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Navier-Stokes Compatible Formulation of a Database

Approach for Laminar-Turbulent Transition Prediction
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Onera – The French Aerospace Lab, F-31055, Toulouse, France

and Grégoire Casalis‡

University of Toulouse, ISAE, F-31055, Toulouse, France

This paper presents a transition prediction model that adds additional equations to the

Reynolds-Averaged Navier Stokes set. It is based on the so-called N-factor method, valid for

natural transition on wings due to the hypothesis it relies on (modal instabilities disturbing

the boundary layer). It consists in an integration of the disturbances growth rates along

the edge streamline. Herein, the disturbances growth rates are obtained via a database

approach, Onera’s so-called Parabolas method. Numerically, integration of the growth

rates along the edge streamline is performed through additional transport equations,

thus removing the need for any topology specification from the end user. Implementation

caveats are illustrated on the ONERA-D airfoil in incompressible conditions. This method

is then successfully applied for transition prediction on a 2D industrial laminar airfoil at

transonic conditions, with varying upstream conditions and angle of attack. Satisfactory

agreements with both experimental data and conventional transition predictions ( LLS

stability results) are obtained which illustrates the accuracy of the predicted transition

location.
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Nomenclature

ϕ∗ Dimensionless quantity corresponding to ϕ

AoA Angle of attack

α Longitudinal wave-number

a, b, ε Coefficients of diagnostic function D

L Airfoil chord

CL Lift coefficient

δ Boundary-layer thickness

δ1 Compressible displacement thickness

D Diagnostic function for δ estimation

f , F Dimensional and reduced frequency

F = 2πfνe/u
2
e

ftr Frequency of the mode triggering transition

γ Intermittency function

Γatt Stagnation line indicator

σatt Stiffness coefficient for Ĩ when Γatt = 1

Γenv Envelope indicator (1 if Nenv > NT)

σenv Stiffness coefficient for Ĩ when Γenv = 1

Hi Incompressible shape factor

Ĩ Transition indicator

Kp Pressure coefficient

LLS Local, linear stability

Λ2 Pohlhausen’s pressure parameter

Λ2 = θ2/ν (due/dx)

Me Mach number at the boundary-layer edge

M∞ Upstream Mach number

ν Kinematic viscosity

νe Kinematic viscosity at the boundary-layer

edge

N N-factor

Nenv Envelope N-factor

NT Transitional N-factor value

Pi∞ Upstream total pressure

ρ Density

ρe Density at the boundary-layer edge

ReL Reynolds number based on the airfoil chord

Reδ1 Reynolds number based on δ1

Reδ1tr
Value of Reδ1 at the transition location

Reθ Reynolds number based on θ

Reθcr Value of Reθ at the critical abscissa

Reθtr Value of Reθ at the transition location

σ Growth rate of a given mode

σ s̃ Growth rate for the advection of s̃

s Curvilinear abscissa along a streamline

scr Curvilinear abscissa at the critical location

s̃ Curvilinear abscissa from the critical location

s̃ = s− scr

s̃len Transitional region length

t Time variable

θ Momentum thickness

Tu Free-stream turbulence level

Ti∞ Upstream total temperature

u Boundary-layer streamwise velocity

2 of 37

American Institute of Aeronautics and Astronautics



ue Velocity at the boundary-layer edge

#»

V Flow velocity vector

ω Angular frequency

ω = 2πf

x Longitudinal direction

xcr Chord-wise critical abscissa

xtr Chord-wise transition location

y Wall-normal direction

ymax Wall distance at which D is maximum

I. Introduction

Laminar-turbulent transition prediction is of major practical interest in a range of aeronautical appli-

cations such as designing fuel-efficient laminar wings with low friction drag or assessing the effects of wall

heating on boundary-layer stability in de-icing conditions.

Prediction of the transition location has thus become a challenge in modern numerical fluid dynamics

and an extensive use of the so-called N-factor method has been made for the last five decades.1 In the

case of natural transition, the laminar boundary layer is contaminated by external perturbations, which are

turned into normal modes through a process known as receptivity. The linear amplification of these modes

is followed by non-linear interactions that trigger breakdown to transition.2

The N-factor method consists in an integration of the spatial growth rates of each mode along the edge

streamline (the local projections of the loci, where the streamlines cross the boundary-layer edge) . Growth

rates are given by the local linear stability theory and transition is assumed to take place where the most

amplified mode’s N-factor — highest N-factor at a given location — reaches a prescribed transitional value.3,4

As it is based on a local linear theory, this method does not account for some phenomena, such as

non-parallel effects, receptivity process, and nonlinear mechanisms. The growth rate values under these

assumptions may be obtained accurately via a local linear stability study that can be very time-consuming

(when compared with the computation time of a single RANS iteration).

Over the last two decades, Onera has developed a simplified growth rates computation method that

requires a much lower computational effort. It is based on a simple closed-form approximation of the growth

rates, function of the Reynolds number and a dimensionless frequency. The different coefficients used in the

closed-form expressions are tabulated with respect to some relevant flow parameters (integral thicknesses

for instance). This method is referred to as a database approach or Parabolas method and was firstly
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developed for two-dimensional compressible flows over adiabatic walls.5 It was then extended to compressible

three-dimensional flows6 with a correction for wall temperature effects. This extension addresses separately

crossflow and Tollmien-Schlichting instabilities. The complete method was implemented in the boundary-

layer solver 3C3D as this type of solver enables easy access to the aforementioned relevant flow parameters

and has been successfully applied to complex configurations.

To obtain the N-factors, the growth rates computed with this method then have to be numerically

integrated over the edge streamline. In a RANS code, the determination of the edge streamline can

be challenging as it requires an accurate determination of the boundary-layer thickness. Once the edge

streamline has been defined, carrying out the integration involves numerous interpolations from the mesh to

the line, which complicates the matter.

A method where the integration over a streamline is recast into an advection equation with a source

term is proposed in this paper. The resulting new set of transitional equations is then solved similarly to

the mean flow and turbulence equations.

This paper is divided in four parts followed by conclusions. Section II details the N-factor method and

gives a state of the art of its application in RANS solvers. Section III introduces the Parabolas method and

the set of equations implemented in the RANS solver. Validations and tests are covered in sections IV and

V. The former consists in an ONERA-D airfoil used as a tutorial case while the latter gives results obtained

on a transonic laminar airfoil and compared against experimental data and LLS stability results.

II. State of the art: N-factor method

The developments presented in this paper are restricted to two-dimensional mean flows, without crossflow

instabilities. As a consequence, only Tollmien-Schlichting waves will be taken into account. Furthermore,

only two-dimensional instabilities will be considered. This is justified for the incompressible test cases by

Squire’s theorem7 and for the compressible test cases by local linear stability studies that showed that the

most amplified perturbations are indeed two dimensional.
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II.A. Instability amplification

II.A.1. Local linear stability theory

As stated in the introduction, natural transition occurs when the boundary layer is disturbed by a set of

perturbations (noise, external turbulence. . . ) transformed through a process called receptivity into a set

of small perturbations that grow or decay in the form of normal modes.8 A local spatial stability analysis

allows the determination of unstable modes. Velocity, pressure and temperature are written as

ϕ∗ = ϕ+ ϕ′ , (1)

where ϕ∗ is the dimensionless quantity, ϕ its mean value and ϕ′ its fluctuation which modal form yields

ϕ′ = ϕ′
(
y∗
)︸ ︷︷ ︸

eigen-

function

eσ
∗x∗︸ ︷︷ ︸

growth-

function

ei(α
∗x∗−ω∗t∗)︸ ︷︷ ︸

shapefunction

+C.C. (C.C. = complex conjugate). (2)

Where σ∗ is the dimensionless growth rate, α∗ the dimensionless longitudinal wave-number, and ω∗ the

dimensionless angular frequency. They are defined with respect to their dimensional (unstarred) counterparts

by

σ∗ = σδ1 , α∗ = αδ1 , and ω∗ = ω
δ1
ue

= 2πf
δ1
ue

, (3)

where δ1 is the compressible displacement thickness and f is the mode’s dimensional frequency. All these

quantities are real-valued in the context of spatial stability .

A mode is amplified when its growth rate σ is positive and damped otherwise. The quantity F is a

characteristic reduced frequency used to perform stability analysis and is defined as

F =
2πfνe
u2e

=
ω

Reδ1

δ1
ue

=
ω∗

Reδ1
, (4)

where Reδ1 is the Reynolds number based on the compressible displacement thickness δ1.

Stability analysis can be made by injecting the form of instabilities proposed in relation (2) into the

linearized Navier-Stokes equations. This leads to the Orr-Sommerfeld equation in the incompressible case
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and more generally to a local, linear stability (LLS) problem, which can be numerically solved — for a given

mean flow — to obtain the growth rates of several frequencies as functions of both Reδ1 and ω∗.

The frequency band where instabilities are amplified can be visualized on a so-called stability diagram,

an example of which is shown in figure 1(a). In this ω∗-Reδ1 diagram, iso-frequencies (iso-F ) are straight

lines passing through the origin (ω∗ = F Reδ1) and iso growth-rates (iso-σ∗) are represented. The neutral

curve is defined as the set of points for which σ∗ = 0 and delimits the stable and unstable regions. The

critical point is the location of the neutral curve with the lowest Reδ1 .

R0 R1

ω∗
0

ω∗
1

Critical point

F1

Reδ1

ω∗

Iso-σ∗
3

Iso-σ∗
2

Iso-σ∗
1

Neutral curve

(a) Stability diagram, iso-F and iso-σ∗ (0 < σ∗1 < σ∗2 < σ∗3)

R0 R1
Reδ1

σ∗

Iso-F1

(b) Growth rate for F1

Figure 1. Example of stability diagram and growth-rate diagram.

Arnal5 observed that the growth rate — presented figure 1(b) — of a given F as a function of Reδ1 can

be approximated by two half parabolas as explained in section III.

II.A.2. N-factor method

The N-factor method is a technique where the total amplification N of each unstable mode is computed. Let

us consider a given mode of initial amplitude A0 at a location x∗cr, that increases up to an amplitude A at a

location x∗. This mode’s exponential growth yields the expression of N integrated along the boundary-layer

edge streamline

N (s, f) = ln
A

A0
=

∫ s

scr

σ (F (f, η) , η) dη . (5)
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where s is the curvilinear abscissa along the edge streamline

s = s (x∗) scr = s (x∗cr) .

A semi-empirical correlation established by Mack9 provides an estimation of the transitional N-factor NT

for Tollmien-Schlichting modes as a function of the upstream turbulence level Tu

NT = −8.43− 2.4 ln (Tu) 10−3 < Tu < 10−2 ( =⇒ NT ∈ ]2.6 ; 8.2[ ) . (6)

The N-factor of several modes are computed and the curve given by Nenv = max
f

(N) — called the envelope

— is obtained. Transition is attained at a location noted x∗tr where the envelope crosses the transitional

N-factor NT, as represented figure 2.

x∗
trx∗

cr

NT

N1

N2

N3

En
ve

lop
e N-fa

cto
r

x∗

N-factor

Figure 2. Envelope technique for the N-factor method with three frequencies.

The physical growth rate σ of each of these modes has to be known at each streamwise station to compute

the value of N. To do so, one can either use exact stability results (via the LLS equation for instance) or,

as it is done here, use a simplified method such as the so-called database method developed at Onera.
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II.B. Transition prediction in a RANS solver

Simplified methods are needed to compute the transition location in a RANS solver because of the numerical

cost of solving the LLS equation during a RANS iteration as mentioned in the introduction. It also avoids

the resolution of the LLS problem based on RANS velocity profiles that may lack accuracy. They consist in

a simplified formulation of either the N-factor or the growth rates.

II.B.1. N-factor computation simplification: transition criteria

The first category results in a variety of transition criteria, such as those established by Gleyzes,10 Abu-

Ghannam and Shaw11 (ABS) and Arnal, Habiballah, and Delcourt12 (AHD).

The Gleyzes criterion gives the slope of the envelope N-factor as a function of the Reynolds number based

on the momentum thickness for separated flows. Drela13 expressed a similar N-factor-slope law ∂Nenv/∂Reθ

valid for both attached and separated flows and an empirical relation to get ∂Reθ/∂x. He applied the

resulting ODE

θ
dNenv

dx
= fDrela (Hi,Reθ) (7)

in the MISES solver. This implementation was then extended with the ABS transition criterion for bypass

transition. It compares Reθ to its critical value Reθcr where instabilities begin to grow, given by a correlation

based on Tu and Polhausen’s pressure parameter Λ2. Drela14 recast the ABS criterion into a N-factor-slope

law and obtained a form similar to the ODE he obtained for the Tollmien-Schlichting modes yielding his

final envelope ODE

θ
dNenv

dx
= fDrela,TS (Hi,Reθ) + fDrela,ABS (Hi,Reθ) . (8)

The main shortcoming of this approach is that the Nenv slope expression is based on a constant Hi hypoth-

esis.

To overcome this, Drela15 expressed the non-dimensionalized Orr-Sommerfeld equation as a database

by considering the velocity profiles as self-similar profiles indexed by Hi. The resulting database indexes

the growth rate by Hi, Reθ and ωθ/ue, allowing the determination of the most amplified frequency at each

station and the integration of the actual envelope.

Menter, Langtry et al.16,17 used a correlation to express a transition criterion into a scalar transport
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equation in their well-known γ − Reθ transition model for turbomachinery applications. This correlation

— valid for Blasius flows — yields the momentum thickness Reynolds number from the maximum value of

the vorticity Reynolds number inside the boundary layer.

They mentioned that their model does not attempt to represent the physics of the transition process and

its first version (referred to as CFX-v1.0) was rather devised to behave like several criteria. At high turbulence

levels (Tu > 3 %), it is based on the Mayle correlation.18 At moderate turbulence levels (1 % < Tu < 3 %)

and pressure gradients it is similar to the ABS criterion. Finally, it has been curve fit to agree with Drela’s14

second model in low turbulence levels (Tu < 1 %). It was later extended by Langtry19 (CFX-v1.1) who

changed the correlation for the integral boundary-layer quantities from its Blasius value to Hi = 3.5 and

modified the whole model coefficients to improve its prediction capabilities in the case of natural transition.

Drela’s first approach13 to express the Tollmien-Schlichting modes was later recast by Coder20 into a

transport equation in a RANS solver. The main part of the reformulation was to turn the model into a local

model since it relies on integral quantities. This was done by defining a pressure gradient parameter HL

computed from the magnitude of the strain-rate tensor, the distance to the nearest wall and ue— obtained

from the local pressure with an isentropic flow condition. The shape factor Hi is then obtained through

a correlation based on HL calibrated with a set of Falkner-Skan-Hartree profiles to take pressure gradient

effects into account.

The AHD criterion is also an approximation of the envelope N-factor for the TS modes as

Nenv (Reθ − Reθcr ,Λ2) , (9)

giving at the transition location

Nenv (Reθtr − Reθcr ,Λ2) = NT . (10)

This criterion expresses21 Reθtr − Reθcr as a function of Λ2 and Tu, and Reθcr as a function of Hi. This

formulation of the criterion is only valid for self-similar flows and has been extended to general flow config-

urations by averaging Λ2 along the edge streamline. It was implemented in the RANS solver elsA22 which

was applied for the work presented in this article (see section IV) along with the Gleyzes criterion by Cliquet

et al.23 In their case, integration is carried out along wall mesh-lines aligned with the flow direction. The
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mesh lines to use to perform the integration are selected in a user-given topology file, which complicates the

data entry step. The major drawback of this approach is that the mesh lines are considered to be aligned

with the edge streamline. The curvature of the edge streamline is thus not taken into account in the case

of three-dimensional flows.

II.B.2. Growth rate computation

As mentioned earlier another approach is to compute the growth rates via a simplified method: a look-up

table or a neural network for instance. This type of approach yields higher levels of accuracy. Different types

of database exist: van Ingen1 made one with complete stability diagrams while Drela15 or Stock24 store

the growth rate values. The Parabolas method presented in the next section is another type of database

approach.

Neural networks have been developed by Fuller et al.25 and Crouch et al.26 for instance. The former

was designed for shear layers and its inputs are the angular frequency, the azimuthal mode number and

the shear-layer momentum thickness while the latter is designed as a replacement of the LLS equation

expressed with integral quantities. Its inputs are the Reynolds numbers based on the longitudinal and

transverse displacement thickness, the reduced frequency, the edge streamline direction and a set of values

of the first derivative of the longitudinal and transverse velocity profiles.

The input data of both databases or neural networks are either velocity profiles or integral thicknesses.

The computation and integration of the growth rates can be embedded in an external transition module.

It is then possible to couple this transition module with the RANS solver. For instance, Krumbein27 used this

type of coupling where the RANS solver FLOWer28 gives the surface pressure distribution that is processed

through a boundary-layer solver to get the velocity profiles used as an input to Stock’s database to eventually

compute the transition location. Gross et al.29 also applied this type of approach in the industrial Dassault

Aviation solver Aether (a finite element RANS solver, a description of which is given in Chalot et al.30). In

this case, the boundary-layer velocity profiles and the transition were computed via Onera’s boundary-layer

solver 3C3D, either with the Parabolas method or transition criteria. 3C3D is a three-dimensional boundary

layer code based on a characteristic method,31 resolving the boundary layer equations on a wall normal mesh

and has been extended with a number of transition prediction tools.6
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The boundary-layer solvers need either the values of the boundary-layer external velocity (which requires

a well-refined mesh in the boundary layer region along with an external velocity extraction method) or a

wall pressure distribution (associated to a 2D, conical or infinite swept wing hypothesis to compute the

boundary-layer edge velocity).

The method proposed in this paper computes the growth rates via the Parabolas method and reformulates

the N-factor integration into a transport equation. The Parabolas method requires boundary-layer quantities

that are directly obtained within the RANS solver. Two complex issues of the aforementioned methods are

therefore circumvented:

• Computing the boundary-layer quantities and growth rates within the RANS solver avoids the use of

any coupling with an external solver.

• The transport equation formulation avoids explicitly integrating the growth rates and intrinsically

follows the edge streamline.

III. Current implementation of the N-factor method in a RANS code

III.A. Database approach and RANS boundary-layer quantities

At low speed the occurence of instabilities is mainly due to viscous phenomena as established by Prandtl.32

The dimensionless growth rates are expressed in the closed-form (11) with two half parabolas as presented

in figure 3, yielding

σ∗

σM
= 1−

[
Reδ1 −RM

Rk −RM

]2
, (11a)

where

Rk =


R0 Reδ1 < RM

R1 Reδ1 > RM

. (11b)
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R0 RM R1

σM

Reδ1

σ∗

Exact
Model

Figure 3. Qualitative comparison of exact and approximate viscous growth rates (iso-F ).

The parabolas parameters σM , RM, R0 and R1 are functions of the reduced frequency F as follows

σM = AM

(
1− F

FM

)
, (12)

RM = KM

(
105F

)EM
, (13)

R0 = RM

[
1−A0

(
1− F

F0

)]
, (14)

R1 = RM

[
1−A1

(
1− F

F1

)]
. (15)

The 8 coefficients AM, FM, KM , EM , A0, F0, A1, and F1 are stored in a database indexed on the incom-

pressible shape factor Hi and the external Mach number Me. They have been determined5 from the exact

stability diagram of numerous Falkner-Skan-Hartree33 similarity profiles. Negative growth rates (disturbance

decaying) are obtained by a simple linear extension of the parabolas.

At higher velocities instabilites may come from the presence of an inflection point in the velocity profiles,34

taken into account through an additional dedicated set of two half-parabolas.6 A description of the complete

Parabolas method for TS waves is given in the appendix.

It is therefore necessary to be able to determine these quantities within the RANS solver and particularly

the boundary-layer thickness. To do so the RANS solver used, elsA, embeds the concept of lines normal to

the wall. They are called pseudo-normals and are defined by following a mesh line starting at the wall and

ending at the boundaries of the computational domain, going through mesh block joins.
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It is therefore possible to associate to each field cell in the computational domain a wall cell defined as

the root of the pseudo-normal line passing through this field cell.

At each iteration and along each pseudo-normal line it is then possible to determine the boundary-layer

thickness. A procedure proposed by Stock and Haase35 is used to do so. It is based on a diagnostic function

D, evaluated along each pseudo-normal and defined as

D = ya |Ω|b , (16)

where y is the wall normal distance along the pseudo-normal line and |Ω| is the vorticity vector modulus.

The wall distance ymax is then defined as

D|ymax
= max (D) , (17)

and leads to the boundary-layer thickness through

δ = εymax . (18)

Two sets of the three coefficients a, b and ε were determined by Stock and Haase for laminar and turbulent

reference mean profiles.

A boundary-layer velocity profile is considered along each pseudo-normal line. The boundary-layer inte-

gral quantities are then computed by integrating the velocity profile via a trapezoidal rule and the boundary-

layer edge quantities such as Me are extracted at δ. It is then possible to compute for each pseudo-normal

line the corresponding σ∗ via the Parabolas method.

In the end, each field cell has associated values of σ∗, boundary-layer integral and edge quantities, and

a corresponding wall cell. Every field cell on the same pseudo-normal line therefore has the same values of

σ∗ and boundary-layer quantities as well as the same corresponding wall cell. These values are stored at the

wall cells.
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III.B. N-factor method reformulation into a set of transport equations

Herein, unless explicitly mentioned, the functions are evaluated at ( #»x , t) and s is the curvilinear abscissa

along a pathline. We will consider a generic definition of the N-factor along any pathline as

N (s, f) = ln
A

A0
=

∫ s

scr

σ (F (f, η) , η) dη , (19)

that can be differentiated to determine the N variation seen by a flow particle moving from #»x to #»x + ∆t
#»

V

between t and t+ ∆t. This yields on one hand

N
(

#»x + ∆t
#»

V , t+ ∆t
)

= N + σ
∥∥∥ #»

V
∥∥∥∆t+O

(
∆t2

)
, (20)

while a first order Taylor approximation gives on the other hand

N
(

#»x + ∆t
#»

V , t+ ∆t
)

= N + ∆t
#»

V · −−→grad N + ∆t
∂N

∂t
+O

(
∆t2

)
. (21)

These two expressions can be combined into

∂N

∂t
+
−−→
grad N · #»

V =
DN

Dt
= σ

∥∥∥ #»

V
∥∥∥ . (22)

The mass conservation equation ( ∂ρ/∂t+ div
(
ρ

#»

V
)

= 0 ) finally yields the conservative form

∂ρN

∂t
+ div

(
ρN

#»

V
)

= ρ
∥∥∥ #»

V
∥∥∥σ . (23)

The “classical” integral (19) carried along the edge streamline has thus been generalized into an advection

equation (23) on the whole computational domain with a source term ρ
∥∥∥ #»

V
∥∥∥σ. This type of equation is

better suited to a RANS solver than the original integral formulation since it avoids (see section IV):

• Finding the integration path (the edge streamline geometry).

• Performing the integration along this path (thus requiring interpolations from the initial mesh to the

integration path).
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To ensure that the N-factors are integrated starting from a null value, an additional forcing term is added

to the source term. It sets the N-factor value to 0 in field cells whose corresponding wall cells are near the

stagnation point (see figure 4). The resulting complete equation is as follows

∂ρN

∂t
+ div

(
ρN

#»

V
)

= ρ
∥∥∥ #»

V
∥∥∥σ − ΓattσattρN , (24)

where σatt is a forcing stiffness coefficient set to 1.1 and

Γatt =


1 if wall cell is in stagnation region

0 otherwise

. (25)

The determination of the stagnation regions is done via the method proposed by Kenwright et al.36 at each

iteration in the RANS solver. The forcing term has no effect when Γatt = 0 and a zero wall-normal flux

condition is applied at the other wall cells.

−6 −5 −4 −3 −2 −1 0 1

−2

−1

0

1

2

x/L

y/L

0

1

Γatt

Figure 4. Stagnation line indicator.

The N-factor value needed to determine whether transition occurs is then extracted at the boundary-layer

edge. The solving method is as follows, for every iterations of a RANS computation:

1. Compute the growth rates σ∗ of each N-factor — each physical frequency f — via the database

approach. The method used in this paper to prescribe the frequency range is given in section IV.A .
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2. Compute the local source term ρ
∥∥∥ #»

V
∥∥∥σ = ρ

∥∥∥ #»

V
∥∥∥σ∗/δ1 on the whole computational domain. It is

reminded that σ∗ and δ1 come from the computations made along the corresponding pseudo-normal

line (see section III.A).

3. Solve an advection equation for each ρN, decoupled from the mean state equations (the values of
#»

V

for the determination of N at iteration n+ 1 are taken from iteration n).

4. Extract the N-factor value (ρN/ρ) at the boundary-layer edge.

5. For each station on the wing, compare the value of the maximum extracted N-factor (Nenv) to NT.

6. If the maximum is higher than NT, the turbulence model is activated.

This method’s major drawback is its memory cost: solving an equation on the complete domain for each

N-factor implies that values of ρN have to be stored in each mesh cell and for each N-factor although we

only need the values on a single line (the boundary-layer edge). Then again, this specific single line is not

known and difficult to determine in a RANS computation.

It also requires the computation of the boundary-layer thickness and integral quantities, which is possible

in elsA. This turns the N-factors transport equations into a non-local model since the values of σ∗ and δ1 for

a given field cell correspond to the pseudo-normal line passing through this field cell. The values of Nenv are

also stored in the wall cells.

IV. First validations: transition prediction on the ONERA-D airfoil

The RANS solver used is elsA (version 3.4). It is based on an object-oriented programming language.

It solves the Navier-Stokes equations on structured meshes with a cell-centered finite volume discretization

technique. A backward Euler time integration scheme is used with a local time step. Implicitation is

performed via a scalar lower-upper successive over-relaxation (LU-SSOR) method.

The transition is taken into account through the effective viscosity concept (Boussinesq eddy viscosity

assumption) µeff = µ + γµt where γ is the intermittency factor (γ = 0 if the flow is laminar, γ = 1 if it is

turbulent) and µt is given by the turbulence model used. The intermittency factor γ is stored in the wall cells

and applied to all field cells on the corresponding pseudo-normal (see III.A). It can either be a user-defined
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value to force the transition location or be set by a transition model.

The ONERA-D airfoil is a symmetrical supercritical airfoil and the conditions set for the tests are subsonic

incompressible (M∞ = 0.17). The mesh used is well refined in the boundary layer (about 50 mesh points

within the boundary layer in the wall-normal direction). The turbulence is computed via Menter’s k-ω SST

model37 and Roe’s numerical scheme38 is used with a third order MUSCL flux reconstruction and no limiter.

A two-step approach is used:

1. A first solution is obtained with a fixed arbitrary transition location (user-defined intermittency factor

distribution at the wall) as close to the trailing edge as possible (but close enough to the leading edge

to avoid any laminar separation that might prevent convergence).

2. This first solution is used as an initial state for the actual computation, where the Parabolas method

is used to determine the transition location.

This two-step approach is needed on one hand to avoid applying the Parabolas method to erratic values of

boundary-layer quantities and on the other hand because the method yields the growth rates of perturbations

disturbing a laminar boundary layer.

The purpose of this test case is to identify and tackle numerical issues. This section is broken down

into three parts. Section IV.A assesses the validity of the transport equations as a replacement of the

integral formulation and section IV.B explains the need for a transition indicator while convergence issues

are addressed in section IV.C.

IV.A. Transport equation validation

The first step is to verify whether the proposed transport equation (24) is actually equivalent to the original

integral formulation (19). To do so, a standalone in-house code is used (referred to as FENEC) designed

specifically for validation purposes. Its inputs are the boundary-layer quantities computed with elsA and

it computes the growth rates of the desired frequencies via the Parabolas method . The integration of the

N-factors (19) in FENEC is carried out along the airfoil’s curvilinear abscissa. FENEC is also used to find

out a range of unstable frequencies, using the boundary-layer quantities given by elsA at step 1. elsA’s

transport equation results are then compared against FENEC to assess their accuracy. The N-factor values
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in this case are not used for the onset of transition (transition is arbitrarily fixed at x/L = 60 %). Results

are plotted in figure 5.
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Figure 5. Comparison between exact integration results (symbols) and transported N-factor (lines).

The N-factors values computed by FENEC and elsA are in excellent agreement, which confirms that both

the N-factors computation via a transport equation and their extraction at the boundary-layer edge are valid

in elsA. To avoid computing the damping of modes that have not yet been amplified the following condition

is applied:

σ := max (0, σ) when N < 0.5 .

While this condition works well to avoid damping modes that have not yet been amplified, its side effect

is to prevent the N-factor from dropping below the arbitrary value of 0.5. This limiter should not have any

impact on the transition prediction as it can be considered that a N-factor damped down to 0.5 is unlikely

to be re-amplified enough to contribute to the envelope.

IV.B. Transition indicator

A problem arises when trying to use the N-factors to trigger transition instead of using an imposed transition

location: to know if a field cell is downstream of the transition location, it is necessary to know if the N-factor

envelope already reached a value higher than NT somewhere upstream on the corresponding pathline. It

is indeed not sufficient to check the value of Nenv (stored in the corresponding wall cell) against NT since
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no assumption can be made on the envelope evolution. Nenv could increase up to NT, triggering transition,

but then decrease below this threshold in the turbulent region. In such a situation, the decrease does not

correspond to relaminarization and should not be taken into account.

To the best of the authors’ knowledge, the only way to get access to an information available upstream

of the current location is to transport the said information. As a consequence, a transition indicator Ĩ is

advected. It follows a classical convection equation with a source term used to apply two types of forcing.

The first one sets the indicator value at 0 in field cells whose associated wall cells are near the stagnation

point (as it was done for the N-factor transport equation (24)). The second one sets it at 1 when the envelope

is greater than NT. The resulting transport equation is

∂ρĨ

∂t
+ div

(
ρĨ

#»

V
)

= −ΓattσattρĨ − Γenvσenvρ
(
Ĩ − 1

)
, (26)

where σatt and σenv are forcing stiffness coefficients set to 1.1 and

Γatt =


1 if wall cell is in stagnation region

0 otherwise

and Γenv =


0 Nenv < NT

1 Nenv ≥ NT

. (27)

The two forcing terms are not supposed to be activated at the same time. Figure 6(a) shows a synthetic

situation where the value of NT = 5.5 has been chosen to represent the pathological case where a “relami-

narization” could be detected. In that case, the transition indicator is forced at 1 where Nenv > NT, at 0 in

the stagnation region and advected elsewhere. After a transient phase (figures 6(b) and 6(c)) the converged

indicator has the desired values (figure 6(d)): 0 before the envelope reaches NT and 1 after, even at the

locations where Nenv < NT (x/L ∈ [0.33 ; 0.44]).
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(c) 25th iteration
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(d) 50th iteration

Figure 6. Transition indicator evolution (solid line: advected values, dashed line: forced values).

IV.C. Convergence issues and intermittency function

In the first implementation of the model, point transition was applied, namely

γ =


0 Ĩ < 0.2

1 Ĩ ≥ 0.2

. (28)

where the arbitrary threshold 0.2 is only necessary on transient iterations since Ĩ might not be exactly 0 or

1 but somewhere in between.

Besides the lack of physical relevance of this type of intermittency factor distribution (it does not take the

transitional zone into account where laminar regions and turbulent spots co-exist), Drela,14 and Stock and

Haase39 mentioned that it generates a strong viscous/inviscid interaction region that prevents the method

from converging. This comes from the rapid decrease of δ1 from its laminar value at the transition location.

This viscous phenomenon acts like a sink for the inviscid flow and therefore increases its velocity upstream of

the transition location. This causes the transition to be delayed, allowing δ1 to re-increase and the transition
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to be advanced back upstream and repeat the cycle. The same type of issue has been encountered in our

computations and convergence could not be reached.

This establishes the need for a longitudinal intermittency function to smooth the transition from the

laminar to the turbulent state of the flow. In the same study, Stock and Haase used the classical Dhawan

and Narasimha40 universal intermittency formulation to obtain

γ = 1− exp

(
−0.411

(
3.36

s̃

s̃len

)2
)
. (29)

Where s̃len is the length of the transitional region and s̃ is the curvilinear abscissa starting at the transition

location. s̃len is unknown and needs to be modeled. Narasimha,41 Chen and Tyson,42 and Walker43 proposed

formulations of the form

Res̃len = A (Restr)
b
, (30)

when neglecting compressibility effects. They are all based on the knowledge of Restr , the Reynolds number

based on the curvilinear abscissa taken at the beginning of the transitional region. Stock and Haase proposed

to use a correlation to deduce Restr from the value of Reδ1 at the transition location, which is more suited to

a RANS formulation. The proposed correlation is based on the incompressible flat plate Blasius flow which

yields

Reδ1tr
= 1.72 (Restr)

1/2
. (31)

They then recast the aforementioned formulations (and proposed a modified form of Walker’s model) of s̃len

into

Res̃len = A′ (Reδ1tr
)
b′
. (32)

While this version seems well-suited to the RANS approach used in this paper, it suffers from three

shortcomings:

• s̃ needs to be evaluated.

• The value of s̃len or Reδ1tr
is needed downstream of the transition location.

• The correlation that allowed this formulation neglects compressibility and pressure gradient effects
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since it is based on a Blasius solution.

The first issue is addressed by noticing that

s̃ =

∫ s

str

1 dη , (33)

which is equivalent to integrating a regular N-factor (or solving the corresponding transport equation) with

the specific growth rate

σ s̃ =


0 Ĩ < 0.2

1 Ĩ ≥ 0.2

. (34)

The second one can be dealt with through an additional convection equation (on s̃len or Reδ1tr
) with a forcing

source term. Finally, the third one would require a new correlation.

The purpose of this type of intermittency model — in the context of this paper — is to get a converged

solution more than computing accurately the transitional zone of the flow. For this reason and to simplify

the implementation process (i.e. to avoid adding a transport equation on s̃len), the choice has been made to

compute s̃ through the proposed transport equation but to set the intermittency length s̃len as a user-defined

parameter instead of computing it. For this ONERA-D test case, a transition length s̃len/L = 15 % was used

in accordance with Stock and Haase’s relation (32) and convergence was reached.

Further developments would include the implementation of dedicated intermittency transport equations

in a manner closer to the one proposed by Suzen and Huang44 which is a combination of the shear flow

intermittency model of Cho and Chung45 and the longitudinal intermittency model of Steelant and Dick.46

V. Application to a laminar transonic airfoil

A 2D transonic laminar airfoil (referred to as Airfoil No. 2) was studied in 2012 by Dassault Aviation and

Onera in the context of a European project (the Joint Technology Initiatives, Smart Fixed-Wing Aircraft).

The transonic airfoil was tested in Onera’s S2MA wind tunnel (Modane-Avrieux Center). Numerical and

experimental results are available on this configuration47 and the same mesh is used (figure 7(b)) since it has

been shown that it is suitable for transition computations. As stated in Hue et al.,47 it features a classical
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C topology known to be suitable to describe the flowfield around this type or airfoil. The total domain

length is about 106 chords long, the origin is located at the quarter-chord, and the extent beyond this point

is about 57 chords. The whole mesh is made of 215,000 elements, with a stretch ratio of about 1.10 in the

boundary layer. Once this grid was computed, Hue et al. checked the normalized first cell heights to verify

the validity of the boundary-layer discretization and determined that the maximal y+ on the surface (trailing

edge excepted) exhibited values from 0.4 to 1 in the range of Reynolds numbers considered.

The wind tunnel confinement effects are not taken into account in the numerical simulation (free at-

mosphere configuration), the angle of attack is therefore modified to get the same pressure coefficients in

the laminar regions of the airfoil. The experimental lift coefficient is recovered from the integration of the

pressure coefficients while the numerical one is obtained via the flow circulation around the airfoil. The

metrology also features an infrared camera to measure the transition location on the airfoil, pressure taps on

the airfoil’s skin to get pressure coefficients and a turbulence probe allowing the estimation of the upstream

turbulence level.

(a) Test section (b) RANS grid with C topology surrounding the airfoil

Figure 7. S2MA test section description and elsA mesh.

Menter’s k-ω SST model was used but this time the numerical scheme is Roe’s second order method with

van Albada’s limiter. This limiter is necessary since the upstream Mach number in the lot1124 test case

(presented table 1) is higher than the airfoil’s critical Mach number. A flux-limiter is therefore necessary to

capture the resulting discontinuities. It is used on the other cases to ensure the same numerical parameters

for all cases.

A three-step approach is used, similar to the one described in section IV:
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1. Determine the numerical angle of attack AoAelsA to get pressure coefficients similar to the experi-

mental ones (iso-Kp conditions) as well as a realistic mean flow and the corresponding boundary-layer

quantities. This is done by setting the numerical transition location to the experimental value in elsA

and using a trial and error approach.

2. The boundary-layer quantities obtained during step 1 are input into FENEC to get the range of 20

unstable frequencies whose N-factors will be computed (table 1).

3. The pre-converged flow obtained at step 1 is then used to initialize the complete computation where

the 20 N-factor equations are solved to find the numerical transition location xtr,elsA.

A consequence of fulfilling an iso-Kp condition (elsAKp) instead of a more classical iso-CL one (elsACL
)

is a difference in the numerical and experimental values of CL. Computations made with values of AoAelsA

ensuring iso-CL conditions led to discrepancies in pressure distribution resulting in different boundary-layer

stability properties. More specifically, the pressure distribution discrepancies were the manifestation of

different mean boundary-layer velocity profiles, exhibiting a different set of unstable modes.

SectionV.A presents the different test cases configurations as well as an overview of the data-processing

methods that were used. Section V.B then presents a detailed analysis of the lot1125 case while section V.C

gives an overview of the results obtained on the other lots.

V.A. Overview of test case configurations and data-processing methods

Test case configurations. Six configurations were used, as summed up in table 1. For each of these

cases, transition in the experimental setup was triggered at 5% of chord on the suction side to avoid flow

separation. This is also the case for all computations through a forced discontinuous intermittency and all

transition prediction results are thus given for the pressure side. The first frequency whose N-factor reaches

NT is responsible for transition and noted ftr.
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M∞ Pi∞ Ti∞ ReL AoA (◦) CL xtr/L (%) f [kHz]
[bar] [K] ×106 exp. elsA exp. exp. elsA

lot1126 - Reference 0.70 1.5 300 6.547 0.10 −0.30 0.422 46 - 47 9 - 28
lot1125 - Lower AoA 0.70 1.5 300 6.547 −0.96 −1.40 0.253 32 - 34 26 - 45
lot1124 - Lower AoA 0.70 1.5 300 6.547 −2.00 −2.40 0.096 9 - 10 61 - 80
lot1102 - Higher M∞ 0.73 1.5 300 6.638 0.10 −0.45 0.435 46 - 47 9 - 28
lot1137 - Lower M∞ 0.66 1.5 300 6.373 0.10 −0.43 0.409 46 - 49 9 - 28
lot1078 - Lower ReL 0.70 1.2 300 5.230 0.10 −0.34 0.427 51 - 53 9 - 28

Table 1. Experimental and numerical flow conditions for the laminar transonic airfoil test cases.

The transition region length is computed using the boundary-layer quantities obtained at the first step

(transition location set to the experimental one) and Stock and Haase intermittency length model (yielding

s̃len/L ' 10 % for each case). No laminar separation occurred for this fixed transition location. Convergence

of the final computation (step 3) was considered to be achieved when the conservative variables residuals

dropped by 7 to 8 orders of magnitude and the lift and drag coefficients variation between two successive

iterations was less than 10−5%.

The wind tunnel turbulence level was determined to be of order Tu ' 0.16 %,47 yielding the following

value of NT:

NT = −8.43− 2.4 ln
(
0.16× 10−2

)
' 7.0 . (35)

Experimental transition location The experimental transition location is given by the change of

slope in the temperature evolution (figure 8(b)) extracted from the temperature distribution measured by

infrared imaging on the experimental setup (figure 8(a)).
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Figure 8. Infrared thermography and transition location (lot1078).

Exact stability computations The exact stability computations are performed as follows:

1. inputting some pressure coefficients into 3C3D to get the boundary-layer velocity profiles.

2. using this velocity profiles to get the growth rates via the LLS equation.

3. getting the corresponding N-factors through a classical integration.

Two types of exact stability computations are made, depending on which pressure coefficients are chosen:

BL-stab iso-Kp
: the pressure coefficients come from the iso-Kp elsA results.

BL-stab exp. : the experimental pressure coefficients are used.

V.B. Detailed analysis of lot1125 test case

The lot1125 test case presented the highest error on the transition location when using iso-CL conditions

(table 2). These discrepancies came from an over-estimation of the velocity peak near the leading edge

in the elsACL
case leading to a different flow stability and a transition location further upstream than the

experimental one.

With the elsAKp
configuration, this velocity peak is well recovered (figure 9) and the corresponding

transition location given by the Parabolas method is at 31.9%, in excellent agreement with the expected

32 - 34%.
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Figure 9. Experimental vs. numerical pressure coefficients distribution (lot1125), iso-CL (AoAelsA = −1.61◦).

The Parabolas method in elsA is compared to the BL-stab iso-Kp and BL-stab exp. exact stability compu-

tations. For these three types of computations the values of ftr are respectively 25 kHz, 24 kHz and 23 kHz.

The N-factors given by these three frequencies are therefore compared (figure 10).
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Figure 10. Comparison of N-factors evolution for elsAKp , BL-stab iso-Kp and BL-stab exp. (lot1125).

The discrepancies between BL-stab iso-Kp
(dashed lines) and BL-stab exp. (dotted lines) show the errors

coming from the remaining slight differences in pressure distribution, while the comparison of the N-factors

given by elsAKp
(solid lines) and BL-stab iso-Kp

indicate the errors coming from the Parabolas method itself.
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They can be broken down into two types:

• An error on the critical abscissa (approx. 3% of chord for f = 24 kHz).

• An error on the values of the growth rates.

The error on the values of the growth rates is small enough to have very similar N-factor’s slope between

the elsAKp and the BL-stab iso-Kp results. The error on the critical abscissa comes on one hand from the

Parabolas method approximation of the critical abscissa and on the other hand from the error made on the

boundary-layer quantities input into the Parabolas method in elsA. They have respectively been estimated

to be of order 1% and 2% of chord for f = 24 kHz.

V.C. Overview of results on all cases

V.C.1. Iso-CL and iso-Kp simulations

Table 2 compares both elsAKp and elsACL
results to the experiments for the sake of completeness but only

the iso-Kp cases will be considered hereafter.

AoA (◦) CL xtr/L (%)
exp. elsACL

elsAKp
exp. elsAKp

exp. elsACL
elsAKp

lot1126 - Reference 0.10 −0.63 −0.30 0.422 0.471 46 - 47 44.3 46.9
lot1125 - Lower AoA −0.96 −1.61 −1.40 0.253 0.287 30 - 34 24.1 31.9
lot1124 - Lower AoA −2.00 −2.52 −2.40 0.096 0.116 9 - 10 6.0 6.9
lot1102 - Higher M∞ 0.10 −0.62 −0.45 0.435 0.459 46 - 47 44.1 47.5
lot1137 - Lower M∞ 0.10 −0.58 −0.43 0.409 0.431 46 - 49 44.5 46.9
lot1078 - Lower ReL 0.10 −0.53 −0.34 0.427 0.457 51 - 53 47.5 49.3

Table 2. Experimental and numerical results for the laminar transonic airfoil test cases, iso-CL and iso-Kp.

It is possible in each case to find out which frequency triggers transition, as summed up in table 3. elsA’s

estimation with the current method presents a satisfactory agreement with the LLS results based on the

experimental data.

lot1126 lot1125 lot1124 lot 1102 lot 1137 lot 1078

ftr (elsAKp
) 18 kHz 25 kHz 66 kHz 18 kHz 17 kHz 16 kHz

ftr (BL-stab exp.) 17 kHz 23 kHz 77 kHz 18 kHz 16 kHz 16 kHz
Table 3. Comparison of frequencies triggering transition for each case.

The frequency comparison presents limitations as ftr increases since the N-factors begin to weakly depend
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on the frequency. Figure 11 shows the evolution of the N-factors at frequencies ranging in a 20 kHz window

centered on ftr for the lots 1125 (where the N-factors depend on f) and 1124 (where the N-factors weakly

depend on f).

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

9

10

11

12

x/L

N-factor
lot1125 elsAKp (16 kHz)
lot1125 elsAKp (25 kHz)
lot1125 elsAKp (35 kHz)

(a) Lot 1125, f ∈ [16 kHz ; 35 kHz] (ftr = 25 kHz)

0 0.05 0.1 0.15

0

1

2

3

4

5

6

7

8

9

10

11

12

x/L

N-factor

lot1124 elsAKp (57 kHz)
lot1124 elsAKp (66 kHz)
lot1124 elsAKp (76 kHz)

(b) Lot 1124, f ∈ [57 kHz ; 75 kHz] (ftr = 66 kHz)

Figure 11. Comparison of the N-factors of lots 1125 and 1124 for a 20 kHz frequency range centered on ftr.

This explains the fact that the highest discrepancies in the prediction of the frequency triggering transition

are seen for the lot1124 test case in table 3.

With an iso-Kp criterion for the angle of attack correction, elsA’s results are in good agreement with the

exact stability computations. This demonstrates that given the right flow configuration the new transition

model is able to capture accurately the amplification of the unstable modes.

V.C.2. Mach number, Reynolds number and angle of attack effects on the transition location

This section aims at giving a physical interpretation of the results presented in table 2 for the iso-Kp

configurations.

Mach number effect. Changes in Mach number (lot1102 and lot1137) are not sufficient to observe any

noticeable compressibility effects. Transition would be observed further downstream as the Mach number

increases because the compressiblity effects tend to stabilize perturbations.
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Reynolds number effect. A decrease in the Reynolds number ReL (lot1078) has a stabilizing effect

intense enough to observe an expected delayed transition on the experimental setup. The numerical transition

location is also observed further downstream.

Angle of attack effect. The decrease in angle of attack amplifies the velocity peak on the pressure side

due to the flow bypassing the leading edge. This leads to a decelerated zone, with pressure gradients getting

higher as the angle of attack decreases, as can be seen in figure 12. The fast uprising of modes at higher

frequencies is therefore fostered and the transition happens further upstream because Tollmien-Schlichting

waves are sensitive to adverse pressure gradients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x/L

−Kp

elsAKp

Experimental data
lot1124 AoAelsA = −2.40◦

lot1125 AoAelsA = −1.40◦

lot1126 AoAelsA = −0.30◦

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x/L

−Kp

elsAKp

Experimental data
lot1124 AoAelsA = −2.40◦

lot1125 AoAelsA = −1.40◦

lot1126 AoAelsA = −0.30◦

Figure 12. Pressure side experimental vs. numerical pressure coefficients distribution (lots 1124 to 1126), iso-Kp.

VI. Conclusions

A new implementation of the N-factor method in the elsA Navier-Stokes solver has been proposed. This

new method is based on Onera’s database approach and recast the classical N-factor integral formulation

into a set of transport equations. The resulting model is better suited for direct RANS applications, however

it requires on-the-fly computation of the boundary-layer thickness and integral quantities, which is possible

in elsA.

It also requires an indicator to check if transition occurred upstream of a given field cell. It has been

shown that point transition should not be applied since it is not representative of the real transition process
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and generates convergence issues. An exponential law for the intermittency factor has therefore been used.

Computations in the transonic regime were done and successfully validated against experimental results,

provided that the numerical angle of attack is chosen to respect the pressure coefficients distribution on the

airfoil. This comes directly from the sensitivity of any stability analysis to the boundary-layer flow dynam-

ics, represented by the wall pressure distribution. The iso-CL condition is very classical when comparing

numerical results to experimental ones but this criterion is no longer sufficient when it comes to accurately

capturing complex situations such as the laminar-turbulent transition phenomenon.

Further developments will extend the approach to 3D flow cases. The current implementation is already

valid for three-dimensional Tollmien-Schlichting waves and crossflow instabilities need to be considered. The

computation of the growth rates for this type of instability can be done with the Parabolas method, it

requires the determination of some parameters of the generalized inflection point.

An extension of the original database approach also exists to compute transition in separation bubbles.

It would therefore be possible to implement this extension and compare its results to the “classical” Gleyzes-

Habiballah criterion.

As stated in the abstract, the major benefit of the presented approach is its ability to intrinsically follow

the edge streamline without any topology specification from the end user. The additional computational

effort is yet to be accurately quantified (in terms of time and memory consumption).

General viscous-inflectional model

This type of instabilities appears at higher Mach numbers or strong adverse pressure gradients. It is the

superposition of both viscous and inflectional instabilities. The Parabolas method therefore models their

respective growth rates σv and σi by two sets of two half parabolas. In the end we have

σ∗ = max (σv, σi) , (36)
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and

σv
σMv

= 1−
[

Reδ1 −RMv

Rkv −RMv

]2
where Rkv =


R0v Reδ1 < RMv

R1v Reδ1 > RMv

, (37a)

σi
σM i

= 1−
[

Reδ1 −RMi

Rki −RMi

]2
where Rki =


R0i Reδ1 < RMi

R1i Reδ1 > RMi

. (37b)

This model loses accuracy when Reδ1 is close to R1i. A linear fix is therefore used as shown in figure 13.

R0i = R0v RMv RMi R1v R̃ Rpi R1i

KσM i

σM i

σMv

Viscous model

Inflectional model

Linear correction

Reδ1

σ∗

Figure 13. Complete parabolas model with linear correction.

The linear portion is linked to the inflectional model at Reδ1 = R̃ and intersects the Reδ1 -axis at R1i.

Growth rates for the respective linear and parabolic parts are thus given by

σi
σM i

= (Reδ1 −R1i)
K

R̃−R1i

, (38)

and

σi
σM i

= 1−
[

Reδ1 −RMi

Rki −RMi

]2
where Rki =


R0i Reδ1 < RMi

Rpi Reδ1 > RMi

. (39)
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Continuity in R̃ and an additional tangent continuity constraint give

Rpi = RMi −

(
RMi − R̃

)
√

1−K and R̃ =
2 (1−K)R1i +KRMi

2−K . (40)

K = 0.5 was determined to be a good all purpose value and R1i is given by the database. σMv is given

by

σMv = AMv

(
1− F

FMv

)
. (41)

This expression is not valid for a small range of near zero frequencies, where σMv does not tend toward a

maximum when F decreases but reaches a maximum and then decreases. This behavior occurs at sufficiently

large Reynolds numbers to only consider a limiter on σMv

σMv = σM l when F < FMv

(
1− σM l

AMv

)
. (42)

The remaining coefficients are functions of F and the whole set of parameters is

σMv = min

(
AMv

(
1− F

FMv

)
, σM l

)
, (43)

σM i = AMi

(
1− F

FMi

)
, (44)

RMv = KMv

(
105F

)EMv
, (45)

RMi = KM i

(
105F

)EMi
, (46)

R0v = RMv

[
1−A0v

(
1− F

F0v

)]
, (47)

R0i = R0v , (48)

R1v = K1v

(
105F

)E1v
, (49)

Rpi = RMi −

(
RMi − R̃

)
√

1−K , (50)

R1i = K1i

(
105F

)E1i
. (51)

The 15 parameters AMv, FMv, σM l, AMi, FMi, KMv, EMv, KM i, EM i, A0v, F0v, K1v, E1v K1i, and E1i

where determined for 32 adiabatic wall configurations and stored in a two entry lookup table based on Hi
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and Me.
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