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Abstract

This article addresses the characterization of extreme value statistics of continuous
second order random field. More precisely, it focuses on the parametric study of
engineering models under uncertainty. Hence, the quantity of interest of this model
is defined on both a parametric space and a stochastic space. Moreover, we con-
sider that the model is computationally expensive to evaluate. For this reason it is
assumed that uncertainty propagation, at a single point of the parametric space, is
achieved by polynomial chaos expansion. The main contribution of the present study
is the development of an adaptive approach for the discretization of the random field
modeling the quantity of interest. Objective of this new approach is to focus the com-
putational budget over the areas of the parametric space where the minimum or the
maximum of the field is likely to be for any realization of the stochastic parameters.
To this purpose two original random field representations, based on polynomial chaos
expansion and Kriging interpolation, are introduced. Moreover, an original adaptive
enrichment scheme based on Kriging is proposed. Advantages of this approach with
respect to accuracy and computational cost are demonstrated on several numerical
examples. The proposed method is also illustrated on the parametric study of an
aircraft wing under uncertainty.
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1. Introduction

This study addresses the characterization of extreme value statistics of continuous
second order random fields. It is motivated by the analysis of parametric engineering
problems under parametric uncertainty. Indeed, let y =M(x,d) be an engineering
model, whereM is a deterministic solver, d ∈ Rnd is a vector of control variables of
the model and x is a vector of n model parameters defined on a parametric space
S ⊂ Rn. The minimum (or maximum) value of y(x,d), as well as its position in the
parametric space S, are generally of interest in the study of the model y (e.g. for
optimization of the modelled system).

It is now assumed that parameters x and d are affected by uncertainty. In
order to take into account this uncertainty, the probabilistic framework is used.
Hence, a probability space (Ω, F,P) and a random vector ξ : (Ω, F ) → (Rns ,Bns),
where Bns is the Borel σ algebra and ns the stochastic dimension of the prob-
lem, are introduced. The parameters of the problem are expressed by the random
variables X(x, ξ) = f(x, ξ) and D(d, ξ) = g(d, ξ), where f : Rn × Rns → Rn

and g : Rnd × Rns → Rnd are the known mappings that describe how the un-
certainty affects the parameters x and d respectively. The parametric random
problem, Y (X(x, ξ),D(d, ξ)) = M(X(x, ξ),D(d, ξ)) can thus be modelled as a
scalar random field over the parametric space S. As the purpose of this article
is the study of this random field with respect to the variables x and the ran-
dom variables ξ, the problem can be rewritten, without any loss of generality, as
Y (X(x, ξ),D(d, ξ)) = Y (x, ξ) in order to lighten the notations.

In the following we are interested in the random variable modeling the minimum
(or the maximum) of the random field Y (x, ξ), denoted by

Ymin(ξ) = min
x∈S

(Y (x, ξ)) , (1)

as well as the random variable modeling the position where this minimum (or max-
imum) is reached,

X?(ξ) = arg min
x∈S

(Y (x, ξ)) . (2)

As they allow to characterize the dispersion of the value and the position of the
minimum of the random parametric problem under study, the random variables
Ymin(ξ) and X?(ξ) are important information for many applications in the domains
of optimization, robustness and reliability. Note that the approach we will propose
can handle both cases (maximum or minimum) of extreme values of the considered
random field (the passage from one to the other being done by taking the opposite of
the random field). In order to simplify notations we will from now on only consider
the minimization case.
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The study of extreme values generally deals with a discrete collection of indepen-
dent random variables. In this particular case theoretical results are available for
modeling the probability distribution of the maxima (e.g. the generalized extreme
value distribution, see [1]). Concerning the study of continuous random process and
fields, readers are refered to [2] for theoretical basis. Once again, some theoretical
results are available for some particular random process and fields (see [2] for details).
Otherwise, one can rely on numerical approximations, for example, [3] proposes to
use an approximation of the random field by Karhunen Loève (KL) decomposition
and Gaussian mixture in order to compute the extreme value statistics by application
of the Rice formula [4] on this approximation.

The approach proposed in this paper is complementary to these previous ap-
proaches, by addressing a typical industrial context in which the deterministic model
M(x, ξ) can only be sampled at a given space position x(0) ∈ S and for a given ran-
dom realization ξ(0) ∈ Rns (this type of application is sometimes refered as black box
problem). Moreover, it is assumed that the response of this deterministic model is
the output of a computationally expensive numerical simulation making the use of
brute force Monte Carlo approach intractable. In this context, uncertainty quantifi-
cation (at a given space point x(0)) by polynomial chaos expansion (PCE) is now well
established and will also be used in the present work. Indeed several studies have
demonstrated the effectiveness of PCE to deal with uncertainty quantification, from
the pioneering work by Ghanem and Spanos [5] on stochastic finite elements by Her-
mite PCE to the generalized PCE [6], [7] and adaptive PCE [8], [9]. Computation
of PCE approximations also made great progress in the last decade, in particular
with the development of non intrusive approaches ([10], [11], [12], [13], [14]) that
allow to compute PCE only by sampling the deterministic solverM. These develop-
ments make PCE easy to implement even on heavy computational solvers M (e.g.
non-linear finite elements simulations).

The study of extreme values is obviously closely related to optimization. In
the context of solving parametrized optimization problems, an increasingly pop-
ular approach is surrogate based optimization [15], [16], [17], where a surrogate
model [18], [19] is constructed in order to aid the optimization process. Kriging
based optimization algorithms have been extensively investigated and developed in
the past in particular due to their ability to trade-off exploration and exploitation of
the design space [20], [21], [22]. In our context the problem is also affected by uncer-
tainties, similarly to robust optimization. Robust optimization consists in optimizing
a given statistical measure of the random objective function. Many statistical mea-
sures have been studied (mean value, variance, quantile, probability of exceeding
threshold) and readers are referred to [23] for a review). Problems of optimization
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under uncertainty have also been treated by constructing Kriging metamodels in the
augmented space S × Rns (that respectively concerns the variables x and ξ), see
[24], [25] and [26]. While these approaches considered global approximations of the
objective function, approaches have also been considered that sequentially construct
local approximations in a trust region type framework [27], [28]. Following this line,
an approach integrating a trust region method for the optimization with an adaptive
stochastic collocation method for uncertainty quantification is proposed in [29] and
extended in [30]. In [31], [26] the authors propose to use a trust region optimization
framework, while constructing local kriging surrogate models of the system output
in the augmented space. Compared to these existing frameworks for optimization
under uncertainty our approach differs by considering a somewhat different problem.
Typical frameworks consider the optimization of the expected value or a certain
quantile or any other probability measure of the objective function. On the other
hand, the proposed approach seeks to approximate the objective function near its
optimum for any realization of the objective function (i.e. for any instance of the
uncertain parameters), allowing to construct good approximations of the probabil-
ity distributions of the optimum and of its position. Our goal is thus to find an
adaptive discretization of the design space, that yields an accurate approximation of
the objective function near its optimum value for any possible realization, instead
of an accurate approximation of just a metric on the objective function, such as the
expected value or a quantile, as typically considered in previous works.

Moreover, we are particularly interested in applications in which the objective
function involves multiple possible minima, implying that the probability distribution
of the random variable modeling the minimum position of the objective function, i.e.
X?(ξ), is multimodal. This means that the mapping from the random parameters ξ
to X?(ξ) is expected to be highly non linear. Hence, direct approximation of X?(ξ)
by non intrusive PCE is very difficult to achieve. This motivates the development of
the proposed indirect approach devoted to the construction of an approximation of
the random field modeling the objective function Y (x, ξ).

It is also worth mentioning that, in order to approximate the random variable
modeling the extreme value (i.e. maximum or minimum) defined by Eq. (1) and
by Eq. (2), it is necessary to approximate the random field Y (x, ξ) in any region
since the extremum of the random field can a priori be located anywhere in the
parametric space S. This is usually achieved by discretizing the random field (i.e.
performing the uncertainty quantification at several points x(j) of the parametric
space S). Various discretization approaches have been proposed in the literature
and the reader is refered to [32] for a review. Among the most popular approaches is
the KL decomposition (see [33] for a review on numerical methods to compute this
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decomposition). A common point with all these approaches is that they generally
try to reach the best possible approximation over the whole parametric space S.
However, in the context of our study (determining the random variables in Eqs. (1)
and (2)), one is only interested in having a good approximation of the random field
in the areas of S where the minimum of the random field is likely to be.

In this respect, the aim of the present paper is to propose two different adaptive
random field approximations, both based on PCE and Kriging. It should be noted
that hybrid approaches between PCE and other approximation methods have already
been proposed, for example in [34] in which PCE is combined with perturbation
method and in [35] in which polynomials of the PCE are used as regression basis in
universal Kriging metamodels.

The idea of the two approaches proposed in this article is to handle the depen-
dency with respect to the random variable ξ by PCE whereas the dependency with
respect to the model parameter x is handled by Kriging. Indeed, in the context of our
study (parametric uncertainties in parametrized engineering problems) it is assumed
that the sensitivity of the model response with respect to the random parameters
is linear or slightly non linear (the range of uncertainty is assumed small compared
to the one of the design parameter, which is a reasonable hypothesis for the type of
engineering problems we are interested in). Hence PCE is well suited to deal with
approximation of the random variables ∀x ∈ S, Y (x, ξ). Concerning the sensitivity
of the model response with respect to the parameter x, we assumed that it is more
likely to be highly non linear as the range of variation of these parameters may be
very large (exploration of a design space for example). Consequently, Kriging will be
used for interpolation with respect to x. Moreover, among the different interpolation
approaches able to deal with non linear functions, Kriging is retained because the
Gaussian process formulation is a keystone of the enrichment criterion proposed in
this article.

Indeed, the originality of the approaches we propose resides in their adaptivity,
meaning that the approximations are iteratively constructed to be accurate only
in areas likely to highly contribute to the determination of the random variable of
the extremum (Eq. (1)). Hence, the proposed approach can be seen as an extreme
value oriented random field discretization method. Once the approximation of the
random field is obtained, extreme value statistics of the random field are obtained,
at a reasonable numerical cost, by Monte Carlo sampling on the approximation.

It should be noted that, even if the article focuses on estimation of the extreme
value statistics, the obtained approximation of the random field can also be used
for various other problems, in which accuracy with respect to the extreme value is
determinant, such as parametrized reliability problems.
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The next section details the two proposed random field approximations used for
setting up the adaptive discretization algorithm. The first approximation approach
is based on an interpolation of PCE coefficients, while the second approximation
approach is based on an interpolation of a KL decomposition. Section 3 describes
the adaptive strategy as well as the corresponding iterative algorithm and some
details on its practical implementation. Section 4 is dedicated to numerical examples
and comparison between the two proposed random field approximations. Finally,
Section 5 draws conclusions and perspectives.

2. Discretization of random field by hybrid PCE-Kriging approaches

2.1. Uncertainty quantification by non intrusive PCE

In the following it is assumed that uncertainty quantification (UQ) at a point x ∈
S is carried out by PCE. This section recalls some basics about this approximation
method.

The PCE of the second order random variable Y (x, ξ) is defined as,

Y (x, ξ) =
∞∑
i=1

ai(x)φi(ξ), ∀x ∈ S (3)

where convergence is in the mean square sense (see [7] and [36]). {φi(ξ)}∞i=1 is a
Hilbertian basis of the Hilbert space containing the response Y (x, ξ) and ai(x) are
the projection of Y (x, ξ) on the basis vector φi(ξ). In practice this expansion is
truncated to P terms. The simplest truncation strategy consists in keeping all the
polynomials with a degree less or equal to d. This choice leads to P = (ns+d)!

ns!d!
where

ns denoted the stochastic dimension of the problem.
Note that in the above decomposition the PCE can be seen as a variable separa-

tion approach since the PCE coefficients ai only depend on the parameters x while
the basis vectors φi only depend on the random variables ξ. This separability is an
important contributor to the efficiency of the approaches that we propose below and
is in-line with multiple recent developments also based on variables separability.

For sake of simplicity, only the Hermite polynomials of standard normal random
variables will be used in this study. Note however that this does not limit the
applicability of the method to Gaussian inputs as one can always use iso probabilistic
transforms (see [37]) to transform the random input into standard Gaussian variables.
Hence, in the following it is assumed that ξ is a vector of ns independent standard
Gaussian random variables and {φi(ξ)}∞i=1 the ns variate Hermite polynomials.

Concerning the computation of the unknown coefficients ai(x), the use of a non
intrusive approach [10] is compulsory as it is assumed that the model M is a black
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box function (as opposed to the intrusive approach which needs a modification of the
solver of M). The two most used non intrusive approaches are the projection and
regression approaches [10]. It is well known that both strategies suffer from the so
called curse of dimensionality which makes them computationally intractable in high
stochastic dimension (larger than 10 is a common threshold). This issue has been
tackled (at least partially) for both strategies, by the use of sparse grid numerical
integration in the case of the projection approach ([38], [39] and [40] for example)
and by sparse regression in the second case [11] and [13].

One can note that PCE offers an approximation of the random field Y (x, ξ) by
truncating the series to only P terms such that,

Y (x, ξ) ≈ Ŷ (x, ξ) =
P∑
i=1

ai(x)φi(ξ), ∀x ∈ S.

Hence, with respect to the problem of extreme value statistics, it is natural to intro-
duce the random variables,

Ŷmin(ξ) = min
x∈S

(
Ŷ (x, ξ)

)
(4)

and
X̂?(ξ) = arg min

x∈S

(
Ŷ (x, ξ)

)
. (5)

It is worth noting that solving directly this optimization problem implies, sim-
ilarly to the original problems of Eqs. (1) and (2), that the PCE approximation is
computed for all x in S which is again intractable in practice, as the UQ can only be
performed point by point, by sampling the model. In order to solve this problem, the
next section introduces two random field approximations based on PCE and Kriging
interpolation.

2.2. Random field representations by a hybrid PCE-Kriging approach

2.2.1. Kriging interpolation

Kriging has been introduced by [41] in the geostatistics field. Literature on Krig-
ing is wide and readers could refer, for example, to [42] or [43] for a detailed pre-
sentation. In the following only the background necessary to our application will be
presented, in particular, only ordinary Kriging with constant trend is presented.

Let us define a function g : S → R. It is assumed that this function has been
sampled at ndoe points x(j) ∈ S called a design of experiments (doe) and denoted by
Sndoe

= [x(1), · · · ,x(j), · · · ,x(ndoe)]t. The corresponding vector of responses is denoted
by g = [g(x(1)), · · · , g(x(j)), · · · , g(x(ndoe))]t. Kriging assumes that the function to be
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interpolated (g in this example) is a realization of a Gaussian process. Hence, at a
point x(0) that does not belong to the doe, Kriging prediction g̃(x(0)) of g(x(0)) is a
Gaussian random variable of mean µ and standard deviation σ such that

g̃(x(0), η) = µ(x(0)) + σ(x(0))η (6)

where η is a standard normal random variable. Expressions of µ and σ are given by

µ(x(0)) = β + r(x(0))tR−1(g − 1β) (7)

and
σ2(x(0)) = s2

(
1 + r(x(0))tR−1r(x(0))

)
(8)

where r(x(0)) = [r(x(0) − x(1)), · · · , r(x(0) − x(j)), · · · , r(x(0) − x(ndoe))]t, R is the
covariance matrix of the doe i.e Rij = r(x(i) − x(j)), i = 1, · · · , ndoe, j = 1, · · · , ndoe
where r(x;θ) is a covariance function with parameters θ = [θ1, · · · , θi, · · · , θn] (cor-
relation length in each direction), 1 = [1, · · · , 1]t, β and s are scalar parameters.
It should be noted that a large literature is devoted to the optimal construction of
Kriging models by carefully selecting the covariance function and optimizing its pa-
rameters. Readers interested in this topic are referred to [42] or [43] and references
within. In the following, the covariance function is set to squared exponential

r(x;θ) = s2
n∏
i=1

exp(− 1

θi
x2i )

and parameters θ β and s are estimated by maximization of the likelihood function
(classical method in the literature). These choices are quite common for kriging,
though relatively arbitrary. A full investigation of their impact was not carried out
in order to lighten the article and focus it on the proposed methodology for the
discretization of second order random field dedicated to the study of its extreme
value statistics. Note that using some advanced methods for the selection of the
covariance function and the optimization of its parameters rather than the classical
one used in the following could potentially lead to a further improvement of the
proposed approach.

2.2.2. Interpolation of the PCE coefficients

For the purpose of explanation it is assumed that UQ by PCE has been carried
out at ndoe points x(j), j = 1, · · · , ndoe forming an initial doe. Hence, the random
variables Y (x(j), ξ) are approximated by their truncated PCE denoted by,

Ŷ (x(j), ξ) =
P∑
i=1

ai(x
(j))φi(ξ), j = 1, · · · , ndoe. (9)
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Then, assuming that the same basis {φi(ξ)}Pi=1 is used at each point x(j), j =

1, · · · , ndoe, a way to approximate the random field Ŷ (x, ξ) is to interpolate the value
of the PCE coefficients ai(x), i = 1, · · · , P over the design space S based on the initial
doe. It should be noted that each coefficient ai(x) is a deterministic function from
S to R and that fitting the Kriging models for each ai(x) presents no particular
difficulty. According to the description of Kriging interpolation in Section 2.2.1, at
a point x(0) that does not belong to the doe, Kriging prediction ãi(x

(0)) of ai(x
(0))

is a Gaussian random variable of mean µãi(x
(0)) and standard deviation σãi(x

(0))
such that ãi(x

(0), ηi) = µãi(x
(0)) + σãi(x

(0))ηi where ηi is a standard normal random
variable. Expressions of µãi(x

(0)) and σãi(x
(0)) are obtained similarly to Eq. (7) and

Eq. (8) respectively.
Hence, the approximation of the PCE of the random field Y (x, ξ) reads,

Ỹ (x, ξ,η) =
P∑
i=1

ãi(x, ηi)φi(ξ), ∀x ∈ S (10)

where η = [η1, · · · , ηi, · · · , ηP ]t is a random vector of P independent standard nor-
mal random variables (cf. Eq. (6)). These random variables represent the Kriging
uncertainty, i.e. the uncertainty related to the fact that for each coefficient ai(x) a
Kriging approximation is one possible realization of a conditioned random field. In
the following this representation will be denoted by PCE −KG.

At this point, some remarks can be done.

• It is assumed that the same basis vectors {φi(ξ)}Pi=1 are used at each point
x(j), j = 1, · · · , ndoe, in order to have a meaningful approximation of the PCE
coefficients by Kriging models. This assumption reduces the adaptability of
the method to enhance PCE approaches such as adaptive basis [8] or sparse
basis [11] and [13]. This point, and some possible solutions, will be discussed
in Section 5.

• One can note that independence of the PCE coefficients is assumed for the
Kriging interpolation. Indeed, P independent Kriging models are built (one
per PCE coefficients). A more rigorous way to achieve the interpolation could
be to consider the function from S into Rn and to build a n-values Kriging
model (this allows to use the information of dependence between the PCE co-
efficients). Nevertheless, building such a Kriging model increases significantly
the computational efforts as the whole correlation structure must be deter-
mined. Hence, the independence simplification is made in order to keep the
computational cost low (moreover, in this case the Kriging interpolations can
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be built in parallel). Note that this assumption does not have any detrimental
effect on the quality of the approximations.

• One can note that the conditional random variable,

Ỹ (x, ξ,η)|ξ=ξ(0) = Ỹ (x, ξ(0),η) =
P∑
i=1

ãi(x, ηi)φi(ξ
(0)), ∀x ∈ S

is a linear combination of independent Gaussian random variables and thus is
itself a Gaussian random variable of mean

µỸ (x, ξ(0)) =
P∑
i=1

µãi(x)φi(ξ
(0)), ∀x ∈ S

and variance

σ2
Ỹ

(x, ξ(0)) =
P∑
i=1

σ2
ãi

(x)φ2
i (ξ

(0)), ∀x ∈ S.

This last point will be particularly important for the practical implementation
of the adaptive discretization method proposed in Section 3. Finally, one can
note that, in this direct interpolation approach, the number of Kriging inter-
polations to build is equal to the size of the polynomial basis P used in the
PCE approximation. As this number grows rapidly with the polynomial degree
d and the stochastic dimension of the problem ns, we introduced in the next
subsection a second random field representation allowing, in some situations,
a reduction of the number of Kriging interpolations to build.

2.2.3. Karhunen Loève decomposition, interpolation of the mean and eigenvectors

In the following we are interested in the KL decomposition of Y (x, ξ) which is
assumed to be a real valued continuous second order random field. We denote by
µY (x) : S → R its mean function, and by k(x,x′) : S × S → R its covariance
function. Then, the KL decomposition stands that ∀x ∈ S,

Y (x, ξ) = µY (x) +
∞∑
i=1

γi(ξ)
√
λiϕi(x) (11)

where convergence is in the mean square sense. γi are zero mean, unit variance,
mutually uncorrelated random variables equal to,

γi(ξ) =
1√
λi

∫
S

(Y (x, ξ)− µY (x))ϕi(x)dx. (12)
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λi and ϕi are respectively the eigenvalue and the eigenvectors of the covariance
function k(x,x′) solving the second kind Fredholm equation,∫

S

k(x,x′)ϕi(x
′)dx′ = λiϕi(x). (13)

In practice, Eq. (13) is solved by numerical integration methods (see [33] for a
review of these methods). Concerning the random variables γi, one could note that,
in the particular case of Gaussian random fields, these random variables are standard
Gaussian independent random variables. In non Gaussian cases, the distribution of
the random variables γi is numerically approximated thanks to Eq. (12) (for example
[3] uses Gaussian kernels).

In the particular context of UQ by PCE, the continuous second order random
field Y (x, ξ) is approximated by Ŷ (x, ξ) =

∑P
i=1 ai(x)φi(ξ), ∀x ∈ S. This random

field admits the following KL decomposition,

Ŷ (x, ξ) = µŶ (x) +
∞∑
j=1

γ̂j(ξ)

√
λ̂jϕ̂j(x), ∀x ∈ S.

In [44] it is shown that PCE provides a natural way to achieve a KL decomposition.
The authors use this approach to reduce the dimension of the stochastic problem
for the resolution of non linear coupled problems. Below we recall the feature of the
method proposed in [44] that is relevant in the present work. As in the previous
Section 2.2.2 it is assumed that the UQ has been performed by PCE at an initial doe
of size ndoe and we denote by ai = [ai(x

(1)), · · · , ai(x(j)), · · · , ai(x(ndoe))]t, i = 1, · · · , P
the vectors whose components are the PCE coefficients ai computed at the doe.
In the following we are interested in the KL decomposition of the random vector
Ŷndoe

(ξ) = [Ŷ (x(1), ξ), · · · , Ŷ (x(j), ξ), · · · , Ŷ (x(ndoe), ξ)]t, which reads (see [44] and
appendix 6.1 for calculation details),

Ŷndoe
(ξ) = µŶ +

ndoe∑
j=1

(
P∑
i=2

atiϕ̂jφi(ξ)

)
ϕ̂j. (14)

where µŶ = a1 and ϕ̂j, j = 1, · · · , ndoe are the eigenvalues of the covariance

matrix KŶ =
∑P

i=2 aia
t
i.

From Eq. (14) we propose to approximate the random field Y (x, ξ) by Kriging
interpolation of the mean value and of the eigenvectors based on the vectors µŶ and
ϕ̂j respectively. This leads to the following representation of the random field,

Ỹ (x, ξ,η) = µ̃Ŷ (x, η0) +

ndoe∑
j=1

(
P∑
i=2

atiϕ̂jφi(ξ)

)
ϕ̃j(x, ηj), ∀x ∈ S. (15)
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where µ̃Ŷ (x, η0) and ϕ̃j(x, ηj) are respectively the Kriging interpolation of the mean
function µŶ (x) and of the eigenvectors ϕ̂j(x). Posing η = [η0, · · · , ηj, · · · , ηndoe

]t a
random vector of ndoe+1 independent standard normal random variables, we express,
based on Eq. (6), the Kriging approximations µ̃Ŷ (x, η0) = µµ̃Ŷ (x) + σµ̃Ŷ (x)η0 and
ϕ̃j(x, ηj) = µϕ̃j

(x) + σϕ̃j
(x)ηj. In the following this representation will be denoted

by full PCE −KL−KG.
Some remarks can be made.

• Similarly to the method involving direct interpolation of the PCE coefficients
(Section 2.2.2), it is assumed that the functions to interpolate are indepen-
dent and ndoe + 1 Kriging models are build. In the case of the eigenvectors
this hypothesis is obviously abusive as we know that the eigenvectors are or-
thogonal (which involves a dependence between them). Once more, however,
constructing independent approximations is not detrimental to the quality of
the approximations.

• Usually, the traditional numerical integration schemes that have been proposed
to solve Eq. (13) converge for all points in S. Objective of the adaptive nu-
merical scheme proposed in the following is not to achieve convergence for all
points in S but, only in the areas of S where the minimum of the random field
is likely to be, in order to decrease computational costs.

• One can note that in Eq. (14) the ndoe eigenvectors are used in order to have
the exact KL decomposition of the random vector Ŷndoe

(ξ). However, in some
cases the KL decomposition can be truncated by keeping only the M highest
eigenvectors (which is the idea of classical dimensional reduction approaches
(e.g. [44])). In practice the eigenvectors to keep in the truncated decomposition
are selected by choosing the M vectors with the highest eigenvalue such that∑M

i=1 λ̂
ndoe
k∑ndoe

i=1 λ̂
ndoe
k

= 1− εKL (16)

where λ̂ndoe
1 > λ̂ndoe

k > λ̂ndoe
ndoe

. In practice this remark is very important in
our methodology as it allows to decrease the number of Kriging models to
build from ndoe + 1 in the complete case to M + 1 in the truncated case.
Numerical experiments in Section 4 will present examples that emphasize the
practical interest of this truncation. This representation will be hence denoted
by truncated PCE −KL−KG.
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PCE −KG full PCE −KL−KG truncated PCE −KL−KG
Nb of Kriging
metamodels

P = (ns+d)!
ns!d!

ndoe + 1 M + 1

Table 1: Number of Kriging metamodels to build according to the random field representation used.
ns is the stochastic dimension of the problem, d is the largest polynomial degree used in the PCE,
ndoe is the size of the doe and M is the number of modes kept according to Eq. (16).

• Finally, as for the case of interpolation of the PCE coefficients (Section 2.2.2),
one can note that the conditional random variable,

Ỹ (x, ξ,η)|ξ=ξ(0) = Ỹ (x, ξ(0),η) =

µ̃Ŷ (x, η0) +
∑ndoe

j=1

(∑P
i=1 a

t
iϕ̂jφi(ξ

(0)
)
ϕ̃j(x, ηj), ∀x ∈ S

is a Gaussian random variable of mean,

µỸ (x, ξ(0)) = µµ̃Ŷ (x) +

ndoe∑
j=1

(
P∑
i=1

atiϕ̂jφi(ξ
(0)

)
µϕ̃j

(ξ(0)), ∀x ∈ S

and variance,

σ2
Ỹ

(x, ξ(0)) = σ2
µ̃Ŷ

(x) +

ndoe∑
j=1

(
P∑
i=1

atiϕ̂jφi(ξ
(0)

)2

σ2
ϕ̃j

(ξ(0)), ∀x ∈ S.

This is again of great practical interest for efficient computations within the
adaptive approach we will propose in Section 3.

2.2.4. Discussion on the proposed random field discretizations

It should be noted that both random field discretizations Ỹ (x, ξ,η), defined by
Eq. (10) and Eq. (15), depend on the primary uncertainty of the problem, modelled
by the random vector ξ, and on the Kriging uncertainty due to the use of Kriging
interpolations and modelled by the random vector η.

However, it is interesting to note a major difference between the two proposed
random field representations that concerns the number of Kriging models to build
and thus, the numerical cost of the method. Table 1 recalls the number of Kriging
metamodels to be build for each random representation introduced. In the case of
PCE−KG representation (Eq. (10)), the number of Kriging interpolations to build

is equal to the size P of the polynomial basis and we recall that P = (ns+d)!
ns!d!

. Hence,
it is independent of the dimension of the space S and of the size ndoe of the doe.
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In the case of PCE − KL − KG representation (Eq. (15)) the number of Kriging
metamodels to build is equal to ndoe+1 in its full version or to M+1 in its truncated
version. Hence, it depends on the correlation structure of the random field under
study, thus it implicitly also depends on the size of the space S. It is clear that
for a given problem, depending on its stochastic dimension nS, the degree d of the
polynomial chaos used, the dimension of the space S and the correlation structure of
the random field, the use of one of these two approaches would be more advantageous
over the other. The applications section will present some examples in order to study
the numerical cost of both approaches and will try to define some good practices in
order to choose a priori the best strategy with respect to accuracy and numerical
cost.

As both representation methods are based on Kriging interpolations, the next
section presents an original development that takes advantage of the uncertainty due
to Kriging interpolation in order to adaptively improve the doe until the accuracy
on the random variable of interest Ŷmin(ξ) reaches a given level.

3. Iterative discretization of the random field

3.1. Discretization of Ŷmin(ξ)

In this section it is still assumed that the UQ has been carried out at ndoe points,
forming an initial doe denoted by Sndoe

∈ S. We propose an adaptive doe enrichment
strategy aimed at rapidly improving the characterization of the random variable of
interest Ymin(ξ).

Let us first introduce the random variable Ymin|x(Sndoe
)(ξ) which is the random

variable modeling the minimum value of the random vector
[Y (x(1), ξ), · · · , Y (x(j), ξ), · · · , Y (x(ndoe), ξ)]t, i.e.,

Ymin(ξ)|
x(Sndoe

) = min
x∈Sndoe

(Y (x, ξ)) .

According to the context of our study (UQ by PCE), we define the random
variable Ŷmin|x(Sndoe

)(ξ) which is the random variable modeling the minimum value

of the random vector [Ŷ (x(1), ξ), · · · , Ŷ (x(j), ξ), · · · , Ŷ (x(ndoe), ξ)]t, i.e.,

Ŷmin(ξ)|
x(Sndoe

) = min
x∈Sndoe

(
Ŷ (x, ξ)

)
. (17)

This random variable can be interpreted as an approximation of Ŷmin(ξ) based
on a finite number of sampling location x(j), j = 1, · · · , ndoe where the UQ has
been carried out by PCE. Based on the definition given by Eq. (17), the idea of the
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method proposed in this article is to find the next sampling location x(new) where the
UQ should be performed in order to increase our knowledge of the random variable
Ŷmin(ξ) and thus of Ymin(ξ). To this purpose next part is devoted to the definition
of an enrichment criterion.

3.2. Enrichment criterion

In the literature devoted to global optimization of deterministic black box func-
tions based on Kriging metamodels initiated by Jones et. al [20], an enrichment
criterion refers to a criterion that allows to choose the next point where the black box
function should be evaluated in order to bring the most relevant information about
the optimum of the deterministic function. An efficient enrichment criterion must
be able to find a compromise between exploration (i.e increasing the accuracy of the
Kriging metamodel over the whole parametric space so that no localized minimum
can stay invisible to the metamodel) and exploitation (i.e increasing the accurracy
of the metamodel only where the global minimum is susceptible to be). Several
enrichment criteria have been proposed and compared in the literature (see [45]).

Note that none of the existing criteria is applicable in the context of our study
since we are not interested here in determining the optimum of a deterministic func-
tion but we are rather interested in determining the distribution of the optimum of a
random field (in the sense of Eq. (2)). In our context, we thus propose a new criterion
inspired from the pioneer criterion defined in [20] and called Expected Improvement
(EI ). In order to distinguish it from the classical EI that deals with deterministic
optimization we denote our criterion by EIRF where the subscript RF stands for
Random Field.

According to the approximations defined in the previous sections, we define the
EIRF by, ∀x ∈ S

EIRF (x) = E
[(
Ŷmin(ξ)|

x(Sndoe
) − Ỹ (x, ξ,η)

)
1Ỹ (x,ξ,η)6Ŷmin(ξ)|

x
(Sndoe

)

]
(18)

where
1Ỹ (x,ξ,η)6Ŷmin(ξ)|

x
(Sndoe

)
= 0 if Ỹ (x, ξ,η) > Ŷmin(ξ)|

x(Sndoe
) and

1Ỹ (x,ξ,η)6Ŷmin(ξ)|
x
(Sndoe

)
= 1 if Ỹ (x, ξ,η) 6 Ŷmin(ξ)|

x(Sndoe
) .

One can note that EIRF (x) is positive for x /∈ Sndoe
and that EIRF (x) = 0 if

x ∈ Sndoe
.

The point x(new) where the UQ should be performed is thus solution of the opti-
mization problem,

x(new) = arg max
x∈S

(EIRF (x)) . (19)
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It can be noticed that this criterion still realizes a compromise between exploita-
tion and exploration. Indeed, at a given point x(0) ∈ S, a positive value of the
Expected Improvement (as defined by Eq. (18)) could have two reasons:

• The uncertainty due to the Kriging interpolation (modelled by the random
vector η) increases the dispersion of the random variable Ỹ (x(0), ξ,η), thus

the random event
(
Ŷmin(ξ)|

x(Sndoe
) − Ỹ (x(0), ξ,η)

)
may have a non negligible

probability. This helps the exploration of the parametric space.

• If the uncertainty associated to the Kriging interpolation is low (compared to
the one due to ξ), then a positive value of EIRF (x(0)) means that the random
variable Ỹ (x(0), ξ,η) ≈ Ŷ (x(0), ξ) contributes significantly to the random vari-
able Ymin(ξ). This corresponds to the exploitation of the model (defined by
Eq. (10) or Eq. (15)).

By considering the expectation over the whole random space (ξ and η) the criterion
defined by Eq. (18) automatically realizes a compromise between exploration and ex-
ploitation. Obviously, this criterion is heuristic and its efficiency will be investigated
on several numerical examples in Section 4.

One can note that the Expected Improvement criterion defined by Eq. (22) could
be adapted for deterministic interpolation such as Radial Basis Function [46]. In
that case the approximation of the random field Ỹ will no longer depends on η but
only on ξ, nevertheless the criterion EIRF can still be computed (the expectation
is, in that simple case, only with respect to ξ). However, by taking into account
interpolation uncertainty (modeled by the random variables η), Kriging will help
the exploration of the parametric domain S and increases the chance of finding the
various areas of the parametric domain S where the minimum is likely to be. On
the contrary, a deterministic interpolation approach will put too much confidence in
the exploitation of the approximation Ỹ which can lead to a poor approximation in
some important areas of the parametric domain S. This behavior will be illustrated
on numerical examples in Section 4.

The next section discusses the practical computation of the EIRF defined by
Eq. (18) and describes the proposed extreme value oriented random field discretiza-
tion algorithm.

3.3. Implementation and proposed algorithm

The aim of the proposed algorithm is to add points iteratively to an initial doe
until a given convergence criterion is reached. Hence, from an initial doe of size
ndoe, the criterion defined by Eq. (18) is computed using one of the two random field
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representations presented in Section 2.2.2 and Section 2.2.3. Maximization of this
criterion gives the next point x(new) where the UQ should be performed in order to
improve our knowledge on the random variable Ŷmin. Then, x(new) is added to the
doe and the UQ by PCE is performed in order to compute Ŷ (x(new), ξ). Adding this
new information, the random field representation is updated and the previous steps
are repeated until convergence.

The keystone of the proposed algorithm is the optimization of the EIRF defined
by Eq. (18). In the literature devoted to optimization of deterministic black box
function this criterion can be evaluated analytically which makes its optimization
relatively easy to solve (see [20]). In our context, the computation of the expected
value Eq. (18) could not be derived analytically. Hence, a direct approach will be
to estimate it by Monte Carlo sampling. It should be noted that Eq. (18) only
involves polynomial functions with a very low computational cost which makes such
an approach tractable; in particular no call to the expensive simulatorM is required
for the computation of the EIRF of Eq. (18). Furthermore, by using the fact that
the conditional random variables Ỹ (x, ξ,η)|ξ=ξ(0) , ∀x ∈ S are Gaussian random
variables (see remarks at the end of Section 2.2.2 and Section 2.2.3) one can simplify
the estimation of Eq. (18). Indeed, we recall that, for both decompositions, the
random vectors ξ and η are independent. Then, we denote by Eξ the expected value
with respect to the random variable ξ, and by Eη the expected value with respect
to the random variable η. Using these notations, Eq. (18) can be rewritten, ∀x ∈ S

EIRF (x) = Eξ

[
Eη

[(
Ŷmin(ξ)|

x(Sndoe
) − Ỹ (x, ξ,η)

)
1Ỹ (x,ξ,η)6Ŷmin(ξ)|

x
(Sndoe

)

]]
. (20)

By estimating the expected value Eξ by the Monte Carlo method with nsim simula-
tions in Eq. (20), one gets, ∀x ∈ S

EIRF (x) ≈ 1

nsim

nsim∑
k=1

Eη

[(
Ŷmin(ξ(k))|

x(Sndoe
) − Ỹ (x, ξ(k),η)

)
1Ỹ (x,ξ(k),η)6Ŷmin(ξ(k))|

x
(Sndoe

)

]
(21)

in which Ŷmin(ξ(k))|
x(Sndoe

) is a deterministic value obtained by evaluating Eq. (17)

and Ỹ (x, ξ(k),η) = Ỹ (x, ξ,η)|ξ=ξ(k) is a Gaussian random variable of mean µỸ (x, ξ(k))

and variance σ2
Ỹ

(x, ξ(k)) (expressions of µỸ (x, ξ(k)) and σ2
Ỹ

(x, ξ(k)) depend on the
random field representation and are given in Section 2.2.2 for the PCE −KG rep-
resentation and in Section 2.2.3 for the PCE −KL−KG representation). Finally,
one can note that the expected value with respect to η in Eq. (21) is very close to
the expression of the EI in the context of deterministic optimization and it can be
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shown that,

Eη

[(
Ŷmin(ξ)|

x(Sndoe
) − Ỹ (x, ξ,η)

)
1Ỹ (x,ξ,η)6Ŷmin(ξ)|

x
(Sndoe

)

]
=

(Ŷmin(ξ(k))|
x(Sndoe

) − µỸ (x, ξ(k)))F
(
Ŷmin(ξ

(k))|
x
(Sndoe

)−µỸ (x,ξ(k))

σỸ (x,ξ(k))

)
+σỸ (x, ξ(k))f

(
Ŷmin(ξ

(k))|
x
(Sndoe

)−µỸ (x,ξ(k))

σỸ (x,ξ(k))

) (22)

where f and F are respectively the probability density function and the cumulative
distribution function of the standard normal distribution.

By using Eq. (22) into Eq. (21) one gets the implementation of the Monte Carlo
estimator of the EIRF that is used in the following. In practice, we use a Python
implementation and in order to benefit from the efficient vectorial calculation, the
Monte Carlo method is performed by batch of 10000 simulations until the coefficient
of variation of estimator of the EIRF is less than 5%.

Concerning the resolution of the optimization problem of Eq. (19) a global op-
timizer is best suited due to the property of the EIRF (null at the doe point and
positive elsewhere), which typically leads to many local maxima. In the applica-
tions section we rely on the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm [47] to solve Eq. (19). We use a multi-start approach in order
to maximize the chance of finding the global maximum.

We finish this description of the proposed algorithm by discussing the possible
convergence criteria. First of all, it is assumed that the user can only perform
a limited number of UQ by PCE. This constraint sets the maximum number of
points that can be added to the doe and thus the maximum number of iterations.
Nevertheless, this criterion does not give information about the accuracy of the
random field representation obtained after this maximum number of iterations. To
address this aspect we propose to use the change in the maximum value of the EIRF
as convergence criterion. Convergence is thus defined as,

max
x∈S

(EI
(k)
RF (x))

max
x∈S

(EI
(0)
RF (x))

6 εEIRF
(23)

where maxx∈S(EI
(0)
RF (x)) is the maximum value of the EIRF computed on the initial

doe, maxx∈S(EI
(k)
RF (x)) is the maximum value of the EIRF computed at iteration k

and εEIRF
is the coefficient of reduction of the EIRF used to define convergence.

Algorithm 1 summarizes the implementation of the proposed method for extreme
value oriented adaptive discretization of random fields.
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Initialization:
maximum number of iterations nmax, current iteration niter = 0,
convergence criterion εEIRF

,
initial doe Sndoe

of ndoe points,
initial vector of PCE random responses
[Ŷ (x(1), ξ), · · · , Ŷ (x(j), ξ), · · · , Ŷ (x(ndoe), ξ)]t,

compute the new random field representation based on Eq. (10) or Eq. (15) →
compute Kriging interpolations

find x(new) = arg max
x∈S

(EI
(0)
RF (x))

while convergence not achieved (Eq. (23)==False) and niter 6 nmax do
perform the UQ at x(new)

add x(new) to the doe
add Ŷ (x(new), ξ) to the vector of PCE random responses
compute the new random field representation based on Eq. (10) or
Eq. (15) → compute Kriging interpolations
niter = niter + 1
find x(new) = arg max

x∈S
(EI

(niter)
RF (x))

end
Algorithm 1: Extreme value oriented adaptive discretization of continuous ran-
dom field by an hybrid PCE Kriging approach
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The next section presents the post processing step that allows to approximate
the extreme value statistics of the random field under study.

3.4. Approximation of the extreme value statistics

For the purpose of explanation it is assumed that Algo. 1 has converged satisfying
Eq. (23). Hence, the random field has been discretized at ndoe points x(j) ∈ S, j =
1, · · · , ndoe. Satisfaction of the convergence criterion defined by the Eq. (23) expresses
the fact that the possible improvement on our knowledge of the random variable
Ŷmin(ξ) by adding a new point is negligible. This translates the fact that the random
field representation Ỹ (x, ξ,η) reaches an acceptable accuracy in the areas of S where
the extreme value is likely to be and consequently that the uncertainty due to the
Kriging interpolation is negligible in these areas. Hence, we propose to simplify the
random fields representation given by Eq. (10) and Eq. (15) using only the mean
value of the Kriging interpolations. This leads to the following representations,

Ỹ (x, ξ) =
P∑
i=1

µãi(x)φi(ξ), ∀x ∈ S (24)

in the case of the PCE −KG representation, and to

Ỹ (x, ξ) = µµ̃Ŷ (x) +

ndoe∑
j=1

(
P∑
i=2

atiϕ̂jφi(ξ)

)
µϕ̃j

(x), ∀x ∈ S (25)

in the case of PCE −KL−KG representation.
At this step, Eq. (24) (or equivalently Eq. (25)) can be considered as an emulator

or a metamodel of the random field Y (x, ξ) optimized to be accurate in the areas
where the random field is likely to reach its minimum value. Hence we propose to
use it to approximate the probability distributions of Ŷmin(ξ) and X̂?(ξ)) (Eq.(4)
and Eq.(5)) by,

Ỹmin(ξ) = min
x∈S

(
Ỹ (x, ξ)

)
(26)

and
X̃?(ξ) = arg min

x∈S

(
Ỹ (x, ξ)

)
. (27)

It should be noted that random field representation given by Eq. (24) (or equiva-
lently by Eq. (25)) only involves polynomial functions and thus makes the optimiza-
tion problem Eq. (26) easy to solve by the Monte Carlo method (i.e. solving the
minimization problem of Eq. (26) for a large number of samples ξ(j), j = 1, · · · , nsim).
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Moreover, we would like to add that, for both random field representations, the par-
tial derivatives with respect to x only involves the partial derivatives of the mean
value of the Kriging models which makes them analytically computable. For these
reasons, the optimization problem of Eq. (26) for a given sample ξ(j) is efficiently
solved by the Sequential Least SQquare Programming (SLSQP) algorithm by [48]
with multistart to increase the chance of finding the global optimum. Note that
other global optimization algorithms could be used instead.

Next section is devoted to numerical examples studying the convergence of Ỹmin(ξ)
and X̃?(ξ) to Ymin(ξ) and X?(ξ) respectively.

4. Numerical applications

Three numerical examples are presented in this section. The first two, presented
in Section 4.1, deal with Gaussian random fields of spatial dimension 1 and 2. Gaus-
sian random fields are first studied as they can be represented exactly on the Hermite
PCE which allows to study the proposed method without any error due to the UQ
by PCE. Then, a non Gaussian example involving the computation of aerodynamic
loads on an aircraft wing by a numerical model is presented in Section. 4.2.

4.1. Gaussian case
4.1.1. Exponentially correlated Gaussian process

We consider the one dimensional Gaussian process defined on S = [−2, 2], with

mean µ(x) = sin(xπ) and covariance function cov(x(1), x(2)) = σ exp(− |x(1)−x(2)|
l

),
where l is the correlation length. It should be noted that, for this particular choice
of covariance function, the KL decomposition can be computed analytically (see [5]
for the solution of the Fredholm equation in this case). Thus, in the following we
consider the random process defined by, ∀x ∈ S,

Y (x, ξ) = µ(x) +
ns∑
i=1

ξi
√
λiϕi(x) (28)

where expression of eigenvalues λi and eigenvectors ϕi can be found in [5] (note that
λ1 > λi > λns). The truncation ns is chosen according to the following empiric rule
λns+1∑ns
i=1 λi

< 0.01.

Concerning the PCE approximation, it is clear that the field defined by Eq. (28)

can be represented exactly on the Hermite polynomial basis {φi(ξ)}nsi+1

i=1 made of a
constant term and the ns first order terms ξi, leading to,

Ŷ (x, ξ) =
P∑
i=1

ai(x)φi(ξ)
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Figure 1: Random realizations of the exponentially correlated random process defined by Eq. (28)
for correlation length l = 0.2.

where P = ns + 1, a1(x) = µ(x) and ai(x) =
√
λiϕi(x), i = 2, · · · , P . Hence, at

a given point x(j) ∈ S the random variable Y (x(j), ξ) is perfectly represented by
its PCE i.e Y (x(j), ξ) = Ŷ (x(j), ξ). Motivation for studying this particular Gaussian
case is that it allows to investigate the characteristics of the proposed method without
any error due to the PCE approximation.

The proposed method is investigated with respect to a correlation length equals
to l = 0.2. According to the representation given by Eq. (28) and the previously
described truncation rule, this correlation length leads to stochastic dimensions ns =
23. Figure 1 presents 5 random realizations of this field. One can note that the
sinusoidal mean shape is strongly perturbed and the random realizations may have
more than two local minima.

The proposed method is now applied starting from an initial doe of size ndoe = 2
such that x(1) ≈ −0.23 and x(2) ≈ 0.27 (sampled by Latin Hypercube Sampling,
LHS). The two random fields representations introduced in Section 2.2.2 by Eq. (10)
and in Section 2.2.3 by Eq. (15) are compared. Note that the PCE − KL − KG
representation is used in its full version for this first application. The stopping
criterion defined by Eq. (23) is set to εEIRF

= 0.01. Figure 2 presents the final doe
(points on the x-axis) as well as a reference random realization and its approximations
by the two random field representations.

On Figure 2 it is notable that both random field representations lead to very close
final doe with respect to the number of added points and their positions. Moreover,
one can note that the adaptive strategy performed well in this example as Algo. 1
focuses the exploration around the two regions of S where the minimum of the
process is likely to be (neighborhood of x = −0.5 and x = 1.5). Table 2 gives the
size of the final doe with respect to the random field representation used. First, one
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doe PCE −KG
doe PCE −KL−KG

reference
PCE −KG approximation

PCE −KL−KG approximation

Figure 2: Final doe obtained with the proposed adaptive approach using both random field repre-
sentation (PCE −KG and full PCE −KL−KG) with εEIRF

= 0.01. A comparison with a single
reference random realization of the process is also presented in order to illustrate the interested of
the adaptive doe.

PCE −KG full PCE −KL−KG
final ndoe 17 16

Table 2: Size of the final doe obtained by the proposed adaptive approach with εEI = 10−2, with
respect to the random field representation used
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can note that the choice of the random field representation has almost no influence
on the final doe size. One can also note on Fig. 2 that the random trajectory is
poorly approximated in the regions of S where is likely to reach high values but it is
perfectly approximated in the two regions where it reaches its minimum values. This
case illustrates the philosophy of our approach which is to focus the computational
effort in the region of S where the minimum is likely to be.

Figure 2 presents an illustration on a single random trajectory. However, to be
efficient in the approximation of the probability distributions of Ymin(ξ) and X?(ξ),
the proposed approach must be efficient for every random realization (over the whole
stochastic space). In order to address the global accuracy of the proposed method
two mean relative errors are introduced,

ErrYmin
= E

[∣∣∣∣∣Ymin(ξ)− Ỹmin(ξ)

Ymin(ξ)

∣∣∣∣∣
]

(29)

and

ErrX? = E

[∣∣∣∣∣X?(ξ)− X̃?(ξ)

X?(ξ)

∣∣∣∣∣
]
. (30)

where Ymin(ξ) and X?(ξ) are the reference values and Ỹmin(ξ) and X̃?(ξ) are the ap-
proximations obtained by optimization of the proposed random field approximations
(see Eq. (26) and Eq. (27)). Estimations of these two quantities will be evaluated by
Monte Carlo sampling of 1000 simulations.

First of all, Fig. 3 presents the evolution of the convergence criterion defined by
Eq. (23) on 40 iterations. As this criterion depends on the initial doe, 5 replications
are presented on Fig. 3.

Several remarks can be made on the Fig. 3. First, one can note that, the conver-
gence of the proposed algorithm is relatively independent of the method retained for
the random field representation. Indeed, results obtained by the PCE −KG repre-
sentation (Fig. 3 i)) and by the PCE −KL −KG representation (Fig. 3 ii)) show
that the convergence criterion decreases with the same tendency for both random
field representations. Second, even if the convergence criterion is globally decreasing
when the doe size increases, this convergence is not monotonic. This behavior is ex-
pected and it is due to the exploration of the parametric domain S by the proposed
Algo. 1. Finally, concerning the dispersion with respect to the initial doe, for both
random field representations, the 5 replicates show the same global behavior which
illustrates the robustness of the approach on this example. However, one can note
that, one replicate is clearly shifted compared to the 4 others, this shows that in a
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Figure 3: Evolution of the convergence criterion defined by Eq. (23) on 40 iterations. 5 replications
are presented. i) PCE −KG representation, ii) PCE −KL−KG representation

case of bad initial doe, the proposed algorithm may need some more iterations but
still converges.

In order to access the global accuracy of the proposed method over the whole
random space, Fig. 4 and Fig. 5 present the estimation of the relative errors defined
by Eq. (29) and by Eq. (30) respectively. Results are given for the two random field
representations and for 3 values of the convergence criterion εEIRF

= 10−1, 10−2, 10−3.
Concerning the initial doe, the same 5 replicates as in Fig. 3 are used.

First of all, one can note on Fig. 4 and Fig. 5 that decreasing the convergence cri-
terion allows to reduce the dispersion between the five replicates and globally increase
the accuracy of the method (clearly visible between εEIRF

= 10−1 and εEIRF
= 10−2

and only a slight improvement by decreasing it to εEIRF
= 10−3). From a quantita-

tive point of view one can note that with εEIRF
= 10−2 both methods lead to very

low relative errors (less than 0.5% on the value of the minimum and around 2.5% on
its position). In order to illustrate the link between those results and some statis-
tical results such as the probability density function (PDF), the Fig. 6 presents the
approximations of the PDF of Ymin(ξ) and X?(ξ) compared to a reference PDF com-
puted by Monte Carlo method (all the PDF curves are obtained by kernel smoothing,
with standard normal kernel, over 1000 simulations). For both approaches, Fig. 6
presents results obtained with εEIRF

= 10−2.
Concerning the approximation of Ymin (Fig. 6 i)) one can note that both ap-

proaches perfectly approximated the reference results (curves are almost superposed).
Only, slight differences are visible at the upper tail of the PDF. It is also interesting
to note that the shape of the PDF is non Gaussian which shows the capability of
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Figure 4: Relative error on the value of the minimum defined by the Eq. (29) for 3 different values
of the convergence criterion εEI = 10−3, εEI = 10−2, εEI = 10−1. 5 replications are presented,
each one with a different symbol. i) PCE-KG ii) PCE-KL-KG
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Figure 5: Relative error on the position of the minimum defined by the Eq. (30) for 3 different values
of the convergence criterion εEI = 10−3, εEI = 10−2, εEI = 10−1. 5 replications are presented,
each one with a different symbol. i) PCE-KG ii) PCE-KL-KG
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Figure 6: Comparison of the PDF obtained by both random field approximations with the reference
PDF obtained by Monte Carlo method (εEIRF

= 10−2). i) PDF of Ymin, ii) PDF of X?

the proposed method to handle non Gaussian distributions. Figure 6 ii) presents
the approximations of the PDF of X? compared to the reference PDF obtained by
Monte Carlo method. This bimodal PDF clearly exposes two modes, respectively
centered around the deterministic minima at x = −0.5 and x = 1.5. Approxima-
tions of this PDF by the two proposed approaches are almost perfect, only slight
differences appear at the lower tails (around x = −1 and x = 1).

Finally, we investigate the possibility of dimensional reduction by using the trun-
cated version of the PCE − KL − KG representation. First, we propose to study
the final doe of size 18, used for the results presented by the Fig. 6 and to investi-
gate the spectrum of the covariance matrix defined by Eq. (35) (see Section 2.2.3).

Figure 7 presents the value of
∑M

i=1 λ̂
ndoe
k∑ndoe

i=1 λ̂
ndoe
k

where ndoe is the size of the doe, λ̂ndoe
k are

the eigenvalues of the covariance matrix computed on this doe and M is the number
of modes kept in the truncation.

One can note on Fig. 7 that the 10 first eigenvalues represent the majority of the
covariance spectrum. This is very interesting in comparison to the 23 modes kept
in the KL expansion of the whole process. It seems that, the minimum value of the
random field can be fairly approximated with less modes than the whole random
field. This remark allows for an important numerical time reduction in the proposed
approach.

In order to study the accuracy of the truncated version of the PCE −KL−KG
representation, the same example as before is tested but, at each iteration of Algo. 1,
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Figure 7: Illustration of the covoriance matrix computed on a doe of size 18. Truncation criterion
as a function of the number of modes M kept for the truncation.

only the M modes that satisfy the truncation criterion defined by Eq. (16) are kept
in the random field representation. It should be noted that the convergence criterion
is still set to εEIRF

= 10−2. Figure 8 presents the evolution of the number of modes
kept in the random field representation with respect to the iteration of Algo. 1. Two
values of the convergence criterion εKL (see Eq. (16)) are tested, εKL = 10−3 and
εKL = 10−6. In order to evaluate the gain compared to the full method, Fig. 8 also
presents the evolution of the doe size (we recall that, in its full version, the number
of modes kept in the random field representation is equal to the doe size).

Several remarks can be done on Fig. 8. First, one can note that the truncated
strategy converges after approximately the same number of iterations as the full
strategy (17 iterations for the full strategy compared to 14 for the truncated strategy
with εKL = 10−3 and to 15 for the truncated strategy with εKL = 10−6). Second,
the truncation strategy is efficient for dimension reduction. Indeed, one can note
that with εKL = 10−3 the number of modes kept in the random field representation
evolves from 2 to 8 which leads to an important dimension reduction after iteration 7.
The same remark can be done with εKL = 10−6 adding that a supplementary mode
is kept at iteration 9. Finally, concerning the global accuracy, Table 3 compares the
estimations of the mean relative errors defined by Eq. (29) and Eq. (30) obtained by
full and the truncated PCE −KL−KG representations.

Table 3 reveals that the truncated strategy with εKL = 10−3 slightly deteriorates
the accuracy whereas it has a comparable accuracy when εKL is set to 10−6.

To conclude on this first example, one can say that, the 3 tested strategies for the
representation of the random field (PCE−KG, full PCE−KL−KG and truncated
PCE−KL−KG) lead to comparable accuracy with respect to the minimum value
of the field and its position. However, their numerical costs, are different. For the
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Figure 8: Evolution of the number of modes M retained with respect to the iteration of Algo. 1.
Comparison between the full PCE−KL−KG representation and the truncated PCE−KL−KG
representation with εKL = 10−3 or εKL = 10−6 (see Eq. (16))

ErrYmin
ErrX?

full 0.25% 2.52%
εKL = 10−3 0.72% 6.09%
εKL = 10−6 0.33% 2.75%

Table 3: Comparison of the estimators of the mean relative errors defined by Eq. (29) and Eq. (30)
obtained by full and the truncated PCE−KL−KG representations (εKL = 10−3 or εKL = 10−6)
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PCE − KG strategy one has to build a Kriging interpolation of each coefficient
which leads to 24 interpolations. For the full PCE −KL−KG representation, the
number of interpolations to build is equal to ndoe+1. This seems much more efficient,
however the numerical cost corresponding to the construction and resolution of the
eigenvalue problem is not negligible. Finally, the truncated PCE−KL−KG allows
a significant dimension reduction leading to smaller number of Kriging interpolations
to be built. This strategy is the most efficient on this example. However, the difficulty
is then to choose the threshold εKL (previous example shows that its influence can
be non negligible on the global accuracy of the method). Moreover we would like
to add that the dimension reduction is case dependent and can not be guaranteed
a priori. For these reasons, it seems reasonable to try the truncated PCE −KL−
KG representation with a low threshold εKL (10−6). If this leads to a number of
interpolations to be built higher than the number of PCE coefficients, then one
should switch to the PCE −KG representation.

Remarks:

• This example illustrates the type of problem we are interested in. Indeed, PCE
approximation of Y (x, ξ) is very efficient as Y (x, ξ) is Gaussian, nevertheless
an accurate direct PCE approximation of X?(ξ) is very difficult to reach. In
order to detail the computational cost involved by the direct and the proposed
indirect approach, we use a sample of size 2P for the computation of the PCE
coefficients. The number of evaluations of the objective function with the
proposed indirect approach is equal to: the size of the final doe obtained with
the proposed algorithm times 2P . As Y (x, ξ) is Gaussian, Hermite polynomials
of degree d = 1 are retained for the PCE basis leading to P = ns+1 = 24, which
finally leads to 816 calls to the objective function (we assume the PCE −KG
representation leading to a final doe of size 17, see Table 2). We now try the
direct PCE approximation of X?(ξ). Polynomial degree from d = 1 to d = 3 are
tested. The corresponding numbers of objective function calls used to create
the sample necessary to construct the PCE approximation are given in Table 4
(deterministic optimization problems used to construct the sample are solved
with SLSQP algorithm and 2 starting points) as well as the mean relative error
estimated on 1000 simulations. Results presented by Table 4 clearly show that
direct PCE approximation is inefficient in the case where X?(ξ) is multimodal.

• As explained at the end of Section 3.2, Kriging interpolation offers the ad-
vantage of quantifying the interpolation uncertainty which allows to help the
exploration of the parametric domain S. On this example this advantage al-
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d nb evaluations Err?X
1 1632 116%
2 20694 108%
3 177467 95%

Table 4: Number of objective function calls and estimators of the mean relative error on X?(ξ) in
case of a direct PCE approximation.
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Figure 9: Comparison of the final doe obtained by applying Algo. 1 using PCE−KG representation
or PCE −RBF representation

lows the proposed algorithm to explore the two areas of S where the minimum
is likely to be. In order to highlight this advantage, the same example is stud-
ied using RBF interpolation (with a Gaussian radial basis function) instead of
Kriging (see end of Section 3.2 for the computation of the enrichment criterion
in that case). Using the same initial doe (x(1) ≈ −0.23 and x(2) ≈ 0.27), the
direct interpolation of PCE coefficients and the same number of iterations as
the one obtained with the Kriging approach (15 iterations, see Table 2), the
proposed algorithm added 15 points only around the possible minimum located
around x = −0.5 and totally missed the one around x = 1.5 as presented by
Fig. 9. In order to capture the two promising areas we have to increase the
size of initial doe from 2 to 4 (which allows a better initial exploration). This
example illustrates the fact that, by taking into account interpolation uncer-
tainty, the proposed Kriging approach will be more efficient and robust to the
initial doe than a RBF approach.

4.1.2. 2 dimensional case

We now consider a 2 dimensional Gaussian random field defined on S = [−5, 5]×

[−5, 5], with mean µ(x) =
2∑
i=1

x2i
4000

−
2∏
i=1

cos

(
xi√
i

)
+ 1. The random field is then
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Figure 10: Mean value of the 2D Gaussian random field counting 5 local minima, i) 3D visualization,
ii) contour plot

created by adding 3 linear random terms such that,

Y (x, ξ) = µ(x) + ξ1 + 0.1(ξ2x1 + ξ3x2) (31)

where ξ is a standard Gaussian random vector of independent components (ξ1, ξ2
and ξ3). Figure 10 presents the mean value of the field (3D visualization Fig. 10 i)
and contour plot Fig. 10 ii)). It should be noted that µ(x) counts 5 local minima
and that the global minimum is reached at x = (0, 0).

Figure 11 presents 4 realizations of the random field, for each one the position
of the minimum is highlighted. This figure illustrates that the random variable
modeling the position of the minimum (X?) exhibits 4 modes located around the
four local minima at the corners of the domain S. As for the previous example,
studying a Gaussian random field allows to represent it exactly by the Hermite
polynomial chaos and then to focus on the proposed adaptive approach. Note that
as the random field is made by 3 independent standard Gaussian random variables, its
PCE representation counts 4 terms. This means that the PCE−KG representation
of the field needs the construction of only 4 Kriging interpolations. The proposed
method is now applied using the two random field representations PCE −KG and
truncated PCE−KL−KG with εKL = 10−6. Note that, based on the conclusion of
the first example, the full PCE −KL−KG will not be studied anymore, and thus
the notation PCE −KL−KG implicitly refers to the truncated PCE −KL−KG
representation.
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Figure 11: Random realizations of the 2D Gaussian random field defined by Eq. (31). For each
realization the position of the global minimum is given.
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Figure 12: Evolution of the convergence criterion defined by Eq. (23) on 35 iterations (5 replicates).
i) PCE −KG representation, ii) PCE −KL−KG representation

Figure 12 presents the evolution of the convergence criterion defined by Eq. (23)
with respect to the number of iterations of Algo. 1 for the two random field repre-
sentations. Initial doe is sampled by LHS and counts 4 points.

One can observe the same behavior as for the first example. The convergence
criterion is globally decreasing while the number of iterations increasing. However,
this convergence is not monotonic. Compared to the 1D case (Fig. 3), one can
note that the dispersion between the five replicates is larger and that the results
obtained with the PCE −KL −KG representation (Fig. 12 ii)) seams to be more
dispersed than the one obtained with the PCE − KG representation (Fig. 12 i)).
Nevertheless, as for the 1D example, both representations lead to convergence of the
Algo. 1 and only small differences in the number of iterations necessary to reach a
given value of the convergence criterion are notable. Moreover, we add that for the
PCE−KL−KG representation the number of modes kept according to the defined
criterion (we recall that εKL = 10−6)) remains constant all over the iterations and
is equal to 3. This demonstrates the efficiency of the empiric KL representation for
finding an appropriate subspace to represent the random field from a limited number
of sampling locations.

In the following, the convergence criterion εEIRF
is set to εEIRF

= 0.01. Figure 13
i) presents the initial and final doe obtained by running Algo. 1 on this example.
It should be noted that both representations lead to a convergence of Algo. 1 after
28 iterations, leading to a final doe of 32 points. Moreover, the two representations
lead to different but very close point locations. These final doe are clearly located
at the four corners of the domain S, where the minimum is likely to be. In order
to illustrate the interest of our adaptive strategy we propose to compare the results
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Figure 13: i) Comparison of the final doe obtained by applying Algo. 1 using PCE −KG repre-
sentation and PCE −KL−KG representation. ii) doe of 32 points constructed by LHS and used
for comparison

obtained using these adaptive doe to the one obtained using a doe constructed by
LHS sampling of 32 points and presented by the Fig. 13 ii).

In order to access the accuracy of the proposed approach, Figures 14 and 15
present 3 random realizations of the random field (one per column). For these
realizations, Fig. 14 and Fig. 15 also present the approximations obtained by the
PCE −KG representation and the PCE −KL −KG representation respectively.
Moreover, we also present results obtained by constructing these two representations
on doe obtained by LHS with 32 points (Fig. 13 ii)). These results are respectively
denoted by LHS − PCE −KG and LHS − PCE −KL −KG. In every case the
position of the global minimum is highlighted.

This example illustrates the benefit of the proposed adaptive approach for the
estimation of extreme value statistics. Indeed, one can note that the approximations
of the 3 realizations obtained with the adaptive approaches (Fig. 14 second row and
Fig. 15 second row) are globally inaccurate on the whole domain, but perfectly rep-
resent the realizations in the four corner of the domain where the minimum value is
likely to be. This allows for a perfect approximation of the minimum position (as
shown by the comparison with the reference results). In comparison, the approxima-
tions obtained on a LHS doe containing the same number of points ( Fig. 14 third
row and Fig. 15 third row) allow a better representation of the realizations over the
whole domain but are clearly inaccurate for the determination of the minimum posi-
tion. Especially, one can note that for the third realization (third columns of Fig. 14
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Figure 14: Random realizations of the 2D Gaussian random field defined by Eq. (31). First row:
reference results, second row: approximation using adaptive doe constructed by Algo. 1 and PCE−
KG representation, third row: approximation using LHS doe and PCE − KG representation.
Position of the global minimum is given for the reference and the approximations.
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Figure 15: Random realizations of the 2D Gaussian random field defined by Eq. (31). First
row: reference results, second row: approximation using adaptive doe constructed by Algo. 1 and
PCE −KL−KG representation, third row: approximation using LHS doe and PCE −KL−KG
representation. Position of the global minimum is given for the reference and the approximations.
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ErrYmin
ErrX?

PCE −KG 0.69% 1.68%
PCE −KL−KG 0.16% 0.37%
LHS − PCE −KG 3.60% 31.61%

LHS − PCE −KL−KG 4.09% 45.32%

Table 5: Comparisons of the mean relative errors defined by Eq. (29) and Eq. (30) obtained by the
various approximations approaches on the example defined by Eq. (31)

and Fig. 15), approximations of the minimum position by LHS doe are in the wrong
corner of the domain.

In order to assess the accuracy over the whole stochastic space, estimations of the
two mean relative errors defined by Eq. (29) and Eq. (30) are now performed. As for
the previous example, these mean relative errors are estimated over 1000 samples.
Table 5 compares these results between the different approaches.

Table 5 shows that the PCE − KL − KG representation leads to significantly
better results on this example. However, the results obtained with the PCE −KG
representation are also very satisfying. In addition to this comment, Fig. 16 presents
the approximations of the PDF of Ymin obtained with the two proposed representa-
tions (kernel smoothing over 1000 samples). One can note that both approximations
perfectly represent the reference results and that the 3 curves are not distinguishable.
Finally, the mean relative errors are also estimated on the approaches using the LHS
doe with the same number of points. As presented by Tab. 5 the results obtained
by these approaches are strongly inaccurate which highlight the advantage of the
proposed adaptive approach compared to classical LHS sampling.

It is also notable that the results on this example are better than the one obtained
on the first example. It should be noted that, even if it deals with a 2 dimensional
parametric space, it only involves a stochastic space of dimension 3 which makes it
easy to solve by PCE. Interest of this example was to illustrate the advantages of
the proposed adaptive strategy on a test case where the minimum position can be
located at various, relatively distant areas of the parametric domain. In this respect,
results presented by Fig. 14, Fig. 15 and Tab. 5 allow to be confident in the capability
of the proposed approach.

Remark: As for the first example, deterministic interpolation by RBF instead of
Kriging is also tested on this example. The comparison is made for the same initial
doe (see Fig. 13) and for the direct interpolation of the PCE coefficients. As for the
example in one dimension, the doe obtained after 28 iterations (number of iterations
necessary for our approach to converge) is not as efficient as the one we obtain with
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Figure 16: PDF of Ymin, approximations obtained by the two proposed approaches

our approach. Indeed, even if all the possible minimum locations are explored, only
a single point is sampled in the top left corner of the domain (see Fig. 17). This
behavior highlights the importance of the exploration of the domain by taking into
account the interpolation uncertainty in the Kriging methodology.

4.2. Non Gaussian case: a conceptual aircraft wing design

4.2.1. Presentation

This example presents the parametric study of an aircraft wing under uncer-
tainty. The shape of the wing is defined by 4 variables, namely the root chord
croot, the tip chord ctip, the span l and the sweep angle φ. We are interested in the
aerodynamic behavior of the wing, hence we also defined the angle of attack α. A
symetric NACA0010 airfoil is used. The objective of this conceptual design phase is
to roughly evaluate the aerodynamic loads. Hence, a 3D potential flow panel code
(PANAIR/A502) [49] is used to evaluate these loads. This code uses a discretization
of the wing geometry by panels and returns the pressure coefficients computed at
the center of each panel (see [50]). The aerodynamic coefficients of the wing are
obtained by numerically integrating the pressure distribution over the wing surface.
Figure 18 i) presents the wing jig shape as well as the mesh (Fig. 18 ii)) used for the
computation of the aerodynamic loads.

In the following we study the influence of the parameter x = φ (sweep angle in
radian), defined on the space S = [−π

3
, π
3
], on the response defined by

Y (x, ξ) = (cl(x, ξ)− 0.5)2 + 0.1cy(x, ξ) (32)
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Figure 18: i) shape of the wing under study. ii) mesh of the wing used for the computation of the
aerodynamic loads.
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variables mean coefficient of variation
croot 5.67m 4%
l 17.04m 4%
α 2.5 deg 6%

Table 6: Means and coefficients of variation of the Gaussian random variables affecting the problem
of conceptual aircraft wing design

where cl and cy are respectively the lift coefficient and the pitching moment coefficient
(calculated at the root leading edge). This quantity of interest is made by mixing an
objective on the lift of the wing (term (cl(x, ξ)− 0.5)2) and a constraint term on the
pitching moment(term 0.1cy(x, ξ)). Moreover, ξ is a vector of 3 independent normal
random variables modeling the uncertainties that affect the angle of attack, the span
and the tip chord. Numerical values for the mean and coefficient of variation of these
random variables are given in Table 6.

Finally, the problem under study has a spatial dimension equal to one and a
stochastic dimension equal to 3. It should be noted that the computation of the
aerodynamic coefficients cl and cy involves non linear transformations of the random
vector ξ. Hence, the random process Y (x, ξ) is non Gaussian.

Figure 19 presents some samples of the random process under study. For this
figure, the parametric space S is discretized with 30 linearly spaced values. One
could note that, as the parameter under study and the random variables affect the
geometry of the wing, it is necessary to create a new geometry and a new mesh
at each evaluation of the model Y (x, ξ). With the computer we use for this ex-
ample (CPU core 2 DUO @ 3GHz, memory 4 GB), the whole computation of the
aerodynamic loads (i.e. creation of the geometry, meshing and resolution of the
potential fluid equation by the panel method) lasts around 8.6s. Hence, as an ex-
ample, the computational time necessary to compute the values used in Fig. 19 is
8.6× 30× 5 ≈ 1290s ≈ 21.5 min.

Figure 19 shows that the realizations of the process defined by Eq. (32) count
two local minima and that the global minimum is reached approximately for φ ∈
[0.5, 1.0]. Physically this can be explained by the fact that the lift objective (term
(cl(x, ξ) − 0.5)2) can reach 0 for a positive or a negative value of the sweep angle
(which respectively corresponds to conventional or forward-swept wings). However,
adding the constraint term on the pitching moment coefficient (term 0.1cy(x, ξ))
forces the minimum to be uniquely defined at the positive sweep angle (conventional
solution).
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Figure 19: Examples of realizations of the random process defined by Eq. (32), x is the sweep angle

4.2.2. Results

The proposed method is now applied to this example. Contrary to the Gaus-
sian examples presented in Section 4.1 the PCE of the random process can not be
computed exactly and analytically. Hence, we rely on the non intrusive PCE with a
computation of the coefficients based on regression (see [10]). This method involves
the sampling of the model over the stochastic space. After a convergence study we
decide to set the maximal degree of the PCE to d = 3. Accordingly the size of the
Hermite polynomial basis is equal to P = 20. Hence, the sample size for the compu-
tation of the coefficients is set to 40 (twice the number of coefficients to determine
is commonly used in the regression approach). One uncertainty quantification step,
at a given point x(0) ∈ S, thus last approximately 8.6× 40 = 344s ≈ 5.75 min.

Then, the proposed Algo.1 is applied using the truncated PCE − KL − KG
method with εKL = 10−6. This leads to a number of modes kept equal to 4 (reached
after 2 iterations). The convergence criterion is set to εEIRF

= 10−2. The initial doe
counts 2 points and the Algo. 1 converges after 18 iterations. Hence, the final doe
counts 20 points. This implies 20 × 40 = 800 evaluations of the model Y (x, ξ) for
the UQ step. This step thus last 8.6× 800 = 6880s ≈ 1.91h and it should be noted
that the computational time of the other steps of Algo. 1 is negligible compared to
the UQ step. Figure 20 presents the final doe as well as the approximations of five
realizations of the random process.

One can note that Algo. 1 performs well on this non Gaussian example as the
final doe is very dense in the range [0.5, 1.0], where the minimum is likely to be.
Moreover, the minimum position and its value are also well approximated for the 5
random realizations presented by the Fig. 20. Once again one can note that, on the
five random realizations presented by Fig. 20, the PCE−KL−KG representations

42



−1 −0.5 0 0.5 1

−4

−2

0

2

4

6

8
· 10−2

x

Y
(x
,ξ
)

reference
PCE −KL−KG

doe PCE −KL−KG
reference minimum

PCE −KL−KG minimum

−1 −0.5 0 0.5 1

−4

−2

0

2

4

6

8
· 10−2

x

Y
(x
,ξ
)

reference
PCE −KL−KG

doe PCE −KL−KG
reference minimum

PCE −KL−KG minimum

−1 −0.5 0 0.5 1
−4

−2

0

2

4

6

8

· 10−2

x

Y
(x
,ξ
)

reference
PCE −KL−KG

doe PCE −KL−KG
reference minimum

PCE −KL−KG minimum

−1 −0.5 0 0.5 1

−4

−2

0

2

4

6

8
· 10−2

x

Y
(x
,ξ
)

reference
PCE −KL−KG

doe PCE −KL−KG
reference minimum

PCE −KL−KG minimum

−1 −0.5 0 0.5 1

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

x

Y
(x
,ξ
)

reference
PCE −KL−KG

doe PCE −KL−KG
reference minimum

PCE −KL−KG minimum

Figure 20: Illustration of approximation of the random process defined by Eq. (32) by the proposed
approach using the truncated PCE−KL−KG random field representation. 5 random realizations
are presented.
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Figure 21: Conceptual aircraft wing design example, PDF obtained by the truncated PCE−KL−
KG representation compared to reference results, i) PDF of Ymin, ii) PDF of X?

are very accurate in the range [0.5, 1.0] whereas they are less accurate elsewhere
(especially in the range [−1,−0.5]).

We now study the accuracy of the method by estimating the mean relative errors
defined by Eq. (29) and Eq. (30) with a sample of size 1000. This leads to ErrYmin

≈
0.025% and ErrX? ≈ 0.44%. These very low relative errors illustrate the efficiency
of the proposed approached on a industrial based non Gaussian example. Figure 21
presents the PDF of Ymin and X? estimated by kernel smoothing (standard normal
kernel) over the sample of size 1000. As expected, the approximations of the PDF
of Ymin and X? by the proposed approach are very accurate. More precisely, for the
PDF of Ymin (Fig. 21 i)) the approximation and the reference curves are perfectly
superposed and for the PDF of X? (Fig. 21 ii)) only slight differences appear.

Finally, we would like to give some insight about the numerical cost of our ap-
proach compared to brute force Monte Carlo used for reference results. These refer-
ence results are obtained by the SLSQP algorithm with evaluation of the derivative
by finite differences. In order to reduce the computational time we choose only one
starting point at x = 0.5. Table 7 presents the number of function calls to solve
the 1000 optimization problems as well as the computational time it involves. Thus,
reference results are obtained in approximately 41.73h.

In comparison, the resolution of the optimization problem on the truncated
PCE −KL −KG approximation lasts, on these 1000 realizations, 0.41h. We note
that, on the PCE−KL−KG approximation, the optimization problem is solved by
multi-start SLSQP algorithm; that we provided the analytic expressions of the partial
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Monte Carlo reference PCE −KL−KG
Calls to the model 19811 800

Resolution of 1000
optimization problems

41.73h 0.41h

Adaptive construction of
the PCE −KL−KG
representation

- 1.91h

total time 41.73h 2.32h

Table 7: Conceptual aircraft wing design example, comparison of the computational time between
Monte Carlo method and the proposed approach to solve 1000 optimization problems

derivatives (which are available here due to the use of the Kriging metamodels) and
that we use the final doe as starting points. For a fair comparison, the time spend
in the adaptive construction of the PCE−KL−KG approximation must be added
to the time spend for the optimization. This leads to a total computational time for
the proposed approach equal to 1.91h + 0.41h = 2.32h, whereas the computational
time for the reference results is 41.73h. Hence, we obtained a computational saving
by a factor of 18 although the evaluation of the model only lasts around 8.6s (which
can be considered as very fast for a numerical model). It should be noted that the
computational savings obtained with the proposed approach compared to the Monte
Carlo method is going to increase as the computational time of a single evaluation of
the model increases and as the number of optimization problems to solve increases
(size of the sample for the Monte Carlo method).

5. Conclusion

This paper presents an original adaptive random field discretization dedicated to
the approximation of extreme value statistics. The proposed approach is based on a
representation of the random field by Polynomial Chaos Expansion (PCE) and Krig-
ing interpolation. Taking advantages of some of the Kriging properties, we define a
criterion that allows to construct iteratively the design of experiments (doe) where
the uncertainty quantification by PCE must be performed, in order to bring relevant
information with respect to the extreme value statistics of the random field. An
efficient and accurate numerical estimation of this criterion is also proposed. Finally,
Algo. 1 presents the global strategy leading to the construction of an hybrid PCE
Kriging approximation of the random field (note that two random field representa-
tions are proposed and compared). Closed form expressions of these representations
are given by Eq. (10) and by Eq. (15). Moreover, partial derivatives with respect
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to the parametric variable x can be derived analytically for both representations
which make them very efficient for the estimation of extreme value statistics by di-
rect Monte Carlo method. The efficiency of the proposed approach is illustrated on 2
Gaussian examples in spatial dimension 1 and 2 and stochastic dimension equal to 23
and 3 respectively. A non Gaussian example, of spatial dimension 1 and stochastic
dimension 3, dealing with the parametric study of an aircraft wing and involving the
computation of aerodynamics loads by a numerical code is also presented.

Concerning the perspective of this research, one can note that a major drawback
of the proposed approach is that the complexity of the representations increases
rapidly with respect to both the spatial and the stochastic dimensions (well known
phenomenon of curse of dimensionality). To address this issue we would first like to
emphasize that for both random field representations proposed (PCE−KG Eq. (10)
and PCE −KL−KG Eq. (15)), the spatial and the stochastic dimension are sepa-
rated. Indeed, the spatial dimension is handled by the Kriging metamodels whereas
the stochastic dimension is handled by the PCE. Hence, we must be able to take
benefit of some of the recent developments of these two methods to deal with larger
dimension with respect to both the spatial and the stochastic space. For example,
concerning the Kriging interpolations, the issue of dealing with large spatial dimen-
sion has been tackled by [51] in which Partial Least Square is used for dimension
reduction. Concerning the stochastic dimension, it could be of great interest to adapt
the sparse PCE proposed by [11] that uses Least Angle Regression. However, the
method we proposed assumes that the same PCE basis is used at each point x of
the parametric space S. Hence, adaptation of the method proposed by [11] imposes
to construct a sparse PCE basis that is able to represent the random responses over
the whole parametric space S. A first solution might be to construct this sparse
basis in an iterative way along with the discretization of the random field. However,
there is no guarantee that a sparse basis might be sufficient to represent the random
response over the whole parametric space. This behavior is case dependent and will
be studied in futur developments.

Finally, note that recent researches show that Low Rank Approximations (LRA)
could improve the performance of PCE (and sparse PCE), especially for uncertainty
quantification in large stochastic dimension (see [52]). Hence, it is an interesting
perspective to adapt the LRA framework to the method we proposed here. Note
that this adaptation also raises the issue of constructing a basis able to represent the
random quantity of interest over the whole parametric space S (in the framework of
LRA similar problems have been studied in [53]).
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rep., Université BLAISE PASCAL - Clermont II (2007).

[33] W. Betz, I. Papaioannou, D. Straub, Numerical methods for the discretiza-
tion of random fields by means of the karhunen love expansion, Computer
Methods in Applied Mechanics and Engineering 271 (2014) 109 – 129.
doi:http://dx.doi.org/10.1016/j.cma.2013.12.010.
URL http://www.sciencedirect.com/science/article/pii/S0045782513003502

[34] B. Pascual, S. Adhikari, Hybrid perturbation-polynomial chaos ap-
proaches to the random algebraic eigenvalue problem, Computer Meth-
ods in Applied Mechanics and Engineering 217-220 (2012) 153 – 167.
doi:http://dx.doi.org/10.1016/j.cma.2012.01.009.
URL //www.sciencedirect.com/science/article/pii/S0045782512000205

[35] P. Kersaudy, B. Sudret, N. Varsier, O. Picon, J. Wiart, A new surrogate model-
ing technique combining kriging and polynomial chaos expansions application
to uncertainty analysis in computational dosimetry, Journal of Computational

50



Physics 286 (2015) 103 – 117. doi:http://dx.doi.org/10.1016/j.jcp.2015.01.034.
URL //www.sciencedirect.com/science/article/pii/S0021999115000388

[36] R. H. Cameron, W. T. Martin, The Orthogonal Development of Non-Linear
Functionals in Series of Fourier-Hermite Functionals, Annals of Mathematics
48 (2) (1947) 385–392.
URL http://www.jstor.org/stable/1969178

[37] R. Lebrun, A. Dutfoy, A generalization of the nataf transformation to distribu-
tions with elliptical copula, Probabilistic Engineering Mechanics 24 (2) (2009)
172 – 178. doi:http://dx.doi.org/10.1016/j.probengmech.2008.05.001.
URL http://www.sciencedirect.com/science/article/pii/S0266892008000507

[38] V. Yadav, S. Rahman, Adaptive-sparse polynomial dimensional decom-
position methods for high-dimensional stochastic computing, Computer
Methods in Applied Mechanics and Engineering 274 (2014) 56 – 83.
doi:http://dx.doi.org/10.1016/j.cma.2014.01.027.
URL //www.sciencedirect.com/science/article/pii/S0045782514000504

[39] Z. Perko, L. Gilli, D. Lathouwers, J. Kloosterman, Grid and ba-
sis adaptive polynomial chaos techniques for sensitivity and uncer-
tainty analysis, Journal of Computational Physics 260 (2014) 54 – 84.
doi:http://dx.doi.org/10.1016/j.jcp.2013.12.025.
URL http://www.sciencedirect.com/science/article/pii/S0021999113008322

[40] J. G. Winokur, Adaptive Sparse Grid Approaches to Polynomial Chaos Expan-
sions for Uncertainty Quantification, Ph.D. thesis, Duke University (2015).
URL http://dukespace.lib.duke.edu/dspace/handle/10161/9845

[41] D. G. Krige, A statistical approach to some mine evaluations and allied problems
at the witwatersrand, Master’s thesis, University of Witwatersrand (1951).

[42] C. E. Rasmussen, C. K. I. Williams, Gaussian processes for machine learning,
Adaptive computation and machine learning, MIT Press, Cambridge, Mass,
2006.

[43] A. Forrester, A. Sobester, A. Keane, Engineering design via surrogate modelling:
a practical guide, John Wiley & Sons, Hoboken, NJ, 2008.

[44] M. Arnst, R. Ghanem, E. Phipps, J. Red-Horse, Dimension reduction in stochas-
tic modeling of coupled problems, International Journal for Numerical Methods

51



in Engineering 92 (11) (2012) 940–968. doi:10.1002/nme.4364.
URL http://dx.doi.org/10.1002/nme.4364

[45] M. J. Sasena, Flexibility and efficiency enhancements for constrained global
design optimization with kriging approximations, Ph.D. thesis, University of
Michigan (2002).

[46] M. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge
Monographs on Applied and Computational Mathematics, Cambridge Univer-
sity Press, 2003.

[47] M. J. D. Powell, Direct search algorithms for optimization calculations, Acta
Numerica 7 (1998) 287–336. doi:10.1017/S0962492900002841.

[48] D. Kraft, A software package for sequential quadratic programming, Tech. Rep.
DFVLR-FB–88-28, DLR German Aerospace Center Institute for Flight Me-
chanics, Koln, Germany (1988).

[49] T. Derbyshire, K. Sidwell, Pan air summary document, Tech. Rep. NASA Con-
tractor Report 3250, NASA (1982).

[50] J. Katz, A. Plotkin, Low-Speed Aerodynamics:, 2nd Edition, Cambridge, 2001.
doi:10.1017/CBO9780511810329.

[51] M. A. Bouhlel, N. Bartoli, A. Otsmane, J. Morlier, Improving kriging surro-
gates of high-dimensional design models by partial least squares dimension re-
duction, Structural and Multidisciplinary Optimization 53 (5) (2016) 935–952.
doi:10.1007/s00158-015-1395-9.
URL http://dx.doi.org/10.1007/s00158-015-1395-9

[52] K. Konakli, B. Sudret, Polynomial meta-models with canonical low-rank
approximations: Numerical insights and comparison to sparse polynomial
chaos expansions, Journal of Computational Physics 321 (2016) 1144 – 1169.
doi:http://dx.doi.org/10.1016/j.jcp.2016.06.005.
URL //www.sciencedirect.com/science/article/pii/S0021999116302303

[53] M. Chevreuil, A. Nouy, Model order reduction based on proper generalized de-
composition for the propagation of uncertainties in structural dynamics, Inter-
national Journal for Numerical Methods in Engineering 89 (2) (2012) 241–268.
doi:10.1002/nme.3249.
URL http://dx.doi.org/10.1002/nme.3249

52



6. Appendix

6.1. Detail on the KL decomposition of a PCE random vector

Here are some details about the calculation steps that allow to express the KL
decomposition of Ŷndoe

(ξ). First of all, we recall the expression of Ŷndoe
(ξ) with

respect to ai,

Ŷndoe
(ξ) =

P∑
i=1

aiφi(ξ). (33)

where {φi(ξ)}Pi=1 still denotes the basis formed by the ns variate Hermite polynomials.

Then, taking advantage of the PCE properties, the mean of the vector Ŷndoe
(ξ),

denoted by µŶ , and its covariance matrix, denoted by KŶ are expressed thanks to
PCE coefficients by,

µŶ = a1 (34)

and

KŶ =
P∑
i=2

aia
t
i. (35)

Hence, solving the eigenproblem

KŶ ϕ̂i = λ̂ndoe
i ϕ̂i

where λ̂ndoe
i and ϕ̂i ∈ Rndoe are the ndoe eigenvalues and eigenvectors of KŶ , allows

to express the random vector Ŷndoe
by,

Ŷndoe
(ξ) = µŶ +

ndoe∑
j=1

γ̂ndoe
j (ξ)

√
λ̂ndoe
j ϕ̂j

where γ̂ndoe
j (ξ) are zero mean and unit variance random variables such that,

γ̂ndoe
j =

1√
λ̂ndoe
j

(Ŷndoe
(ξ)− µŶ )tϕ̂j. (36)

Then, by substituting Ŷndoe
by its expression (Eq. (33)) in Eq. (36), one gets the

PCE of the random variable γ̂ndoe
j ,

γ̂ndoe
j =

P∑
i=2

γ̂ndoe
j,i φi(ξ), where γ̂ndoe

j,i =
1√
λ̂ndoe
j

atiϕ̂j.
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Finally, expression of the random vector Ŷndoe
(ξ) reads,

Ŷndoe
(ξ) = µŶ +

ndoe∑
j=1

(
P∑
i=2

atiϕ̂jφi(ξ)

)
ϕ̂j. (37)
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