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Abstract

It is shown that, starting from any existing Monte Carlo algorithm for estimation of a physical quantity A,
it is possible to implement a simple additional procedure that simultaneously estimates the sensitivity of A to
any problem parameter. The corresponding supplementary cost is very low as no additional random sampling
is required. The principle is presented on a formal basis and simple radiative transfer examples are used for
illustration.
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1. Introduction

Monte Carlo methods are commonly used for the simulation of various transport phenomena [1–3].
The term Monte Carlo is, however, used to cover such a wide range of distinct statistical approaches
that it is always a source of ambiguity to address any Monte Carlo methodology on a general basis.
In the present paper, we restrict the analysis to methods that may be shown to rely on the generic
Monte Carlo algorithm for the estimation of multiple integrals.
We address the question of estimating parametric sensitivities with Monte Carlo algorithms. Para-

metric sensitivity estimates are required in numerous physical contexts [4,5], in particular that of
inverse radiative transfer problems as a basis for numerous retrieval algorithms [6,7]. For our pur-
poses, sensitivities are mainly considered as a way of deriving !rst-order radiative transfer models
for unstationary coupling with other complex phenomena such as natural convection [8] or chemi-
cal reactions in combustion systems [9]. In such contexts, the Monte Carlo method is of particular
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interest because of its ability to deal with complex geometries and=or complex spectral properties
[10,11]. To our knowledge, the question of computing corresponding parametric sensitivities has not
yet been addressed.
We !rst show that low-cost sensitivity computations can be easily associated with Monte Carlo

methods, provided that the underlying integral formulation is explicit. This is seldom the case,
however, for good reason, as we illustrate with a simple radiative transfer problem. The central aim
of the paper is then to show how this problem may be e"ectively bypassed, making possible the
computation of non-trivial sensitivity examples.

2. Principle (1)

Let us brie#y recall the Monte Carlo algorithm in order to de!ne the vocabulary and notation. If
A is the integral (to be computed) of a function f over a multiple dimension domain D, the !rst
step is to introduce arbitrarily a non-zero probability density function p over D and to formulate A
as the expectation of W = f(X )=p(X ) where X is a random variable distributed according to p:

A=
∫

D
f(x) dx =

∫

D

f(x)
p(x)

p(x) dx = E
(

f(X )
p(X )

)

= E(W ): (1)

The second step is to sample numerically a large number, N , of realizations x1; x2; : : : ; xN of the
random variable X , that is to say according to the arbitrarily chosen probability density function p.
Then, for each realization xi, the so-called Monte Carlo weight wi = f(xi)=p(xi) is computed and
the corresponding average value is retained for numerical estimation of A (see Appendix):

A ≈ 1
N

N
∑

i=1

wi: (2)

Once presented this way, the question of implementing sensitivity estimations inside Monte Carlo
algorithms is of no particular subtlety. If the function f to be integrated now depends on any
parameter !, the sensitivity of A to !, noted @!A hereafter, may be expressed as

@!A=
∫

D
@!f(x; !) dx =

∫

D

@!f(x; !)
p(x)

p(x) dx = E
(

@!f(X ; !)
p(X )

)

= E(@!W ) (3)

and then estimated as

@!A ≈ 1
N

N
∑

i=1

@!wi: (4)

This means that for any Monte Carlo algorithm inside the above-described family, where Monte
Carlo weights are computed analytically on the basis of randomly generated variables, sensitivity
estimations may be performed by computing the weight sensitivities and taking the average. This
operation generally represents a very low additional cost because no further sampling is required
(the same set of random generations is used for sensitivity estimations as for integral estimation).
Fig. 1 proposes a schematic representation of this simple way of associating sensitivity estimations
to most standard Monte Carlo algorithms.



Fig. 1. Schematic representation of a Monte Carlo algorithm for estimation of an integral A together with its sensitivity
to a parameter !.

The !rst conceptual di$culty is that for most Monte Carlo algorithms the underlying integral
formulation is not explicit. The reason is to be found in what is commonly considered as the main
quality of Monte Carlo algorithms: they preserve strong analogies with the involved physics. This
means that a Monte Carlo algorithm may be successfully designed and implemented by reproducing
physical statistical events one after another, without requiring any complete mathematical translation.
We consider below a simple radiative transfer example for illustration.

3. Example (1)

Consider the surface radiative power emitted by a blackbody and absorbed by an adjacent plane
parallel to uniform slab of gray absorbing material of thickness z (see Fig. 2). The blackbody
temperature is denoted by T and the slab absorption coe$cient by k. The addressed problem is
hereafter to compute the sensitivity to k of this absorbed power.
Classically, the design of a corresponding Monte Carlo algorithm would strictly follow available

statistical models of photon emission and photon transport. For instance, the surface #ux emitted
by the blackbody, "T 4, is split into N bundles of power "T 4=N and for each bundle an emission
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Fig. 2. One-dimensional slab geometry for Example (1): pure absorption (no scattering).

direction ũ is randomly generated according to the well-known distribution of blackbody-emission
directions (Lambert law): p#; e(̃u)= ũ̃n=$ where the vector ñ is normal to the slab. Then the bundle is
followed along a straight line through the absorbing layer, with an exponential extinction to represent
absorption, and when leaving the layer the remaining bundle-power is ("T 4=N ) exp(−kz=cos(%))
where % is the angle between the emission direction and the normal. ("T 4=N )[1− exp(−kz=cos(%))]
is therefore the bundle-power that was absorbed by the slab.
From these random angular generations, the absorbed #ux is simply estimated as the sum of all

the absorbed fractions:

A ≈
N
∑

i=1

"T 4

N

[

1− exp
(

− kz
cos(%i)

)]

: (5)

No formal integral expression is required to produce this algorithm. It is, however, very easy to
identify the Monte Carlo weight as w(%) = "T 4[1− exp(−kz=cos(%)] and the sensitivity of A to the
parameter k may therefore be estimated as

@kA ≈ 1
N

N
∑

i=1

@kwi with @kwi =
z"T 4

cos(%i)
exp

(

− kz
cos(%i)

)

: (6)

4. Principle (2)

From this example, it could be concluded that sensitivity estimations within existing Monte Carlo
algorithms are trivial to implement even if the formal integration is not explicit: (1) identifying the
Monte Carlo weight expression, and (2) deriving it as a function of the considered parameter and
taking the average. This is true only if the probability density function used for random generations
is independent of the parameter (note that in Eq. (3) the probability density function p(x) has no
parametric dependence on !). In our !rst example, this was the case as the directional probability
density function was independent of the absorption coe$cient.
In the general case, the probability density function p chosen for random sampling of x1; x2; : : : ; xN

may depend on the considered parameter ! (see Fig. 1). Let us therefore consider that a given
Monte Carlo algorithm is available, without the corresponding integral (which can be cumbersome



for multiple dimension problems as will be illustrated below), and that sensitivity estimations are
required. All we know is that the addressed quantity A is estimated as the average of a Monte
Carlo weight W that is a function of a random variable X . The probability density function has a
parametric dependence on !. We may formally write

A=
∫

D
w(x; !)p(x; !) dx (7)

and the sensitivity of A to ! is

@!A=
∫

D
[@!w(x; !)p(x; !) + w(x; !)@!p(x; !)] dx

=
∫

D

[

@!w(x; !) + w(x; !)
@!p(x; !)
p(x; !)

]

p(x; !) dx

=E
(

@!W +W
@!p(X ; !)
p(X ; !)

)

: (8)

It appears that a correction term is required in comparison with the simple case of an insensitive
probability density function

@!A ≈ 1
N

N
∑

i=1

[

@!wi + wi
@!p(xi; !)
p(xi; !)

]

: (9)

Implementing a sensitivity estimation inside any existing Monte Carlo algorithm is therefore a source
of no practical di$culty, as all the information required for Eq. (9) is accessible by simple analysis
of the considered original algorithm.

5. Example (2)

To illustrate such a practical implementation, let us reconsider the preceding example, the layer
being now both absorbing (absorption coe$cient ka) and scattering (scattering coe$cient ks). An
example of the application of standard Monte Carlo algorithms consists of emitting bundles at the
source and following them until they exit the layer by a random walk corresponding to the pure
di"usion assumption [1]. The traveled length before exit is then used to compute the extinction of
the bundle-power according to the pure-absorption exponential extinction. As before, the algorithm
starts with the random sampling of an emission direction ũ 1 for each of the N bundles of initial
power "T 4=N . Then a scattering path length "1 is sampled according to an exponential distribution
on ]0;+∞[ :p&("1; ks) = ks exp(−ks"1). This path length is used, starting at the emission point in
the direction ũ 1, to de!ne a !rst scattering location P1 (see Fig. 3). If P1 is outside the layer, the
length l to the layer exit is used to compute the fraction of the bundle-power that is absorbed within
the slab as ("T 4=N )[1 − exp(−kal)]. If P1 is inside the layer, a scattering direction ũ 2 is sampled
according to the scattering phase function: p#; s(̃u 2; ũ 1). A new scattering path length "2 is then
sampled and from P1 in the direction ũ 2 the next scattering location P2 can be de!ned, etc. As
before, when the bundle !nally leaves the layer (either transmitted or re#ected), the fraction of its
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Fig. 3. One-dimensional slab geometry for Example (2): absorption and scattering.

initial power that was absorbed within the slab is computed as ("T 4=N )[1− exp(−kal)] where l is
now the total length of the multi-di"usion path.
This algorithm is quite simple in the sense that it is physically intuitable, but the underlying

integral formulation is cumbersome as there is no limit to the number of possible scattering events
before exit. This means that the vector x of all sampling events required for Monte Carlo weight
computation is formally of in!nite dimension:

x = (̃u 1; "1; ũ 2; "2; ũ 3; "3; : : :): (10)

Practically speaking, however, Eq. (9) may be used directly without entering this formalization
exercise. First, the Monte Carlo weight is without ambiguity

w(x; ka) = "T 4[1− exp(−kal)] (11)

and the probability density function of any bundle path with n scattering events before the layer exit
is the product of successive emission and scattering probability density functions:

p(x; ks) =p#;e(̃u 1)p&("1; ks)p#; s(̃u 2; ũ 1)p&("2; ks)

p#; s(̃u 3; ũ 2) : : : p#; s(̃un; ũ n−1)p&("n; ks); (12)

where p#;e(̃u 1) is the angular probability density function of the emission direction ũ 1; p&("j; ks)
is the probability density function of the scattering mean free path at the jth scattering event, and
p#; s(̃uj; ũ j−1) is the angular probability density function of the jth scattering direction ũ j knowing
that the incident direction was ũ j−1.
For estimation of the sensitivities to the absorption coe$cient, we follow the same conditions

as in the preceding example: the sampling probability density functions are independent of ka and
Eq. (9) can be used with

@kaw(x; ka) = l"T
4 exp(−kal) (13)

and
@kap(x; ks)
p(x; ks)

= 0: (14)

For estimation of the sensitivities to the scattering coe$cient, they are the contrary to the sensitivities
of the absorption coe$cient: the Monte Carlo weight is insensitive to ks and therefore only the
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Fig. 4. Fraction of the surfacic #ux (A) emitted by a blackbody that is absorbed by an adjacent, uniform, isotropically
scattering slab of thickness z, absorption coe$cient ka and scattering coe$cient ks. The absorption optical thickness kaz is
!xed to unity and the scattering optical thickness ksz is varied from 0 (which corresponds to Section 3) to 100. Absorbed
fractions (+) correspond to the right axis, whereas the sensitivities to ka(∗) and ks(x) correspond to the left axis.

correction term remains:

@ksw(x; ka) = 0 (15)

and thanks to logarithmic derivations, using the fact that p#;e and p#; s are independent of ks,
@ksp(x; ks)
p(x; ks)

=
@ksp#;e(̃u 1)
p#;e(̃u 1)

+
@ksp&("1; ks)
p&("1; ks)

+
@ksp#; s(̃u 2; ũ 1)
p#; s(̃u 2; ũ 1)

+ · · ·

=
n

∑

j=1

(

1
ks

− "j
)

=
n
ks

−
n

∑

j=1

"j: (16)

Fig. 4 1 displays results obtained for both sensitivities with a strict application of Eq. (9) for a case
of isotropic scattering using 106 bundle generations.
The same methodology may be used, in the case of anisotropic scattering, to compute sensitivities

to the parameters of the scattering phase function. Sensitivities to the asymmetry factor g are dis-
played in Fig. 5 2 using a Henyey–Greenstein phase function [12]. According to this phase function
model, cosine ' of the angle ( between the incident and scattering directions is distributed according

1 For a !xed value of the absorption coe$cient, the absorbed #ux decreases with increasing scattering coe$cient. The
reason is that when ks increases, more photons are re#ected after very short distances. @ksA is therefore negative. The
fact that the sensitivity of the absorbed #ux to ka is positive is trivial. Its decrease with increasing ks may be explained
by considering again the fact that when ks increases more photons are re#ected after very short distances, reducing the
possibility of absorption.

2 A simple physical interpretation of these results may be obtained by considering the medium reduced scattering
coe$cient k ′s =(1−g)ks that allows the establishment of an approximate equivalence between an anisotropically scattering
medium and an isotropically scattering medium with a lower scattering coe$cient: increasing g at constant ks can be seen
as equivalent to decreasing k ′s in an isotropically scattering medium. The physical interpretations proposed for Fig. 4 can
therefore be directly translated for interpretating the increase of A with increasing g in the present !gure.
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Fig. 5. Fraction of the surfacic #ux emitted by a blackbody that is absorbed by an adjacent, uniform, anisotropically
scattering slab of thickness z, absorption coe$cient ka and scattering coe$cient ks. Absorption optical thickness kaz and
scattering optical thickness ksz are !xed to unity. Anisotropic phase functions are represented with Henyey–Greenstein
model and the asymmetry factor g is varied from 0 (isotropic scattering) to 1 (forward scattering). Absorbed fractions
(+) correspond to the right axis, whereas the sensitivities to g(∗) correspond to the left axis. Error bars correspond to
the estimated standard deviation of the Monte Carlo estimate.

to the probability density function (at the jth scattering event) pM ('j; g)= 1
2(1−g

2)=(1+g2−2g'j)3=2
where 'j=cos((j)=ũ j+1 ·̃uj. The limit g=1 corresponds to the pure forward-scattering case, g=−1 to
the pure backward-scattering case, and g=0 to isotropic scattering. The sampling probability density
function p(x; ks; g) now exhibits both sensitivities to ks and g with

@gp(x; ks; g)
p(x; ks; g)

=
n−1
∑

j=1

g3 − 5g+ g2'j − 3'j
(1− g2)(g2 + 1− 2g'j)

: (17)

The Monte Carlo weight is insensitive to g and therefore

@gw(x; ka) = 0 (18)

and the last two expressions can be used in conjunction with Eq. (9) to produce sensitivities to the
phase function parameter g as illustrated in Fig. 5.
Note 1. On these last simulation results, one may note that the #ux and its sensitivity to g are

associated with very distinct statistical relative uncertainties. As a matter of fact, for g close to 1,
Monte Carlo computation of sensitivities to g is unpractical. Generally speaking, the reason is that
the Monte Carlo weights corresponding to A and @!A may have very distinct statistical distributions
(see appendix). In such extreme cases, it may be impossible to optimize the sampling probability
density functions for simultaneous e$cient computation of the addressed quantity, on the one hand,
and its sensitivities, on the other hand.
Note 2. Another parametric study concerning this physical problem could be to analyze sensitivities

to the slab thickness z. On the basis of Eqs. (11) and (12), one could be led to estimate that both the
Monte Carlo weight and the sampling probability density function are insensitive to z. The conclusion
would be that slab absorption is insensitive to slab thickness, which is an obvious nonsense. The
reason is that the space of all possible optical paths changes with slab thickness. Generally speaking,



if the integration domain D depends on the considered parameter !, Eqs. (3) and (8) are incorrect
because the partial derivation may not be reported inside the integral. In such cases, reformulation
exercises may be required and the main interest of the simple above-presented methodology (low-cost
implementation of sensitivity procedures) is lost.

6. Conclusion

Our purpose was to show that sensitivity estimations are easy to implement in most Monte Carlo
algorithms, provided that they are based on an underlying multiple integral formulation, even if this
formulation is not explicit. We used radiative transfer examples for illustration but this approach can
be extended to a wider range of applications. If the sampling pdfs are independent of the considered
parameter, it is su$cient simply to compute the sensitivity of the Monte Carlo weight and take
the average. If the sampling pdfs do depend on the considered parameter, a correction term must
be added that is simply the product of the Monte Carlo weight with the logarithmic derivative of
the sampling pdf (or the sum of the logarithmic derivative of the pdfs of the successive sampling
events).

Appendix. Statistical uncertainties

The numerical behavior of a Monte Carlo algorithm is commonly appreciated referring to the stan-
dard deviation of the estimator. With the notations of Section 4, A=

∫

D f(x; !) dx=
∫

D w(x; !)p(x; !) dx
is estimated with any realization of the random variable S de!ned as the average of N independent
realizations of W

A ≃ s= 1
N

N
∑

i=1

wi:

The standard deviation of S is related to the standard deviation of W according to

"S =
1√
N
"W :

Similarly for the sensitivity @!A, the estimation is made with any realization of the random variable
R de!ned as the average of N independent realizations of V

@!A ≃ r = 1
N

N
∑

i=1

vi

with

vi = @!w(xi; !) + w(xi; !)
@!p(xi; !)
p(xi; !)

:

The standard deviation of R is related to the standard deviation of V according to

"R =
1√
N
"V :



Both "S as "R tend to zero when increasing N to in!nity, which ensures the convergence of the
Monte Carlo algorithm, but the convergence speed is entirely driven by the values of "W and "V ,
respectively. The choice of the sampling probability density function p is therefore essential to
ensure fast convergence (small number of required sampling events) as it !xes the distributions of
the Monte Carlo weights W and V .
One of the advantages of the presented methodology is that the same sampling events may be used

both for estimation of A and @!A. The same sampling probability density function p must therefore
be used for W and V . Consequently, the question arises of the possibility that p be adjusted in such
a way that both "W and "V are satisfactory.
There is no systematic answer to this question. Generally speaking, detailed understanding of

the physical processes at work allows successful optimization of the integral evaluation [13]. This
does not necessarily ensure that the sensitivity estimation is optimized. For problems in which the
sensitivity estimation is essential, similar physical reasoning may be concentrated on the sensitivity
itself. But as illustrated in the following example, there is no mathematical constraint relating the
statistics of W and V .
Consider the case where the function to be integrated is

f(x; !) = (+ !g(x);

where ( is a constant and g is any function of x independent of the parameter !. In the particular
case ! = 0; f becomes independent of x. If p is taken as uniform on D; w(x; 0) = f(x; 0)=p is
independent of x and therefore "W = 0. This corresponds to an ideal optimization of A estimate.
Correspondingly, v(x; 0)=g(x)=p and the standard deviation "V can take any value depending on g.
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