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Abstract

A radiative heat transfer code based on the discrete ordinates method applied to unstructured grids has been developed to be coupled with 
a finite volume CFD code for combustion applications. The constraints are that: (1) Accurate coupling with a finite volume CFD code 
requires that the output is the integrated radiative source term within each mesh; (2) The resulting computation times must remain 
acceptable within the combustion requirements (of the order of an hour for realistic industrial geometries); (3) the line spectra of 
combustion gases must be accurately represented across the whole infrared range. Here, gaseous line spectra properties are represented with 
the SNB-ck model using narrow bands parallelization. The radiative transfer equation is discretized with a finite volume approach and three 
schemes are tested (“exponential”, “step” and “diamond mean flux”) in terms of accuracy and computational requirement. They are first 
tested for academic gray cases, solutions being compared to reference solutions provided by the Ray Tracing Method and the Monte Carlo 
Method. The behavior of the three schemes is also discussed for a spherical geometry, using an analytical solution in order to perform a 
parametric study of the absorption optical thickness influence in a wide range typical of spectral line gaseous radiation. Final tests involving 
a complete water vapor spectrum are performed in order to test the effects of preceding conclusions in terms of expected accuracies for 
combustion applications. 
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1. Introduction

In computational fluid dynamics (CFD), the coupling be-
tween radiative heat transfer and combustion is based on
the resolution of the energy equation. The heat source term
due to radiation is evaluated by taking into account the tem-
perature and radiating species concentration profiles, which
are obtained from the solution of the aerothermochemistry
equations. Among all the numerical methods developed to
calculate the radiative heat transfer, the finite volume method
(FVM) and the discrete ordinates method (DOM) offer good
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compromises between accuracy and computational require-
ments. These approaches have been widely used to solve
radiative transfer problems in structured three-dimensional
geometries using Cartesian or cylindrical coordinates. In
particular, the DOM, described by Chandrasekhar in 1950
[1], has been deeply studied by Lathrop and Carlson in 60–
70’s [2] and by Truelove, Fiveland and Jamaluddin in the
80’s [3–7]. Significant improvements have been achieved in
the last decade aiming at the reduction of the ray effects
and false scattering, more accurate quadratures and the ex-
tension to complex geometries. Nevertheless, the coupling
between radiative transfer and other physical phenomena,
such as combustion and fluid flow at high temperatures, re-
quires the solution of the radiative transfer equation using
the same grid employed to solve the other governing equa-
tions.



Nomenclature

A surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

A∆ surface area of cell orthogonally planned
following si . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Dij scalar product of si by nj

G incident radiation . . . . . . . . . . . . . . . . . . . W·m−2

I radiation intensity . . . . . . . . . . . . . . . . W·m−2·sr
Ndir number of discrete directions
Nface number of faces of cells
Qw net heat flux at the wall . . . . . . . . . . . . . . W·m−2

R radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Sr radiative source term . . . . . . . . . . . . . . . . W·m−3

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

Iin averaged intensity over entries . . . . . W·m−2·sr
Iout averaged intensity over exit faces . . W·m−2·sr
Qr radiative heat flux vector . . . . . . . . . . . . W·m−2

n unit vector normal to the face
s discrete direction unit vector
fv soot volumetric fraction
h height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
lmax maximum thickness of a cell . . . . . . . . . . . . . . m
s coordinate along direction s
t optical pathlength through a cell . . . . . . . . . . . m

w weight associated to a discrete direction

Greek symbols
α weighting factor for mean flux scheme
ε emissivity
κ absorption coefficient . . . . . . . . . . . . . . . . . . m−1

µ, η, ξ director cosines of the discrete direction
ν wave number . . . . . . . . . . . . . . . . . . . . . . . . . m−1

Σ surface area delimiting a volume . . . . . . . . . m2

τ absorption optical thickness
Ω solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sr

Subscripts
A beginning point of a pathway through a cell
B ending point of a pathway through a cell
b blackbody
i associated to ith discrete direction of the

angular quadrature
j associated to j th face of the cell
k associated to kth entry of the cell
l associated to lth exit face of the cell
P associated to the volume of the cell
w wall
x, y, z Cartesian coordinates

Unstructured grids are often used in CFD owing to their
geometrical flexibility. In this way, a lot of work has been
developed during the last decade to apply the DOM-FVM
to non-orthogonal structured grids and unstructured grids
in three-dimensional enclosures [8–11,15]. In particular,
Sakami and co-workers proposed an accurate method for
the spatial discretization by taking into account the expo-
nential extinction [12–14], but it necessitates to perform
a heavy preprocessing procedure. Much less sophisticated
schemes are also commonly used. Liu et al. [15] have used
the “step” scheme, equivalent of the “upwind” scheme in
CFD and Ströhle et al. [17] have proposed the mean flux
interpolation scheme. Another type of spatial discretization
was also recently introduced, namely the Discrete Ordinates
Interpolation Method (DOIM), which does not rely upon
an integration of the radiative transfer equation over the
control volumes, but rather on the integration of the equa-
tion along a line of sight. This method has been introduced
by Seo et al. in 1998 [18] and extended to unstructured
grids by Cha et al. in 2000 [19]. Lastly, Koo et al. [20]
have compared three methods applied to two-dimensional
curved geometries: the DOIM, Sakami’s approach and the
discrete ordinates method in orthogonal curvilinear coordi-
nates [21].

In our study, a computer code using unstructured meshes
and based on the modeling of radiative transfer using the
DOM has been developed aiming at a future coupling with a

combustion finite volume code available at the CERFACS1

in France. The code has been specially written for unstruc-
tured grids using tetrahedrical cells, by trying to avoid com-
plex adaptations that are highly time consuming. The con-
straints associated to combustion applications where the fol-
lowing:

(1) Accurate coupling with a finite volume CFD code re-
quires that the output is the integrated radiative source
within each mesh;

(2) The resulting computation time must remain acceptable
for realistic industrial geometries in combustion;

(3) The line spectra of combustion gases must be accurately
represented across the whole infrared range.

Then, to treat general combustion situations, even if the main
part of this paper is devoted to gray media, all these con-
straints lead to the following choices:

(1) Gaseous line spectra properties are represented with a
Statistical Narrow Band correlated-k model and paral-
lelization is used to simultaneously compute the radia-
tive contribution of each narrow band;

1 Centre Européen de Recherche et de Formation Avancée en Calcul Sci-
entifique.



(2) For each correlated-k computation the radiative trans-
fer equation is discretized with a finite volume approach
(in order to avoid additional computational efforts when
coupling with the finite volume combustion code) and
three spatial differencing schemes are considered: “ex-
ponential” [13], “step” [15] and “diamond mean flux”
[17].

The performances of the different spatial discretization
schemes have already been widely investigated in cases of
simple geometries mapped using Cartesian coordinates, but
there is a lack of information regarding the performance of
these schemes with unstructured grids. In the present study,
after some theoretical derivations (Section 2), we analyze
the behavior of the three retained schemes on academic con-
figurations (Section 3). Results are compared with accurate
solutions that are analytical or produced by the Ray Tracing
Method. In this analysis convergence difficulties are identi-
fied in the limit of strong absorption optical thicknesses.

These difficulties are further analyzed using a parametric
study to cover the wide range of absorption optical thick-
nesses typical of spectral line gaseous radiation. A particular
attention is given to the standard finite volume approxima-
tion and its convergence difficulties at high absorption op-
tical thicknesses, independently of the spatial differencing
scheme. We then consider configurations with real gaseous
line spectra for the whole infrared range in order to explore
the effect of such convergence difficulties for combustion
applications. This last case, with a complete H2O line spec-
trum, allows to draw first conclusions and to comment on
the validity range of three spatial differencing schemes for
combustion applications.

2. The radiative transfer equation (RTE)

2.1. Mathematical formulation

Considering an absorbing-emitting and non-scattering
gray medium, the variation of the radiative intensity along
a line of sight can be written as:
dI (s)

ds
= κIb − κI (s) (1)

where I (s) is the radiative intensity, Ib the radiative intensity
of the blackbody, and κ the absorption coefficient. Boundary
conditions for diffuse surfaces are taken from the relation
giving the intensity leaving the wall Iw as a function of the
blackbody intensity of the wall Ib,w and of the incident ra-
diative intensity:

Iw(s) = εwIb,w + 1 − εw

π

∫

n.s′<0

Iw(s′)|n.s′|dΩ ′ (2)

where εw is the wall emissivity, n the unit vector normal to
the wall and s′ the direction of propagation of the incident
radiation confined within a solid angle dΩ ′.

2.2. Angular discretization

The DOM is based on the discretization of the radiative
transfer equation (RTE) according to a chosen number Ndir
of discrete directions, si (µi,ηi , ξi ) associated with their re-
spective weights wi , contained in the solid angle 4π . In this
way, different angular discretizations can be used. A recent
study carried out by Koch and Becker [22] compares the
efficiency of several types of angular quadratures widely out-
side the most common ones. In this study, we choose the SN

quadrature, which is one of the most popular and, in order to
estimate the role of ray effect, some tests are performed with
the LC11 quadrature as recommended by Koch and Becker.

2.3. Spatial discretization for unstructured grids

The RTE is solved for every discrete direction si using
a finite volume approach. The integration of the RTE over
the volume V of an element limited by a surface Σ , and the
application of the divergence theorem yield:
∫

Σ

I (si ).si .ndΣ =
∫

V

(
κIb − κI (si )

)
dV (3)

We assume that Ib and I (si ) are constant over the volume
V and equal to their respective averaged value: Ib,P and
IP (si ). We also assume that the intensities at the faces are
constant over each face and Ij denotes the intensity at the
j th face. For unstructured grids, the domain is discretized in
tetrahedra and every other hybrid grid can be under-meshed
by tetrahedra. Then, for tetrahedra, Eq. (3) is discretized as:
Nface=4∑

j=1
Ij (si ).(si .nj )Aj = κV

(
Ib,P − IP (si )

)
(4)

where nj is the exit unit vector normal to the surface j .
The scalar product of the ith discrete direction vector with

the normal vector of the j th face of the considered tetrahe-
dron is defined by Dij :

Dij = si .nj = µinxj + ηinyj + ξinzj (5)

The discretization of the boundary condition (Eq. (2)) is
straightforward:

Iw = εwIb,w + 1 − εw

π

∑

n.si<0
wiI (si )|n.si | (6)

For each cell, the incident radiation G is evaluated as fol-
lows:

G =
∫

4π

I (si )dΩ ≃
Ndir∑

i=1
wiIP (si ) (7)

For a gray medium, the divergence of the radiative heat flux
Sr is given by

Sr = ∇.Qr = κ(4πIb − G) (8)

and the radiative net heat flux at the wall is calculated by



Qw ≃ ε

(
πIb,w −

∑

n.si<0
wiI (si )|n.si |

)
(9)

For the three different spatial differencing schemes used, cal-
culations of I (si ) are detailed in the next sections.

2.3.1. The exponential scheme
Sakami et al. proposed in 1998 [13,14] a sophisticated

spatial scheme for three-dimensional cases that takes into
account the exponential extinction along the optical pathway
into the cell. Considering an optical path t = sB − sA, where
sA and sB are respectively the positions at the entry and at
the exit of the cell, the solution of the RTE (Eq. (1)) can be
written as

I (s, sB) = I (s, sA)e−κt + κ

sB∫

sA

Ibe
−κ(sB−s) ds (10)

The integration over the cell pathlength leads to

I (s, sB) = I (s, sA)e−κt +
(
1 − e−κt

)
Ib (11)

For a direction si and a final position sB at the exit face, the
position sA at the entry and the associated pathlength t are
fixed. The intensity Il going through an exit face l is defined
as the averaged intensity over the lth face:

Il = 1
Al

∫ ∫

Al

[
I (si , sA)e−κt + Ib

(
1 − e−κt

)]
dAl (12)

It has been shown in [13] that, knowing τi = κlmax,i , where
lmax,i stands for the maximum thickness of the cell for the
direction si , for the three different types of events presented
in Fig. 1, one can calculate intensity Il at an exit face as
follows:

Il =
( ∑

k
Dik<0

Alk

Al
Ik

)
χi + Ib(1 − χi ) (13)

where Al is the exit surface area, Alk stands for the part of
surface area of the downstream face l obtained by projec-
tion of the upstream face k on the face l according to si and
χi is a typical coefficient that accounts for the exponential
extinction through the cell:

χi = 1
Al

∫

Al

e−κt dAl = 2
τi

(
1 − 1 − e−τi

τi

)
(14)

The difficulty lies in the calculation of the geometric maxi-
mum thickness lmax,i for all the cases presented in the Fig. 1.
lmax,i can be determined if we know the coordinates of the
points A and B. By referring to Eq. (4), IP is directly de-
duced:

IP = Ib,P − 1
κV

Nface=4∑

j=1
DijAj Ij (15)

Whereas this scheme avoids negative values for all Ij at cell
faces, it does not guaranty that IP is positive at the center of
each cell, in particular when κ becomes very small.

Fig. 1. Six ways to cross a tetrahedrical cell from A to B according to the
number of entries and exit faces.

2.3.2. The step scheme
Much less sophisticated schemes are also available that

are worth a detailed attention in our specific context. Con-
sidering our constraints in terms of computational times, the
use of the exponential scheme will indeed be only justified
if it insures significantly higher accuracy levels for com-
bustion applications. In 2000 [15], J. Liu used the “step”
scheme, which corresponds to the “Upwind” scheme that
is commonly used in CFD. This scheme had already been
proposed by Chai et al., in 1995 [9], in order to solve the
RTE by the FVM for irregular geometries using curvilin-
ear coordinates. In previous studies, this scheme has often
been applied to Cartesian structured grids, in order to avoid
negative values that could occur with schemes such as the
“diamond” one [16]. Omitting the scattering phenomenon,
the intensity IP is evaluated at the center of the cell by ap-
plying:

IP =
[

κV Ib −
Nface∑

j=1
Dij <0

DijAj Ij

]/[

κV +
Nface∑

j=1
Dij >0

DijAj

]

(16)
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where Nface is the number of faces for the cell (equal to 4 in
our case). The downstream surface intensities are set equal
to the intensity IP .

2.3.3. The mean flux scheme
In a similar way, Ströhle et al. [17] proposed a simple

spatial differencing scheme based on the mean flux scheme
that can be very useful in the case of unstructured grids. This
scheme relies on the following formulation:

IP = αIout + (1 − α)Iin (17)

where Iin and Iout are the cell face averaged intensities en-
tering (white cell faces in Fig. 2) and leaving (gray cell face
in Fig. 2) the control volume, respectively:

Iin =
[ ∑

j
Dij <0

DijAj Ij

]/[ ∑

j
Dij <0

DijAj

]
(18)

and

Iout =
[ ∑

j
Dij >0

DijAj Ij

]/[ ∑

j
Dij >0

DijAj

]
(19)

Substituting Iin from Eq. (17) into Eq. (4) yields, after some
algebra:

IP =
[
αV κIb − Θ

∑

j
Dij <0

DijAj Ij

]

/[
ακV +

∑

j
Dij >0

DijAj

]
(20)

with

Θ = α − (1 − α)

[ ∑

j
Dij >0

DijAj

]/[ ∑

j
Dij <0

DijAj

]
(21)

As shown in Fig. 2, if we consider that the scalar product Dij

is the transformation term of the projection of the surface

Fig. 2. Geometrical transformation linked to the term Dij .

Aj , following the vector si , on the plane ∆ orthogonal to
this last vector, we can write:
∑

j
Dij >0

DijAj = −
∑

j
Dij <0

DijAj = A∆ (22)

Then for all α in ]0,1], we have Θ = 1 and finally, Eq. (20)
takes the following form:

IP =
[
αV κIb −

∑

j
Dij <0

DijAj Ij

]/[
ακV +

∑

j
Dij >0

DijAj

]

(23)

The case α = 1 corresponds to the Step scheme (Eq. (16))
used by Liu et al. [15]. The case α = 0.5 will be called
diamond mean flux scheme (DMFS). It can be compared
to the diamond scheme used in structured grids but it had
been shown that the DMFS used in structured grid is differ-
ent from the standard diamond scheme because of the mean
flux approximation [17]. It is formally more accurate than
the step scheme. After calculation of IP from Eq. (20), the
radiation intensities at cell faces such that Dij > 0 are set
equal to Iout, obtained from Eq. (17). It can occur that this
last term calculated is negative. Iout negative is equivalent to
the following conditions:

Ib,P <

(
(1 − α) − A∆

κV

)
.Iin (24)

2.4. Sweeping order optimization

For a given discrete direction, each plane face of each cell
is either an upstream face or a downstream face (a face par-
allel to the considered discrete direction plays no role). The
control volumes should be treated following a sweeping or-
der such as the radiation intensities at upstream cell faces
are known. This order depends on the discrete direction un-
der consideration. An algorithm for the optimization of the
sweeping order has been implemented in the present work.
To order the cells, we have to define first the direction si . To
proceed to the ordering, the grid is swept a first time in an
arbitrary order with checking, for each cell, if the number
of upstream faces where the intensity is known is the same
as the number of upstream faces. If this condition is satis-
fied for one cell, the number of this cell is stored in a list for
the direction si . Then, the intensity of the downstream cell
faces can be known, as the upstream cell faces of the next
cells which are updated. We should notice that this sweep-
ing order stored for each discrete direction, only depends on
the chosen grid and the angular quadrature. That means that
the use of different physical parameters do not change the
established list of the sweeping order. A sweeping order op-
timization avoids too many iterations not only for the cases
with scattering media and/or reflective walls geometries, but
also avoids iteration in the case of black walled enclosures
without scattering.



3. Results and discussion

To compare the efficiency of the spatial differencing
schemes for different types of enclosures containing a par-
ticipating and homogeneous medium, several test cases have
been carried out.

It should be pointed out that for output purposes an in-
terpolation is performed on the results obtained with the
unstructured code, in order to have the values for a given
axis or a given point. This 3D-interpolation can generate in-
accuracies, especially for the points taken near the walls or
when the grid is coarse.

3.1. Application to a black walled cylindrical enclosure

This test concerns the cylindrical geometry to illustrate
the influence of the angular quadrature on the radiative heat
flux at the walls.

A cylinder (h = 3 m and R = 0.5 m) containing a gray
isothermal medium at T = 1200 K is considered. The walls
are black and at Tw = 300 K. The radiative heat source Sr

along the axis of the cylinder and the radiative net heat flux
Qw at the side wall are obtained with the unstructured code
using the three different spatial discretization schemes de-
scribed previously and the S8 quadrature is employed. Two
unstructured grids are used in this test case (see Fig. 3).
A coarse one comprises 4000 tetrahedra and a finer one
210 000 tetrahedra. A third comparison is made on the same
fine grid using a more accurate angular discretization (S12).
Results are compared to those obtained with the ray tracing
method using 320 000 rays. In the case of a homogeneous
isothermal medium, the results of the ray tracing method are
independent of the grid.

Two different values for the absorption coefficient of the
medium have been chosen to represent weak (κ = 0.1 m−1)
and strong (κ = 10.0 m−1) optical thicknesses. It should be
noticed that the optical thickness of the cells also depends on
the grid refinement. In the case of optically thin media (see
Fig. 4), the peak of the net heat flux at the wall predicted
by the DOM is about 10% lower than the ray tracing solu-

Fig. 3. Cylindrical enclosure grid.

tion. This is due to the fact that the distribution of optical
thicknesses in the medium is function of the angular direc-
tion and consequently needs a good angular representation
(what can be linked to the well known ray effect). Increasing
the order of the angular quadrature (Fig. 4(c)) improves the
accuracy of the results. However, such an order of accuracy
is compatible with today’s expectations in combustion prob-
lems. For stronger optical thicknesses (see Fig. 5), the ray
effect is softened. The aforesaid distribution of optical thick-
nesses is less sensitive to angular variation. For optically
thick media, the increase of the absorption coefficient of the
medium yields also an increase of the wall heat flux. The
walls receive the radiation mainly from the closest cells of
the medium, so there is no need to refine the grid and the an-
gular discretization. In the case of optically thin media (see
Fig. 4), the radiative heat source term solutions are in good
agreement. Refining the grid gives better results. Increasing
the absorption coefficient of the medium leads to decrease
the accuracy obtained for the radiative source term solutions
(see Fig. 5(a)). The relative difference between the DOM
and the ray tracing solutions is negligible in the vicinity of
the walls and becomes significant far from the walls. Most of
the energy emitted by the medium is absorbed within a short
distance. That leads to a strong exponential extinction that
none of the three spatial differencing schemes succeeded in
representing if the grids are not sufficiently fine (Figs. 4(a)
and 5(a)). So, in the next section, a particular attention will
be paid to the accuracy on the radiative source term estima-
tion in a simpler configuration. The step scheme gives better
results in optically thin case and the DMFS is the most ac-
curate for very absorbing medium. The angular refinement
does not really govern the accuracy of the source term along
the centerline. We have noticed that the grid refinement in-
fluence is stronger than the angular one when we compare
the three spatial differencing schemes.

Maximal, mean and minimal relative errors for the source
term given in Tables 1 and 2 are computed for the three dif-
ferent spatial differencing schemes as follows

E =
∣∣∣∣
Sr,DOM − Sr,RT

Sr,RT

∣∣∣∣ × 100 (25)

and for the wall heat flux:

E =
∣∣∣∣
Qw,DOM − Qw,RT

Qw,RT

∣∣∣∣ × 100 (26)

with RT standing for the ray tracing. EMean is simply the av-
eraged values of relative errors calculated at several points.
For an intermediate value of κ (κ = 1.0 m−1), the errors are
also provided in the two tables.

For the wall heat flux, the solutions computed with the
three numerical schemes are in a good agreement. Neverthe-
less, we can notice that the “Diamond Mean Flux Scheme”
gives significantly better results than the exponential scheme
for κ = 10.0 m−1. The DMFS remains accurate enough for
a large range of optical thicknesses.



(a)

(b)

(c)

Fig. 4. Qw on the side wall and Sr on the central axis for κ = 0.1 m−1 of a cylindrical enclosure with participating gray medium: (a) Unstructured coarse grid
(18 920 cells) and angular quadrature S8; (b) Unstructured fine grid (140 010 cells) and angular quadrature S8; (c) Unstructured fine grid (140 010 cells) and
angular quadrature S12.

3.2. Accuracy levels for combustion applications: The high
absorption limit under the finite volume approximation

The preceding academic test cases have pointed out two
difficulties commonly encountered with such numerical ap-
proaches: the ray effect and the convergence difficulties at
the optically thick absorption limit. Ray effects are very
much dependent on the geometry of the system and can
only be reduced by the increase of the number of discrete
directions. As far as the optically thick absorption limit is

concerned, two remarks can be drawn that motivate further
discussions in the present section:

(1) One would expect that the sophisticated exponential
scheme lead to better convergence quality than the sim-
ple step scheme and the DMFS; which is not the case in
the black walled cylindrical enclosures case.

(2) High absorption optical thicknesses are very commonly
encountered in combustion at the center of CO2 and
H2O infrared absorption lines, which raises the question



(a)

(b)

(c)

Fig. 5. Qw on the side wall and Sr on the central axis for κ = 10.0: (a) Unstructured coarse grid (18 920 cells) and angular quadrature S8; (b) Unstructured
fine grid (140 010 cells) and angular quadrature S8; (c) Unstructured fine grid (140 010 cells) and angular quadrature S12.

of the general meaning of DOM-FVM computations for
combustion applications.

In the present section, we argue that the convergence
difficulties at the high absorption limit are intrinsically as-
sociated with the finite volume approximation and that, for
reasons related to spectral correlation effects, accurate radia-
tive heat source fields can be produced with such methods
for combustion applications despite of extreme absorption
encountered in CO2 and H2O lines centers, in meter scale
configurations.

3.2.1. Black walled spherical enclosure: A parametric
study of the optical thickness influence

To analyze in more details the trends identified here
above, this new section presents a simple test case which
provides an analytical solution (of the source term only) in
order to further understand, via a parametric study, the influ-
ence of the optical thickness on the source term calculations.
In this test case, a sphere with a radius R = 1 m has been
considered and two different grids have been used (Fig. 6):
a coarse one (18 920 cells) and very fine one (140 010
cells).



In a first case, the medium is isothermal at Tmax = 1200 K
and the wall is black at Tmin = 300 K. In a second test
case, wall conditions are identical but the temperature of the
medium is depending on the space variable r as follows:

T (r) =
(
T 4

max
(
1 − r2) + T 4

minr
2)1/4 (27)

The source term Sr,C is evaluated at the center of the sphere
using a S12 quadrature with the three different spatial differ-

Fig. 6. Spherical enclosure grid.

encing schemes studied in the previous section. Results are
compared to the analytical solution obtained considering the
spherical symmetry:

Sr,C,analytical = 4πκ

[

Ib −
(

Ib,we−κR + κ

R∫

0

Ibe
−κr dr

)]

(28)

The relative error of the radiative source term is represented
versus κ in Fig. 7 and is computed as follows:

E =
∣∣∣∣
Sr,C,DOM − Sr,C,analytical

Sr,C,analytical

∣∣∣∣ × 100 (29)

From Fig. 7, we can notice that the relative error increases
when the absorption coefficient increases. The change of di-
rection of the curve, in Fig. 7(b) and (d), is only due to the
use of the absolute value in the relative error formulation (see
Eq. (29)). In the isothermal test case, extremely poor levels
of accuracy are observed when increasing optical thickness
(Fig. 7(a) and (c)). That phenomenon could be interpreted
as the “false scattering” effect (numerical diffusion linked to
cell optical thickness) with the use of the finite volume ap-
proximation. This observation can be related to the fact that,
in numerical experiments, the geometrical mesh structure
is kept constant when increasing the absorption coefficient,
leading to a regular increase of the optical thickness of each
mesh. For the non-isothermal case, the same phenomenon

Table 1
Relative Errors on the radiative source term Sr

Absorption coefficient κ = 0.1 m−1 κ = 1.0 m−1 κ = 10.0 m−1

Relative errors EMax EMean EMin EMax EMean EMin EMax EMean EMin

Coarse mesh and S8 Step scheme 0.56% 0.096% 0.0024% 3.78% 2.60% 0.51% 328% 219% 7.67%
Expon. scheme 0.45% 0.16% 0.0023% 4.37% 3.07% 0.06% 240% 151% 3.88%
Diam. scheme 0.35% 0.26% 0.045% 5.12% 3.55% 0.029% 112% 56.4% 2.83%

Fine mesh and S8 Step scheme 0.42% 0.11% 0.0095% 2.14% 0.95% 0.016% 111% 88.4% 6.64%
Expon. scheme 0.35% 0.077% 0.0004% 1.89% 1.18% 0.076% 72.2% 57.3% 5.2%
Diam. scheme 0.27% 0.081% 0.0018% 2.21% 1.44% 0.46% 43.6% 21.2% 3.10%

Fine mesh and S12 Step scheme 0.17% 0.037% 0.0006% 1.83% 1.15% 0.14% 111% 88.3% 5.52%
Expon. scheme 0.17% 0.092% 0.033% 2.26% 1.41% 0.65% 71.9% 57.2% 4.07%
Diam. scheme 0.24% 0.15% 0.03% 2.71% 1.67% 0.33% 43.6% 21.2% 1.99%

Table 2
Relative Errors on the radiative heat flux at the wall Qw

Absorption coefficient κ = 0.1 m−1 κ = 1.0 m−1 κ = 10.0 m−1

Relative errors EMax EMean EMin EMax EMean EMin EMax EMean EMin

Coarse mesh and S8 Step scheme 11.0% 7.39% 4.46% 8.91% 3.79% 0.40% 4.55% 0.78% 0.41%
Expon. scheme 10.9% 7.29% 4.58% 9.78% 3.13% 0.44% 5.20% 0.98% 0.26%
Diam. scheme 10.8% 7.18% 4.72% 10.7% 2.45% 0.12% 7.15% 0.61% 0.077%

Fine mesh and S8 Step scheme 7.78% 5.92% 2.64% 3.72% 1.94% 0.55% 2.33% 0.61% 0.23%
Expon. scheme 7.73% 5.86% 2.58% 3.31% 1.60% 0.68% 2.66% 0.44% 0.15%
Diam. scheme 7.67% 5.80% 2.51% 2.99% 1.25% 0.26% 3.80% 0.28% 0.058%

Fine mesh and S12 Step scheme 6.69% 4.57% 2.54% 2.90% 1.17% 0.62% 2.50% 0.50% 0.054%
Expon. scheme 6.63% 4.51% 2.48% 2.49% 0.83% 0.23% 3.40% 0.56% 0.0037%
Diam. scheme 6.57% 4.45% 2.42% 2.88% 0.50% 0.0006% 4.58% 0.73% 0.27%



(a) (b)

(c) (d)

Fig. 7. Relative Error for Sr,C at the center of the sphere: (a) For the isothermal gray medium case using the coarse grid; (b) For the non-isothermal gray
medium case using the coarse grid; (c) For the isothermal gray medium case using the fine grid; (d) For the non-isothermal gray medium case using the fine
grid.

occurs but radiative exchanges at small distances (exchanges
between closest gas volumes) contribute more than the ex-
changes with the walls. This reduces the optical thicknesses
effectively linked to the most contributing exchanges. Con-
sequently, false scattering has less influence and the relative
error on the radiative source term is smaller than the one
obtained in the isothermal test case. These errors remain
however very high when optical thickness reaches values of
the order of ten or above, which is commonly encountered at
the center of gaseous absorption lines such as those of H2O
and CO2 in combustion.

3.2.2. Finite volume approaches in the optically thick
absorption limit

The preceding parametric study has indicated that strong
errors are to be expected when increasing the cell absorption
optical thickness, whatever the numerical scheme among
the three considered ones. This seems in contradiction with
the fact that the exponential scheme solves the RTE exactly
within each tetrahedrical cell in 3D, or triangular cell in 2D.
However, when analyzing this point in detail, it appears that
the error is entirely associated with the standard finite vol-

Fig. 8. Simplified configuration.

ume approximation that the intensity is uniform across an
upstream face.

This may be seen in the following simple bidimensional
case (Fig. 8): an isothermal gray medium of thickness h and
absorption coefficient κ (the blackbody intensity being Ib),



between two parallel isothermal black walls of surface S (the
blackbody intensity being Ib,w). Let us assume that we want
to estimate the integrated intensity If,total impinging at the
surface in a direction s⃗i orthogonal to the two parallel sur-
faces. The analytical solution is:

If,total =
∫

S

If dS = If .S (30)

with

If = Ib,we−κh + κ

h∫

0

Ibe
−κr dr = Ib,we−τ + Ib

(
1 − e−τ

)

(31)

where τ = κh is the absorption optical thickness. Whatever
the considered numerical scheme, this geometry requires
that the field is divided in at least two triangular cells (C1)
and (C2), as indicated in Fig. 8. The numerical resolution
will therefore include the computation of the averaged in-
tensity Iint at the interface between (C1) and (C2).

The analytical expression of Iint can be easily shown to
be:

Iint = Ib,wχ + Ib(1 − χ) (32)

where χ for a two-dimensional system becomes [12]:

χ =
(
1 − e−τ

)
/τ (33)

Note that those expressions corresponds to Eqs. (13) and (14)
which indicates that the exponential scheme computes Iint
exactly from the knowledge of a uniform intensity Ib,w at
the upstream face of (C1), and a uniform emission within the
cell. And indeed, the upstream intensity is uniform (emission
by the isothermal black surface) and the volume emission is
uniform (isothermal medium). At this stage, everything re-
mains therefore exact with a sophisticated enough numerical
scheme.

However, things are very different if we now consider
(C2) to compute the averaged downstream intensity If from
the knowledge of the averaged upstream intensity Iint. As
no further information is available, the common finite vol-
ume approximation consists in assuming that the intensity
is distributed uniformly along the upstream face. Under this
assumption, the analytical expression of If may be shown
to be (again, this is what the exponential scheme gives for
a uniform intensity at the upstream face as it is exact within
each cell):

If = Iintχ + Ib(1 − χ) = Ib,wχ2 + Ib

(
1 − χ2) (34)

This expression is approximate. It only matches Eq. (31) at
the optically thin limit. Therefore whatever the quality of the
spatial integration scheme, an error will occur at the optically
thick limit that is due to the lack of information concerning
the distribution of the intensity along the upstream face. For
illustration, at the two points A and B reported on the Fig. 8,
the intensity is arbitrarily set to Iint = Ib,wχ + Ib(1 − χ)

whereas its exact value is respectively IA = Ib,w and IB =

Ib,we−τ + Ib(1 − e−τ ). The resulting solutions and asso-
ciated errors are represented in Fig. 9 as function of the
absorption optical thickness τ for two test cases:

Case 1 (transmission): Ib = 0 et Ib,w = 1;
Case 2 (emission/self-absorption): Ib = 1 et Ib,w = 0.

What these figures tell us when looking at the curves labeled
“exponential” is the accuracy loss due to the finite volume
approximation itself. In the present configuration this is ex-
actly what the exponential scheme would give because the
exponential scheme is exact within each cell. We have also
reported in the same figures solution and relative errors (as in
Eq. (29)) resulting of the finite volume approximation com-
bined with the simple approximate step and diamond mean
flux schemes.

The first comment is that the convergence difficulties at
high optical thicknesses are mainly due to the finite volume
approximation itself and not to the quality of the numeri-
cal schemes. Concerning, the emission and self-absorption
modelling, the finite volume approximation is justified when
the medium becomes very thick and the error on If de-
creases (Fig. 9(b) and (d)). However at such optical thick-
nesses, the DMFS gives unrealistic negative values for Iint
which leads to an increasing error on the final intensity and
none of the three numerical schemes succeed in modelling
the transmission (very small values for If ).

As a conclusion, we can notice from Fig. 9(a) and (c) that:

• as long as the DMFS does not calculate negative inten-
sities (for Iint), it gives the most accurate approximate
solution,

• for intermediate optical thicknesses (10−1–10+1), the fi-
nite volume approximation introduces important inaccu-
racies in the different numerical schemes (see Fig. 9(a)
and (c)).

3.2.3. Accuracy levels associated to finite volume
approximations for line spectra of combustion gases

We have seen that even with high accuracy or exact spa-
tial integration schemes, the usual finite volume approxima-
tion itself introduces high uncertainties at the limit of op-
tically thick absorption. A last test case is considered here,
which is close to combustion applications, in order to show
how the problems encountered at high optical thicknesses (at
the centers of gaseous spectral lines) may affect the accuracy
of the radiative source term in a real combustion gas. The
same unity sphere as above is meshed with 30 000 tetrahe-
dra and filled with an isothermal gas containing water vapor
and nitrogen. The spectral dependency of the absorption co-
efficient is here represented with the use of a SNB-ck model
[23–25]. The SNB data have been provided by the EM2C
laboratory [26]. The source term Sr is obtained by comput-
ing Nbands × Nquad gray calculations where Nbands = 367 is
the number of narrow bands which have the same spectral
width, and for each narrow band Nquad = 5 is the number of



(a) (b)

(c) (d)

Fig. 9. Comparison between the four expressions of If (k) and the relative error for the three differencing schemes: (a) Transmission modelling: If (k);
(b) Transmission modelling: Relative error; (c) Emission/self-absorption modelling: If (k); (d) Emission/self-absorption modelling: Relative error.

Gauss–Legendre quadrature points used in the approxima-
tion of the spectral integration. Then, the analytical solution
integrated over the whole spectrum is written as:

Sr,C,analytic =
Nband∑

i=1

Nquad∑

j=1
4π∆νiwijκij e

−κij R

× (Ib,C,ij − Ib,w,ij ) (35)

Consequently, using the DOM, the source term [27] is ob-
tained as follows:

Sr,DOM =
Nband∑

i=1

Nquad∑

j=1
∆νiwijκij (4πI b,ij − Gij ) (36)

where Gij is obtained from Eq. (7) for κ = κij .
To study the effect of the angular quadrature on the esti-

mation of Sr,C , the relative error has been computed accord-
ing to Eq. (29) in a first configuration with XH2O = 0.2 and
XN2 = 0.8. S4, S8, S12 and LC11 [22] have been tested us-
ing the DMFS scheme and for each quadrature, the relative
error is about 1.2%.

Consequently, the S4 quadrature is chosen and the relative
error of the source term is computed for the three numer-
ical schemes (with the parameter XH2O varying). Fig. 10

represents the relative error versus the molar concentration
of water vapor. As we noticed previously, the relevant pa-
rameter that influences the solution accuracy is the opti-
cal thickness which is directly related to the water vapor
molar fraction XH2O. The sensitivity of the solution accu-
racy to the molar fraction of water vapor is illustrated in
Fig. 10(a). For small molar fractions (X = 0.01), the ex-
ponential scheme could not provide an acceptable physical
solution because of the sign of the intensity Ip which be-
comes negative. A very small discrepancy between the three
schemes is observed, with a relatively better accuracy of the
DMFS. Altogether, the accuracy level is much better than
what could be expected on the basis of preceding analysis.
As the medium is isothermal, the radiative exchanges with
the walls are the only relevant ones. They occur at a long
distance, which means that the exchanges corresponding to
low absorption coefficients contribute more than the one at
high values where extinction rapidly takes place. Finally, the
last figure Fig. 10(b) deals with a very thick medium where
soot particles are added to water vapor and nitrogen, taking
into account a very high soot volumetric fraction fv = 10−5.
The total absorption coefficient is expressed by

κij = κij,gas + κi,soot (37)



(a) (b)

Fig. 10. Relative Error for Sr,C at the center of the sphere using the medium grid: (a) Case of the isothermal gaseous medium; (b) Case of the isothermal
mixture of gas and soot.

with [28]:

κi,soot = 5.5fvνi (38)

where fv stands for the soot volumetric fraction and νi is the
wave number taken at the center of a narrow band. As soot
radiation becomes dominant, the medium tends to become
thick and gray. Then, the results obtained in Fig. 10(b) show
big discrepancies between the three schemes which confirm
the trends of the relative error for Sr observed in the first
cylinder test case and a good behavior of the DMFS. In this
case, because of the gray behavior of soot in each narrow
band, each absorption coefficient is increased at the same
level and leads to optically thick media. All the frequencies
contribute similarly to the estimation of the exchange with
the wall, consequently we can use similar explanations than
those presented in the gray case.

Altogether, these results only confirm the good behavior
of the code giving satisfactory accuracy levels for well mixed
combustion chambers, where the gas volume can be consid-
ered as quasi-isothermal, with intermediate soot concentra-
tion levels. It has been shown in the previous section that,
for non-isothermal media, the main exchanges contributing
to the radiative source term evaluation are the exchanges
with the gas at short or intermediate distance. Therefore, a
final interesting test case considering the spherical enclosure
containing non-isothermal and non-gray medium is neces-
sary but is not presented here because no analytical solution
along the radius is available. A Monte Carlo calculation is
presently being performed, that will serve as a reference so-
lution for an extension of the present analysis.

4. Concluding remarks

A DOM code using unstructured grids has been devel-
oped for coupling with finite volume CFD-combustion code
and has been validated using academic test cases. This study
emphasizes the influence of the absorption optical thickness

on the accuracy level. We could then show that the difficul-
ties encountered at high optical thicknesses were associated
with the standard finite volume approximation where the in-
tensity is distributed uniformly along each upstream face.
These difficulties are therefore quite independent of the so-
phistication level of the spatial differencing scheme. In par-
ticular, for such applications as combustion ones, where the
constraints in term of computational times are strong, it ap-
pears that there is no particular needs for a very accurate
but complex scheme such as the exponential scheme, con-
sidering that a simple scheme such as the DMFS insures
comparable accuracy levels up to intermediate optical thick-
nesses and encounter the same strong difficulties at the high
absorption limit.

These strong difficulties could lead to believe that stan-
dard finite volume approximations are useless in the com-
bustion context where strong absorption commonly appears
at the center of infrared CO2 and H2O absorption lines. Para-
metric test cases were considered to check this point and it
appeared that when real gas spectra are considered for inte-
grated radiation computations, much less difficulties are met,
in terms of accuracy, than what could be expected on the ba-
sis of the conclusions of the gray medium analysis.

This conclusion could only be drawn for well mixed com-
bustion chambers and the cases with strongly heterogeneous
temperature fields require further analysis.

For such heterogeneous cases, significant short distance
radiative exchanges may appear in optically thick spectral
regions. As soon as such exchanges play a significant role
the standard finite volume approximation will lead to strong
errors. It will therefore be required that some informations
are kept concerning the distribution of the intensity along the
upstream faces. These ideas have been explored by several
authors with the finite element approach where the intensity
is stored at each nodes (at the cell vertices), which is the bet-
ter start basis for the description of its distribution along the
face [29–31]. These techniques have been shown to be very
efficient at the limit of strong optical thicknesses. It would be
worth looking at their behavior in the limit of high absorp-



tion optical thicknesses for combustion applications. How-
ever, in the short term, considering today’s computational
constraints in this field, such approaches could only be con-
sidered for computational accurate reference solutions but
not for coupling with finite volume CFD-combustion codes.
In the long term, it would certainly be of great interest to try
and combine Sakami’s exponential scheme with such finite
element approaches.
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