for layer 1 (against the boundary) and layer 5 (at slab center) as functions of slab optical thickness for the same test case as in Fig. 5. (b) Corresponding MC standard deviation (statistical errors).
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 7 Fig. 7. (a) Estimated radiative ux divergence averages, using the proposed net-exchange Monte-Carlo approach using 10,000 sampling events per discretization element. The test case is a 1D slab with black boundaries. Computations are held on a monochromatic basis. Absorption coe cient is uniform. The blackbody intensity proÿle is parabolic from B 0 at the boundaries to B 0 + B at the center. The slab is discretized in 20 regular layers. (b) Corresponding MC standard deviation (statistical errors).
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 8 Fig. 8. Radiative ux divergence averages (a and b) and standard deviations (statistical errors, c, d, e and f) for layer 3 and layer 10 as a function of slab optical thickness for the same test case as in Fig. 7. Also presented are computations performed on a narrow band interval using Malkmus model as a function of average optical thickness kL for two values of the shape parameter (line overlap parameter): = 0:1 and = 0:01. Analytical solutions corresponding to the optically thin and optically thick models are presented as straight lines for comparison. Standard deviations in c and d correspond to the use of pdf K; 1 (k) = f(k) for k-sampling, whereas e and f correspond to the use of pdf K; 2 (k), see Eq.(21).

  Fig. 8. Radiative ux divergence averages (a and b) and standard deviations (statistical errors, c, d, e and f) for layer 3 and layer 10 as a function of slab optical thickness for the same test case as in Fig. 7. Also presented are computations performed on a narrow band interval using Malkmus model as a function of average optical thickness kL for two values of the shape parameter (line overlap parameter): = 0:1 and = 0:01. Analytical solutions corresponding to the optically thin and optically thick models are presented as straight lines for comparison. Standard deviations in c and d correspond to the use of pdf K; 1 (k) = f(k) for k-sampling, whereas e and f correspond to the use of pdf K; 2 (k), see Eq.(21).

In the present text, the terminology "bundle transport algorithm" will be used for algorithms in which energy is distributed via emission of energy bundles, each of which is entirely absorbed at a single stochastically determined location. The alternative terminology "path integrated algorithm" will denote algorithms in which bundle energy is exponentially distributed along stochastically determined semi-inÿnite optical paths.

Scattering is usually represented via random generation of scattering positions and angles, the MC algorithm being kept unchanged on the basis of broken lines optical paths instead of straight lines[START_REF] Hammersley | Les mà ethodes de Monte Carlo[END_REF]. Non-homogeneous absorption creates no source of di culty provided that the variations of absorption coe cient are known along each optical path, which in the frame of the k-distribution approach may be achieved using the correlated-k assumption[START_REF] Goody | Atmospheric radiation theorical basis[END_REF][START_REF] Taine | Gas irradiative properties: From spectroscopic data to approximate models[END_REF].

Depending on the geometries, generating x1 on the envelope S i may be tedious, in which case the alternative procedure described in Appendix may be preferred.

The corresponding denominations used in[START_REF] Farmer | Comparison of Monte Carlo strategies for radiative transfer in participating media[END_REF] are the forward collision based algorithm, forward pathlength algorithm and reverse algorithm respectively.

In this presentation two distinct pdf 's of k are introduced. The ÿrst one, f(k) is the physical distribution of k as it appears in the considered spectrum. The second pdf K (k) is entirely arbitrary and serves only for the MC algorithm. It is however mainly on the basis of physical considerations that pdf K may be adequately chosen, ensuring that statistical convergence is reached with an acceptable number of random generations.

The shape parameter also called the line overlap parameter: = 2 = where is the half line width at half height and the average line-to-line spacing.
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Appendix A

The radiative power emitted and exiting from a volume V i may be expressed as

where x1 is the location of the ÿrst encounter with V i 's envelope, starting from ẽ in the direction ũ. Computing this multiple integral using a standard MC algorithm, a uniform pdf is chosen for emission position random generation (p V (ẽ) = 1=V i ) and an isotropic pdf for emission direction (p (ũ) = 1=4 ) which leads to the following reformulation:

Another formulation may be retained that leads to the basis of the MC algorithm detailed in the text. In this formulation, the total exiting ux is obtained by integrating surface uxes over V i 's envelope:

Introducing the proposed surface, angular and line pdf 's, F may be written:

leading to Eq. ( 9). In case of complex discretizations, the envelope S i may be di cult to handle and an alternative algorithm may be preferred that is based on the following formulation, in which the integration over S i is transformed into an integration over any convex closed surface S i; c surrounding V i (see Fig. 3b):

where ñ0 is the unit vector normal to S i; c at x0 , the positions x1 ; : : : ;x 2m are the successive locations of S i 's encounters starting from x0 in the direction -ũ and ẽ l is deÿned as ẽ l = x2l-1l ũ.

Introducing the same surface, angular and line pdf 's as above and introducing an arbitrary set of discrete probabilities P 1 ; : : : ; P m (corresponding to the discrete sum that appears in this last formulation choice) leads to

The corresponding algorithm is very similar to the algorithm detailed in Sections 2 and 3. A position is generated uniformly on the convex surface and an outward direction is generated around the normal. These positions and directions deÿne a ÿnite number m of emission segments within V i among which one is randomly chosen according to P 1 ; : : : ; P m . Finally the emission position is randomly generated along this segment according to an exponential pdf. We used such an alternative procedure practically when dealing with cylindrical conÿgurations in which non-convex annulus grids are encountered [START_REF] De Guilhem De Lataillade | Modà elisation dà etaillà ee des transferts radiatifs et couplage avec la cinà etique chimique dans des syst emes en combustion[END_REF].