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Modeling radiative heat transfer in combustion applications involving complex geometries and detailed spectral properties of radiative gaseous species remains a difficult challenge, especially when full coupling with detailed chemistry and fluid dynamics is required. The Monte Carlo method (MCM) usually considered as a reference "exact" method for the computation of radiative transfer is however very demanding in CPUtime. An alternative is the discrete ordinates method (DOM), based on a finite volume approach, that is more suitable for a direct coupling with computational fluid dynamics but may lack accuracy. The aim of the present paper is to propose and demonstrate the efficiency of a methodology for radiative transfer calculation, combining the advantages of both MCM and DOM. In this approach, the fast DOM is used to compute the radiative solution, and its accuracy is controlled by comparison with the exact MCM solution at a selected controlling points. A first application of the proposed methodology to an industrial burner prototype shows its validity and potential for the direct coupling of radiation calculations with unsteady reacting flow computations.

Introduction

Combustion simulation involves the treatment of coupled phenomena such as detailed chemistry, fluid mechanics and heat transfer for three-dimensional systems in complex geometries. The accurate treatment of thermal radiation is crucial if the aim is to predict the concentration of minor species, soot or wall heat fluxes that are highly dependent on temperature levels. However, the detailed calculation of radiative transfer leads to prohibitive computing time. This is even more critical for unsteady combustion simulations, where the full coupling with radiation is required.

The optically thin assumption is commonly used for the calculation of radiation in combustion simulations. In this approximation, the absorption of the gas mixture is neglected and only the emitted part of the radiative flux is considered, which considerably simplifies the calculation. This assumption may be justified in small scale non-sooty flames, although it may introduce significant errors in the prediction of pollutants ͓1͔. In larger scale flames such as fire pools or furnaces, radiative absorption must be represented with good accuracy to predict radiative heat fluxes. In smaller industrial burners, it is known that the NO x emission and soot production are very sensitive to radiation ͓2,3͔. Wall heat fluxes are also critical parameters in burner design and should include radiative heat transfer ͓4͔.

In a recent work, Jensen et al. ͓5͔ compared the usual numerical methods for solving the radiative transfer equation ͑RTE͒. The ray tracing and Monte Carlo methods ͑MCMs͒ ͓6-9͔ allow to calculate quasiexact solutions and are considered as reference methods.

In addition, MCM also provides estimates of the errors associated to the solution. It is able to treat high levels of complexity ͑complex geometries, reflective walls, scattering medium, gas spectral properties, etc.͒ and there is no conceptual difficulties to realize the coupling with flow dynamics. However these methods are complex and result in very high CPU costs. Many interesting ideas are actually under progress to reduce the computation time. Among them, the sensitivity approach ͑using first order of Taylor expansion͒ has been already tested in several applications ͓10,11͔ and showed good potential. Despite these improvements, the direct coupling of MCM with flow simulations is still not possible. On the contrary, the moment method ͓12͔, discrete ordinates method ͑DOM͒ ͓13,14͔, and the discrete transfer method ͓15͔ are fast and easy to couple with fluid dynamics, but they give approximate solutions. In particular the DOM is highly sensitive to the angular ͑ray effect͒ and spatial discretization. In Ref. ͓5͔, it is shown however that the DOM using the S 4 quadrature ͑24 discrete directions͒ already offers a very good compromise between CPUtime and accuracy and that the use of a higher order quadrature, such as the LC 11 ͑96 discrete directions͒, provides accuracy levels comparable to the quasiexact methods ͑MCM and ray tracing͒.

It is possible to take advantage of the availability of the two classes of methods by combining them in a global methodology, allowing fast radiation calculations with a systematic estimation and control of the error. The simultaneous use of the pair DOM ͑for the radiation computation͒/MCM ͑for the a posteriori error control͒ is then an optimal compromise between CPU cost and accuracy in view of coupled combustion-radiation simulations. The benefit of this approach is double: First, it allows to validate the DOM solution, and second it determines the level of accuracy of the various approximations in order to optimize the set of parameters ͑number of directions, discretization scheme, etc.͒. The objective of the present paper is to describe the proposed approach and demonstrate its validity and potential for future coupled radiation-combustion simulations on different test cases.

Compared with most existing radiation codes, the coupling of radiation with combustion requires additional developments. First, the complexity of real industrial geometries requires the use of unstructured grids. For an efficient coupling, the radiative transfer model should be able to work on the same mesh as the combustion simulation and therefore handle unstructured meshes. Second, the description of the gaseous radiative properties has to be in accordance with the combustion simulations accuracy. In this context, two radiative transfer codes, DOMASIUM ͑based on DOM͒ and MCRAD ͑based on MCM͒, have been developed and applied to an unsteady combustion application following the above methodology.

In Sec. 2, the DOM and the MCM are briefly described. In Sec. 3, the DOM code, specifically developed for unstructured meshes, is validated against MCM on a nonisothermal and nonhomogeneous test case in a cylindrical geometry. Section 3.2 is devoted to the computation of thermal radiation in a real combustion chamber involving a complex geometry with an unstructured grid, using the combination of both DOM and MCM as explained above.

Mathematical Formulation

The two radiation codes DOMASIUM and MCRAD used in the present study were initially developed by Joseph ͓1͔ and Perez ͓16͔. DOMASIUM is detailed in Ref. ͓14͔. MCRAD has been utilized for benchmark publications and is described in Refs. ͓7͔ and ͓8͔. The two codes have also been used in a pool fire problem where they have been compared with a ray tracing method, a discrete transfer method and a moment method ͓5͔, showing a good agreement with the reference solutions.

In all calculations presented in this paper, the same gas radiation property model ͑the statistical narrowband correlated-K model ͓17,18͔͒ has been used. It is also described below.

Discrete Ordinates Method (DOM). DOMASIUM ͓5,14͔

has been designed to simulate the radiative heat transfer in coupled simulations with flow dynamics, involving unstructured grids. In the following and for the sake of clarity, the intensities and radiative properties are expressed for a single wave number ͑monochromatic case͒, but the formulation can be easily extended to a full spectrum.

The discrete ordinates method has been introduced first by Chandrashekhar ͓19͔ and have been widely used in radiative transfer applications. Considering an absorbing-emitting and nonscattering gray medium, the variation in the radiative intensity I͑s͒ along a line of sight can be written as

dI͑s͒ ds = I b -I͑s͒ ͑ 1͒
where I͑s͒ is the radiative intensity along the directional coordinate s, I b is the blackbody radiative intensity, and is the absorption coefficient. Boundary conditions for diffuse surfaces are taken from the relation giving the intensity leaving the wall I w as a function of the blackbody intensity of the wall I b,w and of the incident radiative intensity.

I w ͑s͒ = ⑀ w I b,w + w ͵ n•sЈϽ0 I w ͑sЈ͉͒n • sЈ͉d⍀Ј ͑2͒
where ⑀ w is the wall emissivity, w is the wall reflectivity, n is the unit vector normal to the wall, and sЈ is the direction of propagation of the incident radiation confined within a solid angle d⍀Ј.

2.1.1 Angular Discretization. In the DOM, the calculation of a radiative source term at a given point is based on the discretization of the radiative transfer equation ͑Eq. ͑1͒͒ according to a chosen number N dir of discrete directions s i ͑ i , i , i ͒, associated with the corresponding weights w i , contained in the solid angle 4 , and where ͑ i , i , i ͒ are directional cosines. Different angular discretizations may be used. In a recent study, Koch and Becker ͓20͔ compared the efficiency of several types of angular quadratures. They recommend the LC 11 quadrature for its better accuracy. However calculations performed with the S 4 quadrature satisfy a good compromise between accuracy and rapidity as shown in Ref. ͓5͔, and may also be used.

Spatial

Discretization for Hybrid Grids. The RTE ͑Eq. ͑1͒͒ is solved for every discrete direction s i using a finite volume approach. The integration of the RTE over the volume V of an element limited by a surface ⌺ , and the application of the divergence theorem yields

͵ ⌺ I͑s i ͒ • s i • nd⌺ = ͵ V ͑I b -I͑s i ͒͒dV ͑3͒
The domain is discretized in three-dimensional control volumes V.

It is assumed that I b and I͑s i ͒ are constants over the volume V and that the intensities I j at the faces are constant over each face.

Considering that I j is the averaged intensity over the jth face, associated with the center of the corresponding face, that I b,P and I P are the averaged intensities over the volume V, associated with the center of the cell, and assuming plane faces and vertices linked by straight lines, Eq. ͑3͒ can be discretized as follows:

͚ j=1 N face I j ͑s i ͒ • ͑s i • n j ͒A j = V͑I b,P -I P ͑s i ͒͒ ͑4͒
where n j is the outer unit normal vector of the surface j.

The scalar product of the ith discrete direction vector with the normal vector of the jth face of the considered cell is defined by D ij as

D ij = s i • n j = i n xj + i n yj + i n zj

͑5͒

The discretization of the boundary condition ͑Eq. ͑2͒͒ is straightforward.

I w = ⑀ w I b,w + 1 -⑀ w ͚ n•s i Ͻ0 w i I͑s i ͉͒n • s i ͉ ͑ 6͒
For each cell, the incident radiation G is evaluated as follows:

G = ͵ 4 I͑s͒d⍀ Ӎ ͚ i=1 N dir w i I͑s i ͒ ͑ 7͒
and the incident heat flux H w at the wall surfaces is

H w = ͵ n•sϽ0 I͑s͉͒n • s͉d⍀ Ӎ ͚ n•s i Ͻ0 w i I i ͉n • s i ͉ ͑ 8͒
For a gray medium, the radiative source term S r is given by

S r = ٌ • Q r = ͑4 I b -G͒ ͑ 9͒
where Q r is the radiative heat flux, and the radiative net heat flux at the wall is

Q w = ⑀ I b,w -H ͑10͒
For the evaluation of the radiative intensity I͑s i ͒ in Eqs. ͑6͒-͑10͒, Ströhle et al. ͓21͔ proposed a simple spatial differencing scheme based on the mean flux scheme that proved to be very efficient in the case of hybrid grids. This scheme relies on the following formulation:

I P = ␣I out + ͑1 -␣͒I in ͑11͒
where I in and I out are, respectively, the intensities averaged over the entering and the exit faces of the considered cell. ␣ is a weighting number between 0 and 1. Substituting I out from Eq. ͑11͒ into Eq. ͑4͒ yields ͑for more details see Ref.

͓14͔͒

I P = ␣VI b -͚ j D ij Ͻ0 D ij A j I j ␣V + ͚ j D ij Ͼ0 D ij A j ͑12͒
The case ␣ = 1 corresponds to the Step scheme used by Liu et al.

͓13͔. The case ␣ = 0.5 is called the diamond mean flux scheme ͑DMFS͒, which is formally more accurate than the step scheme.

After calculation of I P from Eq. ͑12͒, the radiation intensities at cell faces such that D ij Ͼ 0 are set equal to I out , obtained from Eq. ͑11͒. For a given discrete direction, each face of each cell is placed either upstream or downstream of the considered cell center ͑a face parallel to the considered discrete direction plays no role͒. The control volumes are treated following a sweeping order such as the radiation intensities at upstream cell faces are known. This order depends on the discrete direction under consideration.

An algorithm for the optimization of the sweeping order has been implemented ͓14͔. Note that this sweeping order is stored for each discrete direction and only depends on the chosen grid and the angular quadrature, i.e., it is independent of the physical parameters or the flow and may be calculated only once, prior to the full computation.

Spectral Gas Properties.

The absorption coefficient of the combustion products is highly dependent on the wave number , as shown by line spectra of radiative gases ͑H 2 O, CO 2 , and CO͒. To take this spectral dependency into account, the absorption coefficient of each species is here represented by the SNB-ck model ͓18,22,23͔. For the gas mixture composed of different species, the same model is used, building data according to the mixing model exposed by Liu et al. ͓23͔. The radiative solutions are obtained by computing N bands ϫ N quad independent calculations where N bands = 367 is the number of narrowbands of spectral width ⌬ = 25 cm -1 , describing the spectral properties in the range 150-9300 cm -1 , and N quad = 5 is the number of the Gauss-Legendre quadrature points used for the spectral integration over each narrowband. For nongray media, introducing spectral dependencies in Eq. ͑9͒ gives for the following source term:

S r,DOM = ͚ i=1 N band ͚ j=1 N quad ⌬ i w ij ij ͑4 I b,ij -G ij ͒ ͑ 13͒
where G ij is obtained from Eq. ͑7͒.

The computational efficiency of such a model is strongly linked to the number of bands N bands that has to be optimized depending on the studied case.

Monte Carlo Method-Net Exchange Formulation (MCM-NEF).

The code MCRAD ͓5,7͔ is based on MCM and uses computer graphics algorithms. It provides the radiative source terms and the wall heat fluxes as well as their associated statistical error estimates. One of the main features of the MCM used here is the net exchange formulation ͑NEF͒. This NEF presents some similarities with the zonal method proposed by Hottel and Sarofim ͓24͔. This formulation that satisfies the reciprocity principle was first introduced by Green ͓25͔ in 1967. It has been applied to one-dimensional radiative heat transfer problems ͓6,26͔, to multidimensional problems ͓7,8͔, and very recently, to fires for benchmark solutions ͓5͔. The NEF is the integral formulation of the radiative heat transfer, using shape factors between two volumes ͑Eq. ͑14͒͒, a surface and a volume ͑Eq. ͑15͒͒, or two surfaces ͑Eq. ͑16͒͒, respectively.

ij, VV = ͵ V j ͵ V i i j ,ij s ij 2 dV i dV j ͑14͒ ij, VS = ͵ S j ͵ V i i • ͉n j • s͉ • ,ij s ij 2 dV i dS j ͑15͒ ij, SS = ͵ S j ͵ S i ͉n i • s͉ • ͉n j • s͉ • ,ij s ij 2 dS i dS j ͑16͒
with ͑s ij ͒ the spectral transmissivity along a straight line between two points P i and P j expressed as

͑s ij ͒ = exp ͫ -͵ s i s j ͑s͒ds ͬ ͑17͒
and ⌬I b, the black intensity difference between these points,

⌬I b, = I b, ͑P i ͒ -I b, ͑P j ͒ ͑ 18͒
These definitions allow the respective net exchange calculation:

͑V i ,V j ͒ = ͵ 0 ϱ ij, VV ⌬I b, d ͑19͒ ͑V i ,S j ͒ = ͵ 0 ϱ ij, VS ⌬I b, d ͑20͒ ͑S i ,S j ͒ = ͵ 0 ϱ ij, SS ⌬I b, d ͑21͒
where represents the net radiative exchange between two volumes, a volume and a surface, or two surfaces. For the sake of clarity, this formulation is presented in the case of black walls. However, the generalization of these terms to nonblack walls can be found in Ref. ͓8͔. The radiative source term for a volume V i or the net heat flux at a surface S i are computed by summing their radiative exchanges with all the other volumes and surfaces.

͵ V i S r ͑r P i ͒dV i = ͚ j=1 N s ͑V i ,S j ͒ + ͚ j=1 N v ͑V i ,V j ͒ ͑22͒
and

q w,net,i = ͚ j=1 N s ͑S i ,S j ͒ + ͚ j=1 N v ͑S i ,V j ͒ S i ͑23͒
where N s is the number of surfaces, and N v is the number of volumes. The multiple integrals encountered in Eqs. ͑19͒-͑21͒ are calculated with a Monte Carlo method ͓16͔. Each radiative exchange can be represented as an integral I of a function g on the domain D. Defining an arbitrary probability density function p and a random variable X distributed according to p, g͑X͒ is also a random variable and I is the expectation of g͑X͒. I will be estimated with N samples of g͑X͒.

I = E͓g͑X͔͒ Ϸ 1 N ͚ i=1 N g͑x i ͒ = ͗ g͑X͒͘ N
where x i is a realization of X. This statistical approach provides the radiative source term and the wall heat flux with an error estimate. The standard deviation of the estimate is

͑͗ g͑X͒͘ N ͒ = 1 ͱ N ͑g͑X͒͒ ͑24͒
where ͑g͑X͒͒ is the standard deviation of g͑X͒ and is approximated as

͑I͒ Ϸ 1 ͱ N ͱ ͓͗ g͑X͒ 2 ͘ N -͗ g͑X͒͘ N 2 ͔ ͑ 25͒
Note that MCRAD uses a suitable pdf p that significantly reduces the CPU-time ͓6͔.

Spectral Gas

Properties and k-Distribution Formulation. The spectral integrations in Eqs. ͑19͒-͑21͒ are carried out over narrowbands, and the k-distribution method is employed within each band. According to this method, any radiative quantity A depending on is averaged over a band of width ⌬ as

A = 1 ⌬ ͵ ⌬ A͑ ͒d = ͵ 0 ϱ f͑͒A͑͒d ͑26͒
where f͑͒ is the distribution function of the absorption coefficient within a spectral narrowband ͓27͔. In the case of gas mixture, the absorption coefficient at a given wave number is computed as the sum of the absorption coefficients of all gas species. For a mixture of H 2 O, CO 2 , and CO, one obtains

A = 1 ⌬ ͵ ␦ A͑ ,H 2 O + ,CO 2 + ,CO ͒d ͑27͒
The correlated-k assumption is considered for nonhomogeneous media treatment in each narrowband, so that Eqs. ͑19͒-͑21͒ become

͑V i ,V j ͒ = ͚ n=1 n b ⌬ n͵ 0 1 dg ͵ V i dV i͵ V j dV j 1 l ij 2 ͑g͒ ϫ exp ͫ -͵ l i l j ͑g͒dl ͬ ͑g͒⌬I b, ͑V i ,S j ͒ = ͚ n=1 n b ⌬ n͵ 0 1 dg ͵ V i dV i͵ S j dS j u • n j l ij 2 ͑g͒ ϫ exp ͫ -͵ l i l j ͑g͒dl ͬ ⌬I b, ͑S i ,S j ͒ = ͚ n=1 n b ⌬ n͵ 0 1 dg ͵ S i dS i͵ S j dS j ͑u • n i ͒͑u • n j ͒ l ij 2 ϫ exp ͫ -͵ l i l j ͑g͒dl ͬ ⌬I b,

͑28͒

where l ij is the length between points i and j, n i and n j are normal vectors to surfaces at points i and j, and u is the directional vector between i and j.

Accurate Solutions by MCM.

In the proposed approach, the radiative solution is calculated with the DOM using either the S 4 or LC 11 quadrature, allowing a fast and robust computation. However the obtained solution is not exact and the error associated to each point is unknown. To evaluate the accuracy of the DOM solution, the MCM is also run at selected representative points to calculate the reference solution at these points, which play the role of probes and are chosen according to the reacting flow field topology. Finally, the analysis of the DOM results in the light of the MCM exact solutions at the probes gives a good evaluation of the full radiation field.

Results

Validation Test Case.

The test case presented here has already been described in detail in Ref. ͓7͔ where the MCM used in MCRAD, a ray tracing method and a DOM for structured grids were compared. Here the same test case is used to compare the DOM solution on unstructured grids, performed on DOMASIUM, with the reference MCM solution.

The configuration is a cylindrical black walled enclosure of length L containing a mixture of water vapor, carbon dioxide, and nitrogen at atmospheric pressure. The geometrical characteristics are L = 1.2 m and the radius is R = 0.3 m. The wall temperature is 800 K, except at z = L where it is 300 K. The temperature and concentration fields are described by the following analytical functions.

T͑z,r͒ = 800 + 1200͑1 -r/R͒͑z/L͒ ͑ 29͒ X H 2 O ͑z,r͒ = 0.05 • ͓1 -2͑z/L -0.5͒ 2 ͔ • ͑2 -r/R͒ ͑30͒ X CO 2 ͑z,r͒ = 0.04 • ͓1 -3͑z/L -0.5͒ 2 ͔ • ͑2.5 -r/R͒ ͑31͒
The DOM calculation is performed using the LC 11 quadrature and about 100,000 cells for the grid ͑Fig. 1͒.

The radiative source term along the central axis and the radiative heat flux at the wall are shown, respectively, in Figs. 2 and3, where the results from both methods DOM and MCM are plotted. The associated relative errors obtained with MCM are presented in Figs. 4 and5. Due to the fact that the unstructured grid used for the DOM calculation does not coincide with the location of the points calculated with the MCM, an interpolation procedure is needed to allow the comparison. From the MCM error estimates, the averaged relative error is found to be about 1.13% for the radiative source term and 1.98% for the radiative heat flux. Figure 3 demonstrates the high accuracy of the DOM for the wall heat flux. The source term ͑Fig. 2͒ calculated with DOM is also very accurate at the cold side of the cylinder, but a small increasing discrepancy with the MCM reference solution appears in the hot half. This discrepancy however does not exceed 10%. A first explanation may be due to the insufficient spatial discretization called "false scattering," as explained in the parametric study of Joseph ͓1͔. He shows that false scattering increases in DOM for increasing optical thickness. In the present case, the temperature and concentration fields ͑Eqs. ͑29͒ and ͑30͒͒ lead to higher optical thicknesses on the hot side of the cylinder and false scattering is therefore likely to appear. Another reason for the difference between DOM and MCM may be attributed to the calculation of the species molar concentration and temperature fields themselves, which are discretized in the DOM but exactly computed from Eqs. ͑29͒ and ͑30͒ in the MCM.

Application to a Real Combustion

Chamber. This approach using the DOM method with the calibration by MCM is now performed on a complex 3D configuration of a realistic combustion chamber ͑Fig. 6͒.

Flow solutions are provided by a combustion code based on the large eddy simulation ͑LES͒ approach ͓28,29͔: Here precomputed temperatures and concentration profiles are used to calculate the radiative source term, which means that calculation is performed in a noncoupled way. In this test case, a swirled turbulent premixed flame is stabilized on a methane/air injection at a stoichiometric ratio of 0.75, an air flow rate of 12 g/s, and a temperature of 300 K for a thermal power of 27 kW. The chamber has a square cross section of 86ϫ 86 mm 2 and its length is 110 mm. It ends into an exhaust duct with a 6:1 contraction. It is assumed that walls are adiabatic and may be considered as perfect radiative black bodies.

The flame/turbulence interaction is modeled by the thickened flame/efficiency function model ͓30,31͔ and the chemical scheme for combustion takes into account two reactions with six species ͑CH 4 , O 2 , CO 2 , CO, H 2 O, and N 2 ͒ ͓32͔. The molar concentrations of CO 2 , CO, H 2 O, O 2 , and N 2 are used to determine the radiative spectral properties of the mixture. Figure 7 shows a 2D view in the cutting median plane defined on Fig. 6 of the temperature and radiative species molar fractions fields obtained from the LES and used for the radiation calculation. The corresponding heat release ˙is shown on Fig. 8.

The flame has the classical conical shape found in this type of burners. It is attached to the injector and deviated from the central axis by the swirling flow that creates a central recirculation zone. The maximum heat release is of the order of 7 ϫ 10 8 J m -3 s -1 , Figure 9 represents the corresponding instantaneous radiative source term obtained from DOM with the S 4 quadrature. The maximum value is of the order of 10 6 J m -3 s -1 , i.e., two orders of magnitude smaller than the maximum heat release.

However it is interesting to note that the location of the maxima of these two energy source terms is completely different: the heat release is maximum at the flame front location, i.e., at the frontier between cold and hot gases, whereas the absolute value of the radiative source term is highest in the cold gas region, where there is strong absorption. This is due to the presence of absorbing chemical species ͑combustion products that have diffused in the unburnt gas͒ in these regions at a low temperature. This may give locally a significant contribution to the total gas energy, and fi- nally lead to a potential high impact on the flame structure and the flow. Figure 10 represents the emitted part E and the incident part G of the radiative heat fluxes that sum to the radiative source term S r . It appears that the radiative exchanges E and G are of the same order of magnitude and that both are higher than the source term.

Therefore in this case, a simple model based on emission only ͑as the optically thin model͒ would clearly lead to a wrong source term, which is expected to have a strong impact on minor species prediction.

The same calculation was also performed with the LC 11 quadrature and a comparison is shown on Fig. 11, where the radiative source term ͑Fig. 9͒ is plotted along a line at x = 0.02 m two DOMs ͑S 4 and LC 11 ͒ and the MCM calculations. The corresponding temperature and radiative species molar fractions profiles are represented along the same axis in Figs. 12 and 13. The averaged relative error on the MCM solution is found to be 3.17%.

The flame impact is well represented by the three methods. The solution modeled with the LC 11 ͑96 discrete directions͒ is in excellent agreement with the reference solution, with a maximum error of 3%, confirming the already known high accuracy of this method. As expected the S 4 quadrature calculation is less accurate, in particular, in the vicinity of the flame fronts. Note that the radiative source term is either underestimated ͑outside the conical flame͒ or overestimated ͑inside the conic flame͒, although the temperature and species concentrations, and as a consequence, the emission E are nearly constant in these zones ͑Figs. 12, 13, and 10͒.

The underestimation and the overestimation of the radiative source term S r obtained with the S 4 quadrature are located in zones where the temperature and radiative species concentrations are maximum. This is an indication for the source error, probably due to a lack of angular resolution, and illustrates clearly the benefit of using the DOM with MCM error control. Without the reference solution, it would be impossible to identify and estimate such an error. Still the maximum error does not exceed 20% in very localized zones, and one may conclude that for most combustion applications, the accuracy of the DOM with the S 4 ͑24 discrete directions͒ quadrature is sufficient.

In the perspective of coupling radiation calculations with unsteady combustion simulations, the advantages of the DOM with MCM error control approach appear also clearly in the light of CPU cost. While for the present case, the DOM takes 4 ms/ cell for each discrete direction, the MCM calculation time is of the order of a few seconds per point on the same computer.

Conclusions

The full coupling of radiation with unsteady combustion is a key point in the development of predictive simulation tools for industrial burners. It requires fast and accurate radiative models, in accordance with the needs of the combustion models. In this context, a DOM with MCM error control is proposed, which cumulates the advantages of both classes of methods. The validity and potential of this methodology is demonstrated on both academic and complex industrial test cases. It is shown how the effective accuracy of an approximate DOM solution is estimated with the MCM, leading to an optimal choice of parameters of the DOM and the best compromise between accuracy and efficiency.

The next step toward radiation-combustion coupled simulations is the improvement of computational resources management and an automatic control procedure using MCM probe solutions. Simpler and faster spectral radiative property models will also reduce the radiation computing time without a significant loss of accuracy, down to a time of the same order of magnitude than the combustion simulations. These developments are currently in progress and first attempts of coupled simulations have already been successful ͓33-36͔. 
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 9 Fig. 9 Instantaneous radiative source term in the median cutting plane of the combustion chamber; calculation with DOM-S 4 quadrature
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 11 Fig. 10 Radiative incident heat flux G, radiative emitted heat flux E, and radiative source term S r along the y -axis located at x =0.02 m in the median plane of the combustion chamber; calculation with DOM-LC 11 quadrature
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 12 Fig. 12 Temperature profile along the y -axis located at x =0.02 m in the median plane of the combustion chamber

Fig. 7 Instantaneous solution fields in the median cutting plane of the combustion chamber: temperature and radiative species concentration; "a… temperature profile, "b… X H 2 O profile, "c… X CO 2 profile, and "d… X CO profile
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Instantaneous heat release ˙in the median cutting plane of the combustion chamber
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