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h i g h l i g h t s

! 3D generalized univolatility surfaces are defined.

! Ternary RCM univolatility curves are the loci of relative composition critical points.

! Ordinary differential equations describe the univolatility curves.

! A new algorithm based on an initial value problem is proposed.

! The method finds univolatility curves not connected to any azeotrope.
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a b s t r a c t

Residue curve maps (RCMs) and univolatility curves are crucial tools for analysis and design of distillation

processes. Even in the case of ternary mixtures, the topology of these maps is highly non-trivial. We pro-

pose a novel method allowing detection and computation of univolatility curves in homogeneous ternary

mixtures independently of the presence of azeotropes, which is particularly important in the case of zeo-

tropic mixtures. The method is based on the analysis of the geometry of the boiling temperature surface

constrained by the univolatility condition. The introduced concepts of the generalized univolatility and

unidistribution curves in the three dimensional composition – temperature state space lead to a simple

and efficient algorithm of computation of the univolatility curves. Two peculiar ternary systems, namely

diethylamine – chloroform – methanol and hexane – benzene – hexafluorobenzene are used for illustra-

tion. When varying pressure, tangential azeotropy, bi-ternary azeotropy, saddle-node ternary azeotrope,

and bi-binary azeotropy are identified. Moreover, rare univolatility curves starting and ending on the

same binary side are found. In both examples, a distinctive crossing shape of the univolatility curve

appears as a consequence of the existence of a common tangent point between the three dimensional

univolatility hypersurface and the boiling temperature surface.

1. Introduction

Separation of liquid mixtures is one of the most important tasks

in the process industry where distillation is the most widely used

technique. Remarkably, almost every product on the market con-

tains chemicals that have undergone distillation (Kiss, 2014).

Beyond conventional distillation of binary and multi-component

mixtures, several additional distillation techniques are developed

for breaking azeotropes or separating close boiling mixtures: pres-

sure swing distillation, azeotropic and extractive distillation. These

techniques are covered at length in several textbooks and reviews

(Skiborowski et al., 2014; Gerbaud and Rodriguez-Donis, 2014;

Arlt, 2014; Olujic, 2014).

Preliminary conceptual design of distillation processes is based

on the knowledge of the mixture thermodynamics and on the anal-

ysis of the residue curve maps (RCMs). RCMs are useful to assess

the feasibility of splits since they approximate the column compo-

sition profiles under total reflux (Doherty and Malone, 2001;

Petlyuk, 2004). RCMs also display azeotropes and distillation

boundaries, as well as unidistribution and univolatility manifolds.

These geometrical concepts have been reviewed in several works.

Particularly, the review paper of Kiva et al. (2003) provides a com-

prehensive historical review of RCMs mainly taking into account
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the Serafimov’s classification of 26 RCM diagrams of ternary sys-

tems (Hilmen et al.,2002). The important role of RCMs, unidistribu-

tion and univolatility manifolds has been well described by

Widagdo and Seider (1996), Ji and Liu (2007), Skiborowski et al.

(2014) for azeotropic distillation process design and by

Rodriguez-Donis et al. (2009a, 2009b, 2012a, 2012b), Luyben and

Chien (2010) and Petlyuk et al. (2015) for extractive distillation

design purposes. Noteworthy, the existence and the position of

the univolatility curve, a particular type of isovolatility curve,

determine the component to be drawn as distillate as well as the

configuration of the extractive distillation column.

Isovolatility curves are curves along which the relative volatility

of a pair of species is constant:

aij ¼
yi=xi
yj=xj

¼ constant; i– j

Along univolatility curves aij ¼ 1. As their properties are closely

related to those of residue curves (Kiva et al., 2003), univolatility,

isovolatility, and isodistribution curves are useful for studying

the feasibility of distillation processes. For example, the most vola-

tile component is likely to be recovered in the distillate stream

with the so-called direct split whereas the least volatile is likely

to be in the bottom stream with the so-called indirect split. In

azeotropic and extractive distillation processes an entrainer is

added to the liquid mixture to be separated, in order to enhance

the relative volatility between the components. If the isovolatility

rate increases towards the entrainer vertex, it is a good indicator

of an easy separation (Laroche et al., 1991; Wahnschafft and

Westerberg, 1993; Luyben and Chien, 2010). Furthermore in

extractive distillation, the location of the univolatility curve and

its intersection with the composition triangle edge determine the

component to be withdrawn as a distillate product from the

extractive column as well as the proper column configuration

(Laroche et al., 1991; Lelkes et al., 1998; Gerbaud and Rodriguez-

Donis, 2014).

As shown by Kiva and Serafimov (1973), univolatility curves

divide the composition space, X, into different K-order regions.

Zhvanetskii et al. (1988) proposed the main principles describing

all theoretically possible structures of univolatility curves for zeo-

tropic ternary mixtures and their respective location according to

the thermodynamic relationship between the distribution coeffi-

cients of the light component i, the intermediate j and the heavy

component m. 33 possible structures of univolatility curves were

reported under the assumption that for every pair of components

there exists only one univolatility curve. In the succeeding paper

from the same group (Reshetov et al., 1990), the classification

was refined by introducing the following nomenclature:

– ai;j: an arc shape univolatility curve whose terminal points

belong to the same binary side of the composition triangle;

– ai;j: the univolatility curve connecting two different binary sides

of the composition triangle.

Later Reshetov and Kravchenko (2010) extended their earlier

analysis to ternary mixtures having at least one binary azeotrope.

Their main observations are:

(a) more than one univolatility curve having the same compo-

nent index ‘‘i; j” can appear in a ternary diagram;

(b) the univolatility curve that does not start at the binary azeo-

trope can be either ai;j or ai;j type. An ai;j curve can cross a

separation boundary of the RCM;

(c) a ternary azeotrope can be crossed by any type of univolatil-

ity curve;

(d) if two univolatility curves intersect at some point, this point

is a tangential binary azeotrope or a ternary azeotrope. In

both cases there is a third univolatility curve of complemen-

tary type passing through this point;

(e) transitions from ai;j to ai;j (or vice versa) can occur as uni-

volatility curves depend on pressure and temperature of

vapor – liquid equilibrium (VLE).

Despite the increasing application of univolatility curves in con-

ceptual design, there still lacks a method allowing:

(1) detection of the existence of univolatility curves indepen-

dently of the presence of azeotropes, which is particularly

important in the case of zeotropic mixtures;

(2) simple and efficient computation of univolatility curves.

In fact, numerical methods available in most chemical process

simulators allow mainly the computation of the univolatility

curves linked to azeotropic compositions. Missing univolatility

curves not connected to azeotropes will result in improper design

of the extractive distillation process. This problem can be solved by

a fully iterative searching in the ternary composition space provid-

ing the composition values with equal relative volatility (Bogdanov

and Kiva, 1977). Skiborowski et al. (2016) have recently proposed a

method to detect the starting point of the univolatility curve. They

locate all pinch branches that bifurcate when moving from the

pure component vertex along the corresponding binary sides. The

robustness of this approach to handle complex cases, such as bia-

zeotropy when more than one univolatility curve ends on the same

binary side, is well demonstrated. Their algorithm is based on

MESH equations, including mass and energy balances, summation

constraints, and equilibrium conditions.

A less tedious and less time-consuming method is proposed in

this paper. It is based on the geometry of the boiling temperature

surface constrained by the univolatility condition. This approach

will also require the computation of starting binary compositions

independently of the azeotrope condition. Such starting points

can be easily computed with a vapor-liquid equilibrium model

by using the intersections of the distribution coefficient curves

on each binary side of the ternary diagram (Kiva et al., 2003).

This paper is organized as follows: First, we revisit the proper-

ties of the univolatility curves in RCMs, and prove that they are

formed by critical points of the relative compositions. Then, we

show that the topology of unidistribution and univolatility curves

follows from both the global geometrical structure of the boiling

temperature surface and the univolatility condition considered in

the full three-dimensional composition - temperature state space.

Such a consideration leads to a simple algorithm for the numerical

computation of the univolatility curves and other similar objects

by solving a system of ordinary differential equations. The starting

points of the univolatility curves computation can be detected

from the relationship between the distribution coefficients related

to the binary pair ‘‘i; j”: the binary distribution coefficients k
i;j
i , k

i;j
j

and the ternary coefficient k
1i;j
m describing the ternary mixture with

the third component ‘‘m” at infinite dilution. Finally, we illustrate

our approach by considering several topological configurations of

RCM for two distinctive ternary mixtures (thermodynamic model

parameters for both mixtures are available online as the supple-

mentary material to this article). The ternary mixture diethylamine

– chloroform – methanol at different pressures has two

univolatility curves with the same component index ‘‘i; j” and

one univolatility curve of type ai;j. We also applied our method

to the well-known (though uncommon) case of the binary mixture

benzene – hexafluorobenzene exhibiting two azeotropes at



atmospheric pressure. Considering hexane as the third component

of the ternary mixture, we trace out the transformation of the type

of the univolatility curve from ai;j to ai;j with the variation of pres-

sure. The transformation of the topological structure of the uni-

volatility curves is properly computed by using the new

computational method.

2. Methodology

2.1. Basic definitions and notations

Consider an open evaporation of a homogeneous ternary mix-

ture at thermodynamic equilibrium of the vapor and liquid phases

at constant pressure. Let xi; yi; i ¼ 1;2;3 denote the mole fractions

in the liquid and in the vapor phases. T is the absolute temperature

of the mixture. Since x1 þ x2 þ x3 ¼ 1, only two mole fractions are

independent. Selecting (arbitrarily) x1 and x2, the possible compo-

sitions of the liquid belong to the Gibbs triangle

X ¼ fðx1; x2Þ : xi 2 ½0;1*; i ¼ 1;2g, and we denote by @X its bound-

ary. In what follows we will use the vector notation "x ¼ ðx1; x2Þ.

According to the phase rule - in the absence of chemical reactions

- a two-phase ternary mixture has three independent state vari-

ables. If we select x1, x2 and T , the complete state space of a ternary

mixture is the set

fð"x; TÞ : T 2 ½Tmin; Tmax*; "x 2 X; i ¼ 1;2g

Here Tmin; Tmax are the minimum and maximum boiling temper-

atures of the mixture. Throughout this paper we assume the vapor

phase ideality, i.e. at constant pressure the vapor phase is related

to the liquid phase through an appropriate thermodynamic model

of the form yi ¼ K iðx1; x2; TÞxi; i ¼ 1;2;3. The functions Ki are the

distribution coefficients. The liquid mixture of a given composition
"x has a corresponding boiling temperature, which can be computed

from the thermodynamic equilibrium equation:

Uðx1; x2; TÞ ¼
X

3

i¼1

yi , 1 ¼
X

3

i¼1

K iðx1; x2; TÞxi , 1 ¼ 0 ð1Þ

The boiling temperature surface, defined by Eq. (1), can be inter-

preted geometrically as a hypersurface in three-dimensional space.

We will denote it by W. In a homogeneous mixture each composi-

tion of the liquid phase is characterized by an unique value of T, so
@Uð"x;TÞ

@T
– 0 for any T 2 ½Tmin; Tmax* and "x 2 X. This allows application

of the Implicit Function Theorem (Lang, 1987) to solve Eq. (1).

Thus, in principle, the boiling temperature can be computed as a

function of the composition: T ¼ Tbðx1; x2Þ. Hence, in the three

dimensional state space the boiling temperature surface can be

represented as a graph of the function Tbðx1; x2Þ. Moreover, by con-

struction, Uðx1; x2; Tbðx1; x2ÞÞ - 0, so the gradient of the function

Tbðx1; x2Þ can be computed explicitly:

@Tb

@x1
¼ ,

@U
@x1
@U
@T

;
@Tb

@x2
¼ ,

@U
@x2
@U
@T

ð2Þ

In the standard equilibrium model of open evaporation, a mul-

ticomponent liquid mixture is vaporized in a still in such a way

that the vapor is continuously evacuated from the system. Tran-

sient mass balances imply

_xi ¼ xi , yiðx1; x2; TÞ; i ¼ 1;2; ð3Þ

the derivatives in Eq. (3) is computed with respect to some dimen-

sionless parameter n (Doherty and Malone, 2001). The solutions of

the system of DAEs (1) + (3) define certain curves on the boiling

temperature surface W, whose projections on X are called the resi-

due curves. The complete set of such curves forms the RCM.

The right hand sides of (3) define a vector field
"v ¼ ðx1 , y1; x2 , y2Þ in X referred as the equilibrium vector field.

Its singular points describe the pure components and the azeo-

tropes of a given mixture. That is, the singular points of the RCM.

Below we use the symbol ‘‘^” for the wedge product of two vectors

on the plane:

"x ^ "v ¼ v2x1 , v1x2 ¼ det
x1 x2

v1 v2

" #

It is easy to see that the wedge product of two vectors is zero if

and only if either at least one of them is a zero vector, or the two

vectors are collinear, i.e. "v ¼ a"x for some scalar a– 0.

The relative volatility of component i with respect to component

j is given by the ratio

aij ¼
yi=xi
yj=xj

¼
K i

K j

If aij > 1, i is more volatile than j and vice versa. The univolatility

curves are the sets of points in X satisfying aij ¼ 1. The RCM of a

given ternary mixture may contain up to 3 types of a-curves
defined by their respective indices i, j. Geometrically, these curves

are formed by the intersections of the boiling temperature surface,

W, with one of the univolatility hypersurfaces defined by equations

in the form

Wijð"x; TÞ ¼ K ið"x; TÞ , K jð"x; TÞ ¼ 0 ð4Þ

We will call the solutions to Eqs. (1) and (4), the generalized uni-

volatility curves. The univolatility curves are the projections of the

generalized univolatility curves on the ðx1; x2Þ -plane, satisfying for

the relevant pair i-j

wijð"x; Tbð"xÞÞ ¼ K ið"x; Tbð"xÞÞ , K jð"x; Tbð"xÞÞ ¼ kið"xÞ , kjð"xÞ ¼ 0 ð5Þ

Here kið"xÞ ¼ K ið"x; Tbð"xÞÞ denotes the restriction of the i-th distri-

bution coefficient to the boiling temperature surface, W. In what

follows we will systematically use uppercase letters for the objects

defined in the three-dimensional state space, and lowercase for the

corresponding projections on X.

Fig. 1 shows the ternary vapor – liquid equilibrium for the mix-

ture acetone (x1) – ethyl acetate (x2) – benzene. This mixture forms

no azeotropes. One univolatility curve, a2;3 ¼ 1, between ethyl

acetate and benzene exists linking the binary edges acetone – ethyl

acetate and acetone – benzene. Fig. 1 also shows the mutual

arrangement of the boiling temperature surface W and the uni-

volatility hypersurface W23 for this zeotropic ternary mixture.

The curve H formed by their intersection is the generalized uni-

volatility curve. Its projection (full curve) on the triangular dia-

gram, X, is the univolatility curve, here of type a2;3, satisfying the

thermodynamic condition, w23ð"x; Tbð"xÞÞ ¼ 0. The shape and the

location of univolatility hyper-surfaces are independent of pres-

sure, when the vapor phase is an ideal gas. In contrast, the boiling

temperature surface W moves up in the three dimensional state

space when pressure increases. Its shape can also change. Such a

transformation of W can be traced out by considering the transfor-

mation of the underlying RCM with pressure variation, as we show

in Section 3. The described geometrical picture is essentially

related to the ternary mixtures. Indeed, in the higher dimensional

case the relation aij ¼ 1 describes hypersurfaces in the composition

space X instead of curves. Consequently, the computation method

presented below is only valid for ternary mixtures.

The structure of the univolatility curves is closely related to the

structure of the unidistribution curves (Kiva et al., 2003), that is the

curves in X along which ki ¼ 1 for i = 1, 2, 3. In Fig. 1 these curves

are represented by dashes. An unidistribution curve is a projection

on X of the intersection of the boiling temperature surface, W, with

a unidistribution hypersurface defined by K iðx1; x2; TÞ ¼ 1.



2.2. Unidistribution and univolatility curves in the composition space

2.2.1. The role of distribution coefficients in detecting the existence of

the unidistribution and the univolatility curves

If the binary side i-j of the composition triangle X contains a

binary azeotrope, then at this point ki ¼ kj ¼ 1. Hence this point

belongs to the intersection of a pair of unidistribution curves and

to the univolatility curve aij ¼ 1. Kiva et al. (2003) highlighted

the relationship between distribution coefficient functions kið"xÞ

of each binary pair, with the presence of unidistribution and the

univolatlity curves, using the concept of the distribution coefficient

at infinite dilution. More precisely k
1i;j
m ¼ limxm!0

km for m – i; j. We

can compute three functions k
1i;j
m , k

i;j
i , and k

i;j
j for each binary i-j.

The last two are the distribution coefficients of the binary system

formed by components i and j. Below we use the term distribution

curve for the graphs of these functions along binary i-j side of the

composition triangle. If, at such a point, both distribution coeffi-

cients k
i;j
i , and k

i;j
j are unity, the point is a binary azeotrope (denoted

Azij) of the mixture ‘‘i; j”. On the other hand, the binary composition

corresponding to the intersection point of a pair of distribution

curves k
1i;j
m and k

i;j
i (or k

i;j
j Þ yields the starting point of the univolatil-

ity curve ai;m ¼ 1 (or aj;m ¼ 1Þ. Similarly, if at some composition of

the binary i-j the function k
1i;j
m is unity, this composition initiates

the unidistribution curve of component m.

Fig. 2 illustrates these concepts for the ternary mixture acetone

(1) – chloroform (2) – methanol (3), including the functions k
1i;j
m ,

k
i;j
i , and k

i;j
j and the univolatility and unidistribution curves.

As shown in Fig. 2, each binary pair has a single azeotrope, and

there is one ternary azeotrope (saddle type). Each univolatility

curve ai;j beginning at the binary i-j azeotrope terminates at the

binary composition corresponding to the intersection of either

(k
1m;j
i , k

m;j
j ) or (k

1i;m
j , k

i;m
i ). In particular, the curve a1;2 ¼ 1 reaches

the edge 1–3 at the intersection of k
11;3
2 and k

1;3
1 . The curve

a1;3 ¼ 1 reaches the edge 2–3 at the intersection of k
12;3
1 and k

2;3
3 .

Similarly, the curve a2;3 ¼ 1 reaches the edge 1–3 at the intersec-

tion of k
11;3
2 and k

1;3
3 . Thus, all starting points of univolatility and

unidistribution curves can be determined by the computation of

the distribution coefficients kið"xÞ in the binaries only. Next, we will

focus on the thermodynamic interpretation of the univolatility

curves.

2.2.2. Thermodynamic meaning of the unidistribution and the

univolatility curve

Consider a residue curve bðnÞ ¼ ðx1ðnÞ; x2ðnÞÞ in X and the uni-

volatility curve a1;2 ¼ 1. By definition, b is a solution to the differ-

ential equation _"x ¼ "v . Moreover, along b the following relations

holds

ðk1 , k2Þj"x2bðnÞ ¼
y1x2 , y2x1

x1x2
¼

"x ^ "v

x1x2
¼

_x2x1 , _x1x2
x1x2

¼
d

dn
ln

x2
x1

$ %

ð6Þ

d

dn
ðk1 , k2Þj"x2bðnÞ ¼

"x ^ €"x

x1x2
, ðk1 , k2Þ

x1v2 þ x2v1

x1x2
ð7Þ

The detailed derivation of equalities (6) and (7) is given in

Appendix A.

Suppose the curve b intersects the univolatility curve a1;2 ¼ 1 at

some point "x1 ¼ bðn1Þ. Then k1ð"x1Þ , k2ð"x1Þ ¼ 0 and at the point "x1
the left-hand side of Eq. (6) vanishes. Since the natural logarithm

is a monotonous function, this implies that "x1 is the critical point

of the ratio x2=x1 along b. In particular, "x1 satisfies the necessary

Fig. 1. Boiling temperature surface W and the univolatility hypersurface W23 ¼ 0 where a23 ¼ 1 for the mixture acetone (1) – ethyl acetate (2) – benzene (3).



conditions for the solutions of the constrained optimization prob-

lem on the form

min =max
"xðnÞ2b

x2ðnÞ

x1ðnÞ

Geometrically, this means that the slope of the ray issued from

the origin and moving along the residue curve b has an extremum

at the point where the residue curve intersects the univolatility

curve a1;2 ¼ 1. Since ðk1 , k2Þðx1Þ ¼ 0, only the wedge product term

remains in Eq. (7). It follows that the function x2ðnÞ=x1ðnÞ has a

local maximum at n1 if "x1 ^ €"xðn1Þ < 0 and a local minimum if

"x1 ^ €"xðn1Þ > 0, except at an inflection point where "x1 ^ €"xðn1Þ ¼ 0.

In the latter case n1 corresponds to the inflection point of the ratio

x2ðnÞ=x1ðnÞ.

Recall that the curvature of a curve on a plane is given by

v ¼ _"x ^
€"x

_"xj jj j
3 (Do Carmo, 1976). Comparing Eq. (6) with residue

curves of Eqs. (3) we see that at the point "x1 the vectors "x and

"v ¼ _"x are collinear, so the type of the extremum is defined by the

sign of the curvature v. The sign of the curvature characterizes

the convexity of the curve. Indeed, when _x1–0, the curve b can

be represented as a graph of the form x2 ¼ x2ðx1Þ. In this case

v ¼ x002ð1þ ðx02Þ
2Þ

,3=2
, where ‘‘0” denotes the derivative with respect

to x1, and hence v > 0 corresponds to convex curves, while v < 0

corresponds to concave curves. Moreover, residue curves Eq. (3)

imply that at the point of intersection with the univolatility curve

x02 ¼ x2
x1
P 0. This means that residue curves intersect the univolatil-

ity curve a1;2 ¼ 1 in the ascending direction (with respect to the

chosen pair of axes). All of this remains true for the univolatility

curves a1;3 ¼ 1 and a2;3 ¼ 1 modulo the initial choice of the coordi-

nate axes. Putting together these arguments, we get the following

results:

Theorem 1.

(a) Univolatility curves ai;j on the RCM of ternary mixtures are the

loci of the critical points of the relative compositions xj=xi.

(b) Along any residue curve, the type of the local extremum of the

ratio xj=xi at the point of the intersection with the univolatility

curve ai;j ¼ 1 is determined by the sign of its curvature at this

point, with respect to the axes xi, xj: It has a minimum if

v > 0, and a maximum if v < 0.

(c) Any residue curve intersecting the univolatility curve ai;j ¼ 1 at

the point "x1 is tangent to the ray x1j=x1i ¼ const. It intersects the

univolatility curve in ascending direction with respect to the

axes xi; xj. Moreover, if the curvature of this residue curve has

constant sign, the whole curve will entirely lie on the same side

of the ray x1j=x1i ¼ const.

Remark 1. The geometrical characterization given in property c is

well known in the literature (Kiva et al. 2003).

Remark 2. Azeotropes and pure states are singular points for the

equilibrium vector field, v . Hence, they are asymptotic limits of

the residue curves, as n goes to infinity in Eq. (3). In other words,

residue curves do not pass through them. Consequently, azeo-

tropes and pure states are excluded from the context of Theorem 1.

In order to detect the global extremum value of the relative com-

position along a residue curve, one has to consider the asymptotic

upper and lower limits associated to straight curves xi=xj ¼ const

connecting the pure states to the azeotropes associated with the

residue curve under consideration.

The ternary mixture of acetone (1) – chloroform (2) – methanol

(3) (shown in Fig. 2), has one ternary azeotrope of saddle type and

3 binary azeotropes as nodes. In Fig. 3 we present the sketch of its

Fig. 2. Relationship between univolatility curves and distribution curves for the mixture acetone (1) – chloroform (2) – methanol (3).



RCM. For the sake of convenience, in the upper right corner we

recall the orientation of the axes for the coordinate systems having

the origin at different pure states. Azeotropes are indicated by red

dots. The three full curves are univolatility curves. Consider first

the residue curve b1. Along this curve the ratio x2=x1 has a local

minimum at the point P1 where it intersects the univolatility curve

a1;2 ¼ 1, and at P2 (intersection with a2;3 ¼ 1Þ the local mimimum

value of x2=x3 is reached. Along the curve b2 the function x2=x1
has a local maximum at P3 (intersection with a1;2 ¼ 1Þ and at P4,
x2=x3 has local maximum (intersection with a2;3 ¼ 1Þ. Finally, along

b3 there is a local minimum of x1=x3 at the point P5 (intersection

with a1;3 ¼ 1Þ.

2.3. Practical computation of the unidistribution and univolatility

curves

2.3.1. Detection of the starting points of the unidistribution and the

univolatility curves on the binary sides of the composition space X

As shown in Fig. 1, the existence of the univolatility curves can

be detected from the equality of the values of the binary distribu-

tion coefficients, including the coefficients of the components at

infinite dilution. The formal calculation of the starting points of

the univolatility curves relies upon the solution of the algebraic

equations (5) restricted to the binary mixtures. Such a restriction

means that the ki must be replaced by the appropriate binary dis-

tribution coefficients or the distribution coefficient at infinite dilu-

tion. Eq. (5) describing the univolatility curves are restrictions of

Eq. (4) to the boiling temperature surface defined by Eq. (1). Since

along the binary side i-j, we have xi ¼ 1, xj and xm ¼ 0, this side

can be parametrized by a single composition variable xj. Thus, for

any binary i-j we have to solve the following system of algebraic

equations:

K i;j
i ðxj; TÞ , K i;j

j ðxj; TÞ ¼ 0; K i;j
i ðxj; TÞð1, xjÞ þ K i;j

j ðxj; TÞxj ¼ 1

ð8:1Þ

K i;j
i ðxj; TÞ , K1i;j

m ðxj; TÞ ¼ 0; K i;j
i ðxj; TÞð1, xjÞ þ K i;j

j ðxj; TÞxj ¼ 1

ð8:2Þ

K i;j
j ðxj; TÞ , K1i;j

m ðxj; TÞ ¼ 0; K i;j
i ðxj; TÞð1, xjÞ þ K i;j

j ðxj; TÞxj ¼ 1

ð8:3Þ

Here, as before, K1i;j
m ¼ limxm!0

Km. Thermodynamic models are

needed for the pure component vapor pressures and the activity

coefficients of all 3 species i-j-m.

Computation of starting points for the unidistribution curves is

completely analogous. But, the first equation in each of the systems

(8.1)–(8.3) must be replaced by one of the following equations,

K i;j
i ðxj; TÞ ¼ 1;K i;j

j ðxj; TÞ ¼ 1; K1i;j
m ðxj; TÞ ¼ 1 ð9Þ

The algorithm of the computation of the starting points of the

unidistribution and univolatility curves, using Eqs. (8.3) or (9) does

not require the existence of binary azeotropes. It is applicable to

any zeotropic or azeotropic homogeneous mixture. However, all

binary azeotropes, if they exist, will be found as solutions. In the

next section we will derive the ordinary differential equation

allowing computation of the whole univolatility or unidistribution

curve by numerical integration.

2.3.2. The generalized univolatility and unidistribution curves

Consider a generalized univolatility curve H : s! HðsÞ ¼
ðx1ðsÞ; x2ðsÞ; TðsÞÞ in the three-dimensional state space. By defini-

tion, H is formed by the intersection of two hypersurfaces defined

by the algebraic equations Uðx1; x2; TÞ ¼ 0; Wðx1; x2; TÞ ¼ 0, the

Fig. 3. Relationship between univolatility curves and residue curves for the mixture acetone (1) – chloroform (2) – methanol (3).



latter representing any of the Eqs. (4). A short recall about surface

geometry is given in Appendix B.

Let U ¼ ðU1;U2;U3Þ denote a tangent vector to H at some point.

By construction, U is orthogonal both to the normal vector

Nw ¼ rU to the boiling temperature surface W and to the normal

N ¼ rW to the univolatility hypersurface (see Fig. 1). If the two

hyper-surfaces are in general position (i.e. do not have common

tangent planes), we have U ¼ Nw 4 N, implying

U1 ¼
@U

@x2

@W

@T
,
@U

@T

@W

@x2
; U2 ¼

@U

@T

@W

@x1
,

@U

@x1

@W

@T
;

U3 ¼
@U

@x1

@W

@x2
,

@U

@x2

@W

@x1
ð10Þ

Theorem 2. The generalized univolatility curve projecting on the

univolatility curve aij ¼ 1 is an integral curve of the vector field U

defined by Eq. (10), i.e., it is a solution to the following system of

ordinary differential equations in three-dimensional state space:

dx1
ds

¼
@U

@x2

@Wij

@T
,
@U

@T

@Wij

@x2
;
dx2
ds

¼
@U

@T

@Wij

@x1
,

@U

@x1

@Wij

@T
;

dT

ds
¼

@U

@x1

@Wij

@x2
,

@U

@x2

@Wij

@x1
ð11Þ

The geometrical interpretation of Theorem 2 is illustrated in

Fig. 1.

Remark 3. In principle, the boiling temperature surface and the

univolatility hypersurface can have isolated points of common

tangency. In this case U1 ¼ U2 ¼ U3 ¼ 0, i.e., the generalized

univolatility curve degenerates into a point. Comparing Eqs. (11)

and (2), after all necessary simplifications, gives

U3 ¼ U1

@Tb

@x1
þ U2

@Tb

@x2
; ð12Þ

and therefore any singular point of the univolatility curve on X

obeying U1 ¼ U2 ¼ 0 is a singular point of the corresponding gener-

alized univolatility curve and vice versa. Such isolated singular

points can be of elliptic or hyperbolic type. In the first case the cor-

responding degenerated univolatility curve will just be a point in X,

whereas in the last case it is composed of four branches joining at

the singular point. Note that such singular points of univolatility

curves are not necessarily singular points of the RCM. Another

highly non-generic situation occurs when a curve of aij type shrinks

into a point on the binary edge of the composition space X. Such

point can be either a regular point of the RCM or it can coincide with

a tangential binary azeotrope. In the latter case the RCM will have a

binary azeotrope which does not generate any univolatility curve

that is different from a point. In Section 3 we provide the examples

of these highly non-generic and unusual configurations.

Remark 4. All the above formulae can be directly applied for the

computation of the unidistribution curves by setting

Wðx1; x2; TÞ ¼ Kðx1; x2; TÞ , 1, where K is any of the distribution

coefficients.

2.3.3. From three-dimensional model to the numerical computation of

the univolatility curves

Eq. (11) provides an effective tool for numerical computation of

the univolatility curves using the standard Runge-Kutta schemes

for the ODE integration. The initial points for such integration

can be computed by finding solutions of Eqs. (8.1)–(8.3) by means

of a standard non-linear equations solver like the Newton-Raphson

method. Once the initial point is chosen, the whole generalized

univolatility curve can be computed by following the intersection

of two associated hyper-surfaces using the vector field U in the

direction pointing inside the composition space X. In particular,

no further iteration procedure is required to compute the uni-

volatility curve in the interior points of X. In addition, to avoid

the difficulties associated with possible stiffness of Eqs. (11), it is

recommended to rewrite them in the normalized form, which is

equivalent to choose the arc length s of the curve as the new

parameter of integration instead of s.
For definiteness, consider the curve ai;j ¼ 1 starting from the 3–

1 binary side, that is, from the x1-axis. The starting point of this

curve is a projection of a point ðx01;ij;0; T
0
1;ijÞ in the state space. The

whole curve ai;j ¼ 1 can be computed as the projection of the solu-

tion of the following initial value problem:

dx1
ds

¼
dijU

ij
1ðx1; x2; TÞ

kUijðx1; x2; TÞk
;

dx2
ds

¼
dijU

ij
2ðx1; x2; TÞ

kUijðx1; x2; TÞk
;

dT

ds
¼

dijU
ij
3ðx1; x2; TÞ

kUijðx1; x2; TÞk
ð13Þ

x1ð0Þ ¼ x01;ij; x2ð0Þ ¼ 0; Tð0Þ ¼ T0
1;ij ð14Þ

dij ¼ sign Uij
2 x01;ij;0; T

0
1;ij

& '& '

ð15Þ

Analogous initial value problems can be formulated for the

curves starting from other binary sides of X by an appropriate

modification of the initial conditions (14) and the starting direction

(15). Here is the sketch of the general algorithm:

1. Find all starting points of the univolatility curves on each binary

side i-j of X and form the list of all possible starting points by

solving Eqs. (8.1)–(8.3).

2. Take the starting points of the list created in point 1 and solve

the initial value problem of type (13)–(15) with an appropriate

choice of the initial direction. The numerical integration should

be continued until one of the following situations occurs:

x1 < 0; x2h0; x1 þ x2i1, i.e. the border of X is attained. Then stop

integration.

3. Exclude both initial and final points of the curve computed in

point 2 from the list of starting points.

4. Go back to point 2 until the list of starting points is exhausted.

The advantage of the described algorithm is that once the Eq.

(13) is given, we only need to use a standard solver for a pair of

non-linear algebraic equations and a standard ODE integrator.

The prototype of the algorithm described above was realized in

Mathematica 9, and was used in case studies discussed in the next

section. The choice of Mathematica 9 is not prohibitive. The algo-

rithm can easily be implemented in other scientific computing

packages like MATLAB of MAPLE allowing Eq. (13) to be written

by symbolic differentiation of the thermodynamic model. The

implementation using the standard algorithmic languages is possi-

ble by coupling with a compatible library of automatic

differentiation.

Remark 5. The above method of calculation of the univolatility

and unidistribution curves was developed under the ideality

assumption of the vapor phase. Although the geometrical deriva-

tion remains the same, certain definitions and computations must

be adapted when considering a non-ideal vapor phase. In that case,

and in order to correctly define the concept of the univolatility

curve in the composition space X, the relations yi ¼ K iðx;"y; TÞxi;



i ¼ 1;2;3, need first to be solved with respect to the vapor mole

fractions yi. In principle, this is possible thanks to the general

Implicit Function Theorem, which also provides the explicit

formulae for the derivatives of yi with respect to xi and T. In the

presented numerical algorithm, a standard ODE solver needs to be

replaced by a DAE solver, allowing to compute the vapor phase at

each step of integration.

3. Computation of univolatility curves in ternary mixtures. Case

studies

Reshetov and Kravchenko (2007a, 2007b) studied 6400 ternary

mixtures including 1350 zeotropic mixtures, corresponding to Ser-

afimov class 0.0–1. The structure of the univolatility curves was

determined for 788 zeotropic systems, using the Wilson activity

coefficient equation based on both, ternary experimental data

and reconstructed data of binary mixtures. 15 of the possible 33

classes defined by Zhvanetskii et al. (1988) were found, and

28.4% of computed ternary diagrams exhibited at least one uni-

volatility curve indicating the necessity of computing the uni-

volatility curve even for zeotropic mixtures. Unfortunately, the

authors provided no information on the components used in their

analysis. In the case of ternary mixtures with at least one azeo-

trope, Reshetov and Kravchenko (2010) extended their earlier

study (Reshetov et al. 1990) by considering 5657 ternary mixtures

where 30% of all cases were modelled from experimental data.

Table 1 summarizes Reshetov and Kravchenko results (2010) and

arranges ternary diagrams into three groups according to the num-

ber of ai;j curves of each component pair ‘‘i; j”. We use Serafimov’s

classification instead of Zharov’s classification (see correspondence

in Kiva et al., 2003) used in the original paper. According to

Table 1, 79.2% of the analysed mixtures had at least one univolatil-

ity curve. Among them, 97.2% have only one univolatility curve ai;j

for each index ‘‘i; j”, while 2.7% involved two univolatility curves

ai;j. Two ternary diagrams belonging to the Serafimov class (1.0-

1a) exhibited three univolatility curves ai;j with the same compo-

nent index ‘‘i; j”. Furthermore, about 2% of studied cases displayed

at least one univolatility curve of ai;j -type. According to these data,

real ternary mixtures exhibiting more than one univolatility curve

for a component index ‘‘i; j”, as well as the ai;j-type univolatility

curve are rare at atmospheric pressure. Below we present two

examples with quite an uncommon behavior related to the exis-

tence of at least two univolatility curves with the same component

index ‘‘i; j” and one univolatility curve belonging to ai;j -type. The

first example is the ternary mixture diethylamine (1) – chloroform

(2) – methanol (3) which was reported in the paper of Reshetov

and Kravchenko (2010) as exhibiting two univolatility curves a1;2.

The second example is the well-known case of the existence of

two binary azeotropic mixture for benzene – hexafluorobenzene

providing a particular shape of the univolatility curves. The atmo-

spheric pressure was selected for defining the initial Serafimov

class of the RCM for each case study. The RCMs were computed

using NRTL model with Aspen Plus built-in binary interaction

parameters. For the binary mixture diethylamine (1) – chloroform

(2), the binary coefficients were determined from experimental

vapor – liquid equilibrium data (Jordan et al., 1985).

3.1. Case Study: diethylamine (1) – chloroform (2) – methanol (3)

In Fig. 4 we show the RCM of this mixture at 1 atm. It has two

binary maximum boiling azeotropic points in the binary edges

diethylamine (1) – chloroform (2) and diethylamine (2) – methanol

(3), and one binary minimum boiling azeotrope on the edge chlo-

roform (2) – methanol (3). The corresponding Serafimov class is

3.0-1b with only 0.9% of occurrence (Hilmen et al., 2002). At

1 atm, there are three univolatility curves of ai;j-type coming from

each binary azeotrope. This is consistent with the behavior of the

distribution curves along the binary sides 1–2, 1–3 and 2–3 (right

diagrams) and the unity level line. The univolatility curve

a1;3 ¼ 1 issued from Az13 arrives at the edge 1–2 at the intersection

point of the curves k
11;2
3 and k

1;2
1 . Similarly, the curve a1;2 ¼ 1 starts

at Az12 and reaches the edge 1–3 at the point corresponding to the

intersection of the distribution curves k
11;3
2 and k

1;3
1 , and the curve

a2;3 ¼ 1 issued from Az23 terminates at the point given by the inter-

section of the curves k
11;3
2 and k

1;3
3 . As a consequence of the differ-

ence in nature of the azeotropes and the close boiling temperatures

of the components, diethylamine (55.5 "C) – chloroform (61.2 "C) –

methanol (64.7 "C), the small variation of the pressure causes a

significant transformation of the topological structure of the uni-

volatility curves.

Indeed, as it is shown in Fig. 5, changing the pressure to 0.5 atm

leads to several bifurcations of the topological structure of RCM

Table 1

Occurrence of univolatility curves having different types in several Serafimov classes of ternary diagrams according to []. adapted from Reshetov and Kravchenko, 2010

Serafimov’s class One ai;j Two ai;j Three ai;j

ai;j ai;j
ai;j ai;j

ai;j ai;j

1.0-1a* 1 938 11 29 – 2

1.0-1b* – 49 1 – – –

1.0-2* 19 682 5 15 – –

2.0-1 – 23 – – – –

2.0-2a* – 3 – 2 – –

2.0-2b* 14 1975 3 24 – –

2.0-2c – 63 – 1 – –

3.0-2 – 174 – 10 – –

3.0-1b* – 29 1 2 – –

1.1-2 7 27 5 0 – –

1.1-1a 1 – – – – –

2.1-2b 5 32 – 1 – –

2.1-3b* 10 59 2 5 – –

2.1-3a – 29 – – – –

3.1-2 – 168 – 5 – –

3.1-1b – 2 – – – –

3.1-1a – 2 – – – –

3.1-4* – 47 – – – –

* Antipodal structure.



along with the transformation of the structure of both univolatility

and distribution curves. First, the pressure is slightly decreased

(Fig. 5a) and a new branch of a2;3 type arises from the edge diethy-

lamine (1) – chloroform (2). This new branch is not connected to

any azeotropic point. With further pressure decrease, the two uni-

volatility curves a2;3 and a2;3 get closer until the first bifurcation

appearing at P 8 0.922148 atm (see Fig. 5b): the two branches of

the curve a2;3 ¼ 1 meet each other at a singular point. Such a sin-

gularity resulting from the common tangency between the boiling

temperature surface and the univolatility hypersurface was

described in Remark 3 in the Section 2.3.2. In the present case

the situation is even more interesting because at this singular point

the curve a2;3 ¼ 1 intersects the other two univolatility curves

forming a ternary azeotrope Az123 of the saddle-node type. With

decreasing pressure slightly (Fig. 5c) the saddle–node azeotrope

splits into a pair of ternary azeotropes: a saddle (the upper one)

and a stable node (the lower one). The curve a2;3 ¼ 1 is now formed

by two branches of a2;3 type.

With a further decrease of pressure (Fig. 5d) the saddle ternary

azeotrope merges with the binary azeotrope diethylamine (1) –

chloroform (2) at P 8 0.90212323 atm, forming a transient tangen-

tial binary azeotrope. An infinitesimal reduction of the pressure

gives rise to a binary azeotrope Az12 of saddle type. The resulting

RCM corresponds to the Serafimov class 3.1-1b which has zero

occurrence in real mixtures according to Hilmen et al. (2002).

The next bifurcation occurs at P 8 0.7574595 atm (Fig. 5e): the

three univolatility curves ai;j ¼ 1 meet each other on the binary

side diethylamine (1) – methanol (3) forming a tangential binary

azeotrope Az13. Continued pressure reduction (Fig. 5f) moves the

bottom of the curve a2;3 ¼ 1 to the right inducing the splitting of

the transient azeotrope into a binary stable node and a new ternary

azeotrope of saddle type. We observe again a RCM with 2 ternary

azeotropes in Fig. 5f: a saddle (in the bottom) and a stable node

(in the top) resulting from the double intersection of the three uni-

volatility curves of different types. At P 8 0.627963 atm (Fig. 5g),

two ternary azeotropes merge in a single saddle-node ternary

azeotrope, which disappears with a further pressure decrease.

Below this singular value of pressure and until P = 0.5 atm, the

RCM belongs again to Serafimov class 3.0-1b as it was at

P = 1 atm. However, the maximum boiling azeotropic mixture

diethylamine (1) – methanol (3) is now the stable node type

instead of the mixture diethylamine (1) – chloroform (2) at

P = 1 atm (Fig. 4). Note, that the resulting two RCMs of Serafimov

class 3.0-1b have different topology of univolatility curves. At

0.5 atm there is one curve of type a1;3 , one curve of type a1;2 and

two curves of type a2;3 instead of just one curve of type ai;j for each

pair of indices.

Comparing the RCM diagrams in Fig. 5 to the corresponding

distribution curves in Fig. 6, shows that the bifurcation resulting

from the intersection of more than one univolatility curves at

the binary edges can be detected by the analysis of the intersec-

tions of the distribution curves associated with the distribution

coefficients k
1i;j
m , k

i;j
i and k

i;j
j . Indeed, in Fig. 6a-c and Fig. 6f, both

terminal points of the curve a2;3 ¼ 1 with the binary side diethy-

lamine (1) – chloroform (2) correspond to the double intersection

of the distribution curves of k
11;2
3 and k

1;2
2 . These results show the

efficiency of this criterion for the curves of type ai;j. In Fig. 6d the

existence of the tangential binary azeotrope Az12 on the 1–2 edge

is well in accordance with the common intersection point of the

three distribution curves k
11;2
3 , k

1;2
1 and k

1;2
2 . The same behavior

can be also observed by comparing Figs. 5e and 6e for the binary

tangential azeotrope on the edge diethylamine (1) – methanol (3):

the three distribution curves k
11;3
2 , k

1;3
1 and k

1;3
3 intersect at the

azeotropic composition Az13. The formation (Fig. 5b and g) and

the splitting (Fig. 5c and f) of the saddle-node type ternary azeo-

tropes cannot be detected from the behavior of the distribution

curves along binary edges. The existence of the ternary azeotropes

is detected by the existence of the intersection of at least two uni-

volatility curves.

,

Az23
,

,
ki

x3 x2

x1

x2

Az12

Az23

Az13
, ,

, Az13

,

,
,

(x =0.2567) 

,

(x1=0.2699) 

x1x3

A

(x1,

x1

Az12

x2

, ,

,

, (x1=0.4841) 

ki

ki

Fig. 4. RCM, univolatility curves and distribution curves on the edges 1–2, 1–3 and 2–3 for the mixture diethylamine (1) – chloroform (2) – methanol (3) at P = 1 atm.
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3.2. Case Study: hexane (1) – benzene (2) – hexafluorobenzene (3)

As it is shown in Fig. 7, at the reference pressure 1 atm, the RCM

of this ternary mixture has two binary azeotropes Az123 (saddle) and

Az1123 (stable node) on the binary side benzene (2) – hexafluoroben-

zene (3). The other two binary azeotropes belong to the sides ben-

zene (2) – hexane (1) and hexafluorobenzene (3) – hexane (1). The

RCM is characterized by four univolatility curves issued from each

of the binary azeotropes. In addition, the univolatility curve

a2;3 ¼ 1 is composed by two branches of ai;j – type. As shown in

the right-hand side of Fig. 7, the terminal points of both curves

a2;3 on the binary edge hexane (1) – benzene (2) can be detected

by the double intersection between the distribution curve of

k
11;2
3 with the curve for k

1;2
2 . The pair of binary azeotropes on the

2–3 edge comes from the double simultaneous intersection of

the distribution curves k
2;3
2 and k

2;3
3 with the unit level curve.

The pressure increase allows tracing out some peculiar transfor-

mations of the topological structure of the RCM of this mixture.

First of all, at P 8 1.07705 atm, two branches a2;3 join to form a

unique cross shape univolatility curve, as shown in Fig. 8a. A sim-

ilar configuration was observed in Fig. 5b. This phenomenon corre-

sponds to the existence of the common tangent point of the boiling

temperature surface and the univolatility hypersurface, as shown

in Fig. 10. Unlike to the case presented in Fig. 5b, here the singular-

ity of the univolatility curve is not related to the existence of the

ternary azeotrope. In fact, this singular point is not a critical point

of the boiling temperature Tb, and hence the boiling temperature

surface W intersects the other two univolatility hypersurfaces

W12 ¼ 0 and W13 ¼ 0 far from this point. With the further incre-

ment of pressure (Fig. 8b) the two branches of the curve a2;3 ¼ 1

split into two curves of ai;j-type. Such a transformation cannot be

detected from the analysis of the distribution curves k
1i;j
m , k

i;j
i and

k
i;j
j . Indeed, the distribution curves diagrams at P = 1 atm (Fig. 7)

and at P = 1.2 atm (Fig. 9) are almost identical. Remarkably, one

of the new univolatility curves (labelled a1
2;3) connects two binary

azeotropes Az123 and Az1123. With the further pressure growth, the

binary azeotrope Az12 disappears together with the univolatility

curve a1;2 ¼ 1 and the right branch of the curve a2;3 ¼ 1. The two

azeotropes Az123 and Az1123 move closer making the curve a1
2;3 shorter

and closer to the edge 2–3. At P 8 4.93806 atm (Fig. 11) Az123 and

Az1123 join to form a singular binary azeotrope, which is not con-

nected to any univolatility curve. This point corresponds to the

only common point between the boiling temperature surface and

the hypersurface defined by W23 ¼ 0 in the tree-dimensional state

space. With the further pressure increase, this azeotrope disap-

pears and a1;3 ¼ 1 remains the only univolatility curve of the tern-

ary mixture.

4. Conclusion

The feasibility of the separation and the design of distillation

units can be assessed by the analysis of residue curve maps (RCMs)

and univolatility and unidistribution curves. Kiva et al. (2003)

reviewed their properties and interdependence. The topology of

RCMs and of univolatility curve maps is not trivial even in the case

of ternary mixtures, as is known from Serafimov’s and Zhvanet-

skii’s classifications (1988, 1990). These classifications are usually

shown in the two dimensional composition space. However, the

two dimensional representation does not reflect the true nature

of the univolatility curves.

In this paper, we propose a novel method allowing the detec-

tion of the univolatility curves in homogeneous ternary mixtures

independently of the presence of the azeotropes, which is particu-

larly important in the case of zeotropic mixtures. The method is

based on the analysis of the geometry of the boiling temperature

surface constrained by the univolatility condition. We have

demonstrated that the curves where ai;j ¼ 1 are the loci of critical

points of the relative compositions xj=xi. We proposed a simple

method for efficient computation of univolatility curves by solving

an initial value problem. The starting points are found by using the

intersection of the distribution coefficient curve k
1i;j
m with the

curves k
i;j
i , of k

i;j
j along each binary side i-j of the composition trian-

gle, where the component m is considered at infinite dilution.
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Fig. 6. Distribution curves on each binary edges 1–2, 1–3 and 2–3 of the mixture diethylamine (1) – chloroform (2) – methanol (3) at different pressures.



Two peculiar ternary systems, namely diethylamine – chloro-

form – methanol and hexane – benzene – hexafluorobenzene were

used for illustration of the unusual univolatility curves starting and

ending on the same binary side. By varying the pressure, we also

observed a rare occurrence of tangential azeotropes, saddle-node

ternary azeotropes and bi-ternary and bi-binary azeotropy phe-

nomena. In both examples, a transition cross-shape univolatility

curve appears as a consequence of existence of a common tangent

point between the three dimensional univolatility hypersurface

and the boiling temperature surface. The same computations were

Fig. 6 (continued)
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Fig. 7. RCM, univolatility curves and distribution curves on the binary edges 1–2, 1–3 and 2–3 for the mixture hexane (1) – benzene (2) – hexafluorobenzene (3). P = 1 atm.
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Fig. 8. RCM, univolatility curves on the binary edges 1–2, 1–3 and 2–3 for the mixture mixture hexane (1) –benzene (2) – hexafluorobenzene (3) at different pressures.
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Fig. 9. Distribution curves on the binary edges (a) 2–3 and (b) 1–2 for the mixture hexane (1) – benzene (2) – hexafluorobenzene (3) at P = 1.2 atm.



performed using Aspen Plus V 8.6 with built-in NRTL binary

coefficients database for both ternary mixtures: diethylamine –

chloroform - methanol mixture and hexane – benzene – hexafluo-

robenzene. In contrast to our results, these computations failed for

all univolatility curves non-connected to azeotropic compositions

at the fixed pressure.
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Appendix A. Derivation of Eqs. (6) and (7)

Consider a residue curve bðnÞ ¼ ðx1ðnÞ; x2ðnÞÞ in X and the uni-

volatility curve a1;2 ¼ 1. We have:

ðk1 , k2Þj"x2bðnÞ ¼ y1
x1
, y2

x2
¼ y1x2,y2x1

x1x2
¼ y1x2,y2x1þx1x2,x1x2

x1x2

¼ ðx2,y2Þx1,ðx1,y1Þx2
x1x2

ðA:1Þ

By definition, b is a solution to Eq. (3), which in vector form is

expressed as _"x ¼ "v ¼ ðx1 , y1; x2 , y2), where ‘‘9” means the deriva-

tive with respect to the dimensionless parameter n. Hence

ðk1 , k2Þj"x2bðnÞ ¼
v2x1 , v1x2

x1x2
¼

_x2x1 , _x1x2
x1x2

¼
_x2
x2

,
_x1
x1

¼
d

dn
ln

x2
x1

$ %

ðA:2Þ

which completes the proof of Eq. (6). We also remark that in vector

notation the right-hand side of Eq. (A.1) can be rewritten as a wedge

product of the vectors "x and "v:

ðk1 , k2Þj"x2bðnÞ ¼
v2x1 , v1x2

x1x2
¼

"x ^ "v

x1x2

The differentiation of Eq. (A.2) with respect to n yields:

Fig. 10. Mixture hexane (1) – benzene (2) – hexafluorobenzene (3): the mutual arrangement of the boiling temperature surface and the univolatility hypersurfaceW23 ¼ 0 at

P 8 1.07705 atm.

P = 4.93806 atm 

x1

Az13

x2

,

Az23

Fig. 11. RCM and univolatility curves of the mixture hexane (1) – benzene (2) –

hexafluorobenzene (3) at P 8 4.93806 atm.



d
dn
ðk1 , k2Þ

(

(

(

"x2bðnÞ
¼

€x2
x2
,

€x1
x1
,

_x2
2

x2
2

þ
_x2
1

x2
1

¼
€x2x1, €x1x2

x1x2
,

_x2
x2
,

_x1
x1

& '

_x1
x1
þ

_x2
x2

& '

¼
€x2x1, €x1x2

x1x2
, ðk1 , k2Þ

v1x2þv2x1
x1x2

ðA:3Þ

which in vector notation becomes Eq. (7):

d

dn
ðk1 , k2Þj"x2bðnÞ ¼

"x ^ €"x

x1x2
, ðk1 , k2Þ

v1x2 þ v2x1
x1x2

Appendix B. Surfaces in the three-dimensional space

Consider a three dimensional space R
3 and let ðx; y; zÞ be the

standard Cartesian coordinates in it. Let F : R
3 ! R be a smooth

(at least twice continuously differentiable) function. The implicit

equation Fðx; y; zÞ ¼ 0 defines a hyper-surface (or just surface) in

R
3. This surface is regular at a point P 2 R

3 if the gradient

rFðPÞ ¼ @F
@x
; @F
@y
; @F
@z

& '

ðPÞ is different from zero. According to the

Implicit Function Theorem if @F
@z
ðPÞ– 0, the implicit equation

Fðx; y; zÞ ¼ 0 can be solved with respect to z in the neighborhood

of P. In other words, the surface can be presented on the form

z ¼ f ðx; yÞ, i.e. as a graph of a smooth function f : R
2 ! R.

Assume that the surface W described implicitly by F is regular.

Consider a smooth curve cðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ on W by assuming

that FðxðtÞ; yðtÞ; zðtÞÞ ¼ 0. Differentiating with respect to t yields:

@F

@x

dx

dt
þ
@F

@y

dy

dt
þ
@F

@z

dz

dt
¼ 0

Here the vector v ¼ dx
dt
; dy
dt
; dz
dt

& '

defines the tangent vector to the

curve at a point P ¼ ðx; y; zÞ. The set of all tangent vectors of all

curves passing through the point P defines the two-dimensional

tangent plane to W at P. It is now easy to see that the vector

rFðPÞ ¼ ð@F
@x
; @F
@y
; @F
@z
ÞðPÞ is orthogonal to the tangent plane, i.e. it

defines the normal vector NW to W at P.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.ces.2017.07.007.

References

Arlt, W., 2014. Azeotropic distillation (Chapter 7). In: Gorak, A., Olujic, Z. (Eds.),

Distillation Book, Distillation: Equipment and Processes, vol. II. Elsevier,
Amsterdam, pp. 247–259. ISBN 978-0-12-386878-7.

Bogdanov, V.S., Kiva, V.N., 1977. Localization of single [Unity] K- and -lines in
analysis of liquid-vapor phase diagrams. Russ. J. Phys. Chem. 51 (6), 796–798.

Do Carmo, M., 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,

New Jersey, p. 503.
Doherty, M.F., Malone, M.F., 2001. Conceptual Design of Distillation Systems.

McGraw-Hill, New York.
Gerbaud, V., Rodriguez-Donis, I., 2014. Extractive distillation (Chapter 6). In: Gorak,

A., Olujic, Z. (Eds.), Distillation Book, Distillation: Equipment and Processes, vol.

II. Elsevier, Amsterdam, pp. 201–246. ISBN 978-0-12-386878-7.

Hilmen, E.K., Kiva, V.N., Skogestad, S., 2002. Topology of ternary VLE diagrams:

elementary cells. AIChE J. 48 (4), 752–759.
Ji, G., Liu, G., 2007. Study on the feasibility of split crossing distillation compartment

boundary. Chem. Eng. Process. 46, 52–62.
Jordan, I.N., Temenujka, K.S., Peter, S.P., 1985. Vapor-liquid equilibria at 101.3 kPa

for diethylamine + chloroform. J. Chem. Eng. Data 40, 199–201.

Kiss, A.A., 2014. Distillation technology – still young and full of breakthrough
opportunities. J. Chem. Technol. Biotechnol. 89, 479–498.

Kiva, V.N., Hilmen, E.K., Skogestad, S., 2003. Azeotropic phase equilibrium diagrams:
a survey. Chem. Eng. Sci. 58, 1903–1953.

Kiva, V.N., Serafimov, L.A., 1973. Non-local rules of the movement of process lines

for simple distillation in ternary systems. Russ. J. Phys. Chem. 47 (3), 638–642.
Lang, S., 1987. Calculus of Several Variables,. .. Undergraduate Texts in Mathematics,

third ed. Springer Science + Business Media.
Laroche, L., Bekiaris, N., Andersen, H.W., Morari, M., 1991. Homogeneous azeotropic

distillation: comparing entrainers. Can. J. Chem. Eng. 69, 1302–1319.
Lelkes, Z., Lang, P., Otterbein, M., 1998. Feasibility and sequencing studies for

homoazeotropic distillation in a rectifier with continuous entrainer feeding.

Comp. Chem. Eng. 22, S653–656.
Luyben, W.L., Chien, I.-L., 2010. Design and Control of Distillation Systems for

Separating Azeotropes. John Wiley & Sons, Hoboken, New Jersey.
Olujic, Z., 2014. Vacuum and High-pressure distillation (Chapter 9). In: Gorak, A.,

Olujic, Z. (Eds.), Distillation Book, Distillation: Equipment and Processes, vol. II.

Elsevier, Amsterdam, pp. 295–318. ISBN 978-0-12-386878-7.
Petlyuk, F.B., 2004. Distillation Theory and its Application to Optimal Design of

Separation Units. Cambridge University Press, New York.
Petlyuk, F., Danilov, R., Burger, J., 2015. A novel method for the search and

identification of feasible splits of extractive distillations in ternary mixtures.

Chem. Eng. Res. Des. 99, 132–148.
Reshetov, S.A., Kravchenko, S.V., 2007a. Statistics of liquid-vapor phase equilibrium

diagrams for various ternary zeotropic mixtures. Theor. Found. Chem. Eng. 41
(4), 451–453.

Reshetov, S.A., Kravchenko, S.V., 2007b. Statistics of liquid-vapor phase equilibrium
diagrams for various ternary zeotropic mixtures. Theor. Found. Chem. Eng. 44

(3), 279–292.

Reshetov, S.A., Kravchenko, S.V., 2010. Statistical analysis of the kinds of vapor-
liquid equilibrium diagrams of three-component systems with binary and

ternary azeotropes. Theor. Found. Chem. Eng. 41 (4), 451–453.
Reshetov, S.A., Sluchenkov, V.Yu., Ryzhova, V.S., Zhvanetskii, I.B., 1990. Diagrams of

K-ordered regions with an arbitrary number of unitary a-lines. Russ. J. Phys.

Chem. [Zh. Fiz. Khim.] 64 (9), pp. 1344–1347 and 2498–2503.
Rodriguez-Donis, I., Gerbaud, V., Joulia, X., 2009a. Thermodynamic insights on the

feasibility of homogeneous batch extractive distillation. 1. Azeotropic mixtures
with heavy entrainer. Ind. Eng. Chem. Res. 48 (7), 3544–3559.

Rodriguez-Donis, I., Gerbaud, V., Joulia, X., 2009b. Thermodynamic insights on the
feasibility of homogeneous batch extractive distillation. 2. Low-relative-

volatility binary mixtures with a heavy entrainer. Ind. Eng. Chem. Res. 48,

3560–3572.
Rodriguez-Donis, I., Gerbaud, V., Joulia, X., 2012a. Thermodynamic insights on the

feasibility of homogeneous – batch extractive distillation. 3. Azeotropic
mixtures with light entrainer. Ind. Eng. Chem. Res. 51 (12), 4643–4660.

Rodriguez-Donis, I., Gerbaud, V., Joulia, X., 2012b. Thermodynamic insights on the

feasibility of homogeneous batch extractive distillation. 4. Azeotropic mixtures
with intermediate boiling entrainer. Ind. Eng. Chem. Res. 51 (12), 6489–6501.

Skiborowski, M., Harwardt, A., Marquardt, W., 2014. Conceptual design of
azeotropic distillation processes (Chapter 8). In: Gorak, A., Sorensen, E. (Eds.),

Distillation Book, Distillation: Fundamentals and Principles, vol. I. Elsevier,
Amsterdam, pp. 305–355. ISBN 978-0-12-386574-2.

Skiborowski, M., Bausa, J., Marquardt, W., 2016. A Unifying approach for the

calculation of azeotropes and pinch points in homogeneous and heterogeneous
mixtures. Ind. Eng. Chem. Res. 55, 6815–6834.

Wahnschafft, O.M., Westerberg, A.W., 1993. The product composition regions of
azeotropic distillation columns. 2. Separability in two-feed column and

entrainer selection. Ind. Eng. Chem. Res. 32, 1108–1120.

Widagdo, S., Seider, W.D., 1996. Azeotropic distillation. AIChE J. 42, 96–126.
Zhvanetskii, I.B., Reshetov, S.A., Sluchenkov, V., 1988. Classification of the K-order

regions on the distillation line diagram for a ternary zeotropic system. Russ. J.
Phys. Chem. 62 (7), pp. 996–998 and 1944–1947.




