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Opinion Diffusion and Influence:
A logical Approach

Laurence Cholvy

ONERA, Toulouse, France

Abstract

This paper aims at modelling opinion diffusion among agents with a logical ap-
proach by assuming that opinions are propositional formulas. In a first part, we present
a model in which an agent changes its opinion by merging the opinions of some in-
fluential agents, its influencers. More precisely, it merges these opinions, which may
be contradictory, by taking into account an order of importance among its influencers.
In a second part, we generalize this model so that influencers are ordered according to
several orders of influence which depend on the topics of opinions.

1. Introduction

Understanding the dynamics of opinion among agents is an important question
which has recently received considerable attention in the community of autonomous
agents and multi-agent systems [6, 1, 2, 17, 5, 11, 19, 16]. This question depends on
several parameters.

The first important parameter is the population of agents. This population may be
unstructured, in such a case, agents interact randomly [13, 6]. But generally, some rela-
tions exist between agents. The population of agents may be divided into communities
modelling neighborhoord relations between agents [12, 1, 5]. The population may also
be structured via an influence relation which relates two agents, the opinion of one of
these agents being influenced by the opinion of the other [17]. Graphs are widely used
to model the structured population: nodes are agents and links are the relations between
agents. Links are symmetrical or not, depending on the type of relations and they may
also be labelled with probabilities [18].

The second parameter is the model of opinion. Here again, several options exist.
Most of the works previoulsy cited consider only one opinion and model it as a real
number in [0, 1]. For instance, if the question is to evaluate the opinion of people about
the fact that Canada will host the Winter Olympics in 2026, then an opinion which is
close to 1 means that the agent is quite confident in Canada candidature or that ac-
cording to this agent, the probability that Canada will host the Olympics is high. An
opinion which is close to 0 means that the agent thinks that Canada candidature will
be rejected or that according to this agent, the probability that Canada will host the
Olympics is low. Some other works are based on formal logic and model opinions as
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propositional formulas or, more precisely, as the sets of their models. In [11], an opin-
ion is a single interpretation, called a ballot. For instance, an agent whose opinion is
CAN ∧acroski, thinks that Canada will organize the Olympics in 2026 and that there
will be acroski trials. Another agent whose opinion is ¬CAN ∧ acroski, thinks that
2026 Games will not be hosted by Canada but there will be acroski trials. More gener-
ally, [16] considers that an opinion is any propositional formula, thus modelled by a set
of interpretations which is not necessarly a singleton. For instance, an agent opinion is
(acroski∨ skijoëring)∧CAN when it thinks that the 2026 Winter Olympics will be
hosted by Canada and that there will be acroski trials or skijoëring trials.

The last parameter is the model of opinion dynamics. Many works in the field of
opinion dynamics in multi-agent systems are based on a theory introduced in the field
of Social Psychology called Social Judgment Theory (SJT). The basic idea of SJT is
that individual opinion changing is a judgmental process: if an agent considers that a
presented opinion is close to its current opinion, then it is likely to shift in the direction
of this opinion (assimilation); if it considers that the presented opinion is distant to its
current opinion, then it is likely to shift away from this opinion (contrast); otherwise,
the agent does not change its opinion (non-commitment). This general idea has led to
different formal models [13, 6, 2] in which the thresholds agents use to characterize
what are close and distant opinions are identical or not, universal or agent dependent.
Some other works, like [17], are based on the theory of motivated cognition, defined in
Cognitive Psychology, and which also says that agents are skeptical of another agent
when their opinions diverge, but are more receptive to persuasion when their opinions
better align. Some other works in the field of diffusion in multi agent systems claim
to be based on models provided by the Network Science community. For instance,
[5] is based on the SIR model which says that the value of an agent’s feature evolves
according to the values of its neighbors feature values. For instance an agent is infected
if one of its neighbor is. Or an agent may say that it believes something if its neighbors
said that they also do.

Simulating opinion diffusion may be applied in many contexts. In particular, simu-
lation of opinion diffusion is important to prepare Pyschological Actions (PSYOPS) in
the military context. These actions aim at changing the perception and the behavior of
some people. They consist in elaborating and spreading out a message that must reach
these individuals, directly or indirectly via their social networks [10, 9].

In the present paper, we extend a work recently presented in [4]1. We model opin-
ions by any kind of propositional formulas. As a consequence, opinions may be in
disjunctive form and thus be incomplete. We also assume that the population of agents
is structured by a binary relation of influence which relates two agents when one in-
fluences the other. In a first part, we assume that any agent orders its influencers (i.e.
agents which influence it) according to the strength of the influence relation. Then,
any agent changes its opinion by merging the opinions of its influencers from the most

1In this present paper, we prove many more properties on IODS and TIODS that we did in the previous
paper. But the main difference between the two papers is that here, we changed the definition for TIODS
so that Unanimity Preservation is now satisfied while it was not in the previous paper. It is also proved that
TIODS extend IODS, which was not the case in the previous paper. Moreover, proofs are given in extension
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influential one to the least. In a second part, we consider that agents order their influ-
encers according to the topics of opinions. For instance, you may be more influenced
by your friend Paul than by your friend Mary about winter sport events while be-
ing more influenced by Mary than by Paul about litterature. In this case, any agent
changes its opinion by merging the opinions of its influencers, topic by topic.

This paper is organized as follows. Section 2 presents the notion of Importance-
Based Merging Operators and provides some original properties of these operators.
Section 3 presents the notion of Influence-Based Opinion Diffusion Structures (IODS)
to model opinion diffusion. Section 4 presents some properties of IODS. Section 5 ex-
tends IODS so that influencers may be ordered according to several orders of influence,
depending on the topics of opinions. It also studies some of their properties. Finally,
Section 6 presents some conclusions and discussions.

2. Importance-Based Merging Operators

In this section, we aim at defining a merging operator which takes into account the
relative importance of the formulas to be merged for building the result. For doing this,
we adopt the same kind of approach introduced in [14]: we adopt a semantical approach
and we characterize the models of the result from the models of the initial formulas;
we also consider a special formula, called integrity constraint, which expresses some
law of nature and which restricts the possible models.

We consider a finite propositional language L i.e. a finite set of propositional let-
ters. A literals is a propositional letter or the negation of a propositional letter. By
convention, an interpretation of L is represented by a set of literals so that a proposi-
tional letter is positive iff it is satisfied in the interpretation, negative iff it is not satisfied
in the interpretation. If ϕ is a formula of L, Mod(ϕ) denotes the set of models of ϕ
i.e., the set of interpretations in which ϕ is true. A multi-set of formulas {ϕ1, ..., ϕn}
equipped with a total order ≺ s.t. ϕi ≺ ϕi+1 (i = 1...n − 1) is called an ordered
multi-set of formulas and denoted ϕ1 ≺ ... ≺ ϕn.

Given a consistent formula µ and an ordered multi-set of formulas ϕ1 ≺ ... ≺ ϕn,
an Importance-Based Merging Operator characterizes a formula ∆µ(ϕ1 ≺ ... ≺ ϕn)
whose models are selected among the models of µ by taking into account the relative
importance of the formulas ϕi. More precisely, the operator selects the models of µ
which first are the closest to the models of ϕ1, then the closest to the models of ϕ2 etc.
For doing this, we assume a pseudo-distance d between interpretations of L. Notice
that ∆µ(ϕ1 ≺ ... ≺ ϕn) should be indexed by d but we write ∆µ(ϕ1 ≺ ... ≺ ϕn) to
simplify the notation. The formal definition of ∆ is the following:

Definition 1 (Importance-Based Merging Operator). An Importance-Based Merg-
ing Operator is a function ∆ which associates a formula µ and a non empty ordered
multi-set of consistent formulas ϕ1 ≺ ... ≺ ϕn with a formula denoted ∆µ(ϕ1 ≺ ... ≺
ϕn) so that: Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) = Min≤d,ϕ1≺...≺ϕn

Mod(µ) with:

• w ≤d,ϕ1≺...≺ϕn w
′ iff

[D(w,ϕ1), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′, ϕn)]

• [D(w,ϕ1), ..., D(w,ϕn)] is a vector whose kth element is D(w,ϕk)
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• D(w,ϕ) = minw′∈Mod(ϕ)d(w,w′), w and w′ being two interpretations and d
is a pseudo-distance2 between interpretations.

• ≤lex is a lexicographic comparison of vectors of reals defined by: [v1, ...vn] ≤lex
[v′1, ...v

′
n] iff (i) ∀k vk = v′k or (ii) ∃k vk < v′k and ∀j < k vj = v′j

Some simple distances dwhich can be used for instanciating the previous definition
are: dD, the drastic distance, (dD(w,w′) = 0 iff w = w′, 1 otherwise); dH , the
Hamming distance (dH(w,w′) = m iff w and w′ differ on m variables).

Example 1. Let µ be a tautology. ϕ1 = a ∨ b, ϕ2 = ¬a, ϕ3 = ¬b ∧ c. The
eight interpretations are w1 = {a, b, c}, w2 = {a, b,¬c}, w3 = {a,¬b, c}, w4 =
{a,¬b,¬c}, w5 = {¬a, b, c}, w6 = {¬a, b,¬c}, w7{¬a,¬b, c}, w8 = (¬a,¬b,¬c}
and Mod(∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = Min≤d,a∨b≺¬a≺¬b∧c({w1, ...w8}). With d = dH
we get: Mod(∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w5}, thus ∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = ¬a ∧ b ∧ c.
With d = dD we get: Mod(∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w5, w6}, thus ∆µ(ϕ1 ≺ ϕ2 ≺
ϕ3) = ¬a ∧ b.

Suppose now that µ = a ∧ b i.e., Mod(µ) = {w1, w2}. With d = dH we get:
Mod(∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w1}, thus ∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = a ∧ b ∧ c. With
d = dD we get: Mod(∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3)) = {w1, w2}, thus ∆µ(ϕ1 ≺ ϕ2 ≺ ϕ3) =
a ∧ b.

Let’s now examine some properties of Importance-Based Merging Operators. First
we consider the nine postulates that merging operators should satisfy according to [14].
We reformulate them within our context since here, formulas to be merged are ordered.
Results are given in the following proposition3.

Proposition 1.

• ∆µ(ϕ1 ≺ ... ≺ ϕn) |= µ

• If µ is consistent then ∆µ(ϕ1 ≺ ... ≺ ϕn) is consistent

• If
∧n
i=1 ϕi ∧ µ is consistent then |= ∆µ(ϕ1 ≺ ... ≺ ϕn)↔

∧n
i=1 ϕi ∧ µ

• It is not the case that if |= µ ↔ µ′ and if there is a permutation f over
{1...n} such that ∀i = 1...n, |= ϕi → ϕ′f(i) then |= ∆µ(ϕ1 ≺ ... ≺ ϕn) ↔
∆µ′(ϕ

′
1 ≺ ... ≺ ϕ′n). We only have: If |= µ↔ µ′ and if ∀i = 1...n, |= ϕi ↔ ϕ′i

then |= ∆µ(ϕ1 ≺ ... ≺ ϕn)↔ ∆µ′(ϕ
′
1 ≺ ... ≺ ϕ′n)

• It is not necessarly the case that ifϕ1 |= µ and ϕ2 |= µ then ∆µ(ϕ1 ≺ ϕ2) ∧
ϕ1 is consistent iff ∆µ(ϕ1 ≺ ϕ2) ∧ ϕ2 is consistent

• ∆µ(ϕ1 ≺ ... ≺ ϕn) ∧∆µ(ϕn+1 ≺ ... ≺ ϕm) |= ∆µ(ϕ1 ≺ ... ≺ ϕm)

2∀w∀w′ d(w,w′) = d(w′, w) and d(w,w′) = 0 =⇒ w = w′
3Proofs are given in Appendix.
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• If ∆µ(ϕ1 ≺ ... ≺ ϕn) ∧ ∆µ(ϕn+1 ≺ ... ≺ ϕm) is consistent then ∆µ(ϕ1 ≺
... ≺ ϕm) |= ∆µ(ϕ1 ≺ ... ≺ ϕn) ∧∆µ(ϕn+1 ≺ ... ≺ ϕm)

• ∆µ1
(ϕ1 ≺ ... ≺ ϕn) ∧ µ2 |= ∆µ1∧µ2

(ϕ1 ≺ ... ≺ ϕn)

• If ∆µ1
(ϕ1 ≺ ... ≺ ϕn) ∧ µ2 is consistent then ∆µ1∧µ2

(ϕ1 ≺ ... ≺ ϕn) |=
∆µ1(ϕ1 ≺ ... ≺ ϕn)

Furthermore we can also prove the following propositions.

Proposition 2. If ϕ1 |= µ then

Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) = Mod(∆ϕ1
(ϕ1 ≺ ... ≺ ϕn))

I.e., if the most important formula to be merged satisfies µ then replacing the in-
tegrity constraint µ by that formula does not change the result of merging4. As a
consequence we have:

Proposition 3. If ϕ1 |= µ then ∆µ(ϕ1 ≺ ... ≺ ϕn) |= ϕ1.

Proposition 4. Consider n formulas ϕ1, ..., ϕn and≺ an order on these formulas. Let
k ∈ {1...n} and let≺k be the order obtained from≺ by replacing ϕk by ∆µ(≺). Then,
Mod(∆µ(≺)) = Mod(∆µ(≺k)).

I.e., the result of merging different formulas with ∆µ does not change when one
formula, whatever its importance, is replaced by the merged formula. This shows that
∆µ satisfies the property called “ballot-monotonicity” in [11] and which was there
restricted to ballots.

3. Influence-Based Opinion Diffusion Structure (IODS)

In the following, we present the notions of Influence-Based Opinion Diffusion
Structure and Influence-Based Opinion Sequence which are inspired by the notions
of Belief Revision Games and Belief Sequences introduced in [16].

Definition 2 (Preliminary definition and notation).

• A totally-ordered set is a set S equipped with a total order �. It is usually
denoted (S,�).

• If S = {a1, ..., an} is a finite set and � is a total order on S so that ∀i =
1..(n − 1) ai � ai+1, then by convention, we will write S = {a1 ≺ ... ≺ an}
to compactly denote the totally ordered set (S,�). As usual, we will write e ∈ S
iff e is one of the ais.

4We can prove the equality if ϕ1 ∧ µ is consistent, which is a less strong condition. But we need the
stronger condition in the rest of the paper
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Definition 3 (Influence-Based Opinion Diffusion Structure ). An Influence-Based Opin-
ion Diffusion Structure (IODS) is a quadruplet S = (A,µ,B, Inf) where:

• A = {1, ..., n} is a finite set of agents.

• µ is a consistent formula of L.

• B is a function which associates any agent i of A with a consistent formula of L
denoted for short Bi such that Bi |= µ.

• Inf is a function which associates any agent i of A with a totally ordered set
Inf(i) = {i1 ≺i ... ≺i ini}, ni ≥ 1.

A is the finite set of agents. The formula µ represents the information which is true
in the world. It is called integrity constraint. For any agent i, the formulaBi represents
its initial opinion. We assume that agents are rational and thus that Bi is consistent and
satisfies the integrity constraint µ. For any agent i, agents i1, ..., ini

are the influencers
of i. With the total order�i, i ranks them according to their degree of influence: for any
agents j and k in Inf(i), j ≺i k means that, according to i, it own opinion is (strictly)
more influenced by j’s opinion than by k’s opinion. If Inf(i) = {i1 ≺i ... ≺i ini}, i1
is called the main influencer of i.

Notice that i may belong to Inf(i) i.e., we do not require that i’s opinion is only
influenced by other agents opinion: i may take it own opinion into account in the
process of opinion changing. Consequently, i has to rank itself in Inf(i). For instance,
i ≺i j, for any j ∈ Inf(i) and j 6= i when i considers that, even if it is influenced by
other influential agents, its own opinion will only be strenghened by their opinions. At
the opposite, j ≺i i, for any j ∈ Inf(i) and j 6= i when i is not confident in its own
opinion and wants to take opinions of its influencers (but itself) first. As a particular
case, Inf(i) = {i} is allowed and represents the fact that agent i is not influenced by
some other agent but itself.

Notice also that i may not belong to Inf(i). This means that i is only influenced
by other people and is not confident at all in its own opinion.

Definition 4 (Influence-Based Opinion Sequence). Let S = (A,µ,B, Inf) be an
IODS and i ∈ A with Inf(i) = {i1 ≺i ... ≺i ini}. The Influence-Based Opinion
Sequence of i, denoted (Bsi )s∈N, is defined by:

(i) B0
i = Bi

(ii) ∀s > 0, Bsi = ∆µ(Bs−1i1
≺ ... ≺ Bs−1ini

)

The Influence-Based Opinion Sequence (or Opinion Sequence for short) of agent i,
(Bsi )s∈N, represents the history of i’s opinion evolution. This evolution is done accord-
ing to the Importance-Based Merging Operator ∆µ: i’s opinion at step s is the result
of ∆µ applied to the ordered multi-set of opinions: Bs−1i1

≺ ... ≺ Bs−1ini
.

As already written, the definition of IODS is inspired by the definition of Belief
Revision Games (BRG), given in [16] according to which a BRG G is a 5-uple
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G = (A,Ac, L,B,R)5 where:

• A is a finite set of agents,

• Ac is a binary irreflexive relation on A. {j : (j, i) ∈ Ac} is the set of acquain-
tances of i

• L is a finite propositional language,

• B is a mapping from A to L.

• R = {Ri : i ∈ A}. Each Ri (called the revision policy of agent i) is a mapping
from L× Lin(i) to L with in(i) =| {j : (j, i) ∈ Ac} |, such that,

1. if ϕ1
0 ≡ ϕ2

0 and < ϕ1
1, ..., ϕ

1
in(i) >≡< ϕ2

1, ..., ϕ
2
in(i) >

6 then
Ri(ϕ

1
0, ϕ

1
1, ..., ϕ

1
in(i)) ≡ Ri(ϕ

2
0, ϕ

2
1, ..., ϕ

2
in(i))

2. if in(i) = 0 then Ri is the identity function

At first glance, IODS could be seen as a particular case of BRG in which all the
agents have the same revision policy: ∆µ. But this is not true because ∆µ is not a
revision policy as defined previously. Indeed, the first constraint imposed on Ri in
BRG definition implies that acquaintances cannot be ordered: i’s opinion will evolve
the same, whatever a permutation of its acquaintance. This is obviously not satisfied by
∆µ since, as proved by the fourth item of proposition 1, inputs of the Importance-Based
Merging Operator ∆µ cannot be permuted.

However, an interesting result proved in proposition 1 of [16] is still valid for IODS.
This result shows that in a BRG, the opinion sequence of any agent is cyclic i.e., is char-
acterized by an initial segment B0

i ...B
b−1
i and a cycle Bbi ...B

e
i which will be repeated

ad infinitum. The proof is based on the fact that since the language is finite, the number
of possible opinions which are distinct up to logical equivalence is finite. Moreover,
there is a finite number of agents and for each agent, the set of its acquaintances is
fixed. So the number of possible n-uples BRGs = (Bs1, ...., B

s
n) (vectors of agent

opinions at step s) is finite, up to equivalence. Consequently, the belief sequence of
each agent s cyclic. The proof does not use the fact that Ri is irrelevant to permutation
of its arguments. So, we can re-use this proof for proving the following:

Proposition 5. In an IODS, the opinion sequence of any agent is cyclic i.e., the opinion
sequence of any agent i is characterized by an initial segment B0

i ...B
b−1
i and a cycle

Bbi ...B
e
i which will be repeated ad infinitum.

If the cycle of the opinion sequence of i is Bbi ...B
e
i , then the size of the cycle is

defined by: | Cyc(Bi) |= e− b+ 1.

5We change the initial notation in order to easily compare IODS and BRG
6< ϕ1

1, ..., ϕ
1
in(i)

>≡< ϕ2
1, ..., ϕ

2
in(i)

> iff there is a permutation f over {1...in(i)} so that

∀j = 1..in(i) ϕ1
j ≡ ϕ2

f(j)
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Example 2. Let S = (A,µ,B, Inf) be an IODS with A = {1, 2, 3} (I.e., there are
three agents named 1, 2 and 3), µ is a tautology, B1 = a ∨ b, B2 = ¬a ∧ ¬b, B3 =
a ∨ ¬a, Inf(1) = {1}, Inf(2) = {2 ≺2 1}, Inf(3) = {1 ≺3 2}. I.e., agent 1 is
its own and only influential agent. Agent 2 is influenced by 1 and by itself, but more
influenced by itself than by 1. Agent 3 is influenced by 1 and by 2, 1 being the agent who
influences it the most. 1 initially believes a ∨ b, 2 initially believes ¬a ∧ ¬b, and 3 has
initially no opinion. Table 1 shows the evolution of agent opinions when the distance
used is dH . Agent 1 is not influenced by anyone except itself, so its opinion remains
a ∨ b. Agent 2 is keen to change its opinion by integrating opinion of 1 if possible. But
here, 2 has a complete opinion which is inconsistent with 1’s opinion. Consequently,
2’s opinion remains ¬a∧¬b. Finally, 3 who had intially no opinion, is keen to form its
own opinion by integrating 1’s opinion and 2’s opinion by giving preference to the first
one. Here it gets: (a∧¬b)∨(b∧¬a) Here, | Cyc(B1) |=| Cyc(B2) |=| Cyc(B3) |= 1.

s = 0 s ≥ 1
i = 1 a ∨ b a ∨ b
i = 2 ¬a ∧ ¬b ¬a ∧ ¬b
i = 3 a ∨ ¬a (a ∨ b) ∧ (¬a ∨ ¬b)

Table 1: Opinion evolution in example 2

The following example shows a case where lengths of cycles are greater than 1.

Example 3. Let S = (A,µ,B, Inf) be an IODS with: A = {1, 2}, µ being a tautol-
ogy, Inf(1) = {2}, Inf(2) = {1}, B1 = a, B2 = ¬a. S represents a network of two
agents each one being influenced by the other one only. Agent 1 initially believes a and
agent 2 initially believes ¬a. Assume that µ is a tautology. Table 2 shows the evolution
of opinions (for distance dH and dD as well). By definition, agent 1 adopts 2’s opinion
and agent 2 adopts 1’s opinion at the same time. Since their initial opinions contradict,
the agents change opinion recursively. Here, | Cyc(B1) |=| Cyc(B2) |= 2

s = 0 s = 1 s=0 mod 2 s=1 mod 2
i = 1 a ¬a a ¬a
i = 2 ¬a a ¬a a

Table 2: Opinion evolution in example 3

Finally, let us introduce some more definitions which will be useful for the next
section. The following adapts the definition provided in [11] and defines some type of
IODS in which only some particular loops are permitted in the relation of influence.

Definition 5 (DAG with self-loops). From S = (A,µ,B, Inf), we can build a graph
whose nodes are agents of A and edges are i → j iff i ∈ Inf(j). We say that S is a
DAG with self-loops if this graph is a directed graph where the only permitted cycles
are of type i→ i.

8



The following introduces the notion of sphere of influence of an agent.

Definition 6 (Sphere of Influence of an agent). Let S = (A,µ,B, Inf) and i ∈ A.
The sphere of influence of i is defined by: Sphere(i) =

⋃
k≥1 Sphere

k(i) with
Sphere1(i) = {j1 : Inf(j1) = {i ≺ ...}}
Spherek(i) = {jk : Inf(jk) = {jk−1 ≺ ...} and jk−1 ∈ Spherek−1(i)}

The sphere of influence of an agent is thus the set of agents which are directly or
indirectly mostly influenced by i. Let’s now introduce some different types of agents.

Definition 7 (Dogmatic agent). Let S = (A,µ,B, Inf) and i ∈ A. i is a dogmatic
agent iff Inf(i) = {i}.

Definition 8 (Self-confident agent). Let S = (A,µ,B, Inf) and i ∈ A. i is self-
confident iff i is its main influencer.

Definition 9 (Diffident agent). Let S = (A,µ,B, Inf) and i ∈ A. i is diffident iff
i 6∈ Inf(i) or Inf(i) = {i1 ≺i ... ≺i i} with i1 6= i.

An agent is dogmatic when it is not influenced by other agents. As a consequence,
a dogmatic agent i will never change its opinion i.e., ∀s ≥ 0 Bsi = B0

i . An agent
is self-confident when it is its main influencer. Notice that dogmatic agents are self-
confident. Moreover, if i is self-confident then i ∈ Sphere(i). An agent is diffident
when it is influenced only by others or it has at least two influencers and it is its least
influential influencer. Finally, notice that if S is a DAG with self-loops then there is at
least one dogmatic agent.

Definition 10 (Leader of a group, leader). Let S = (A,µ,B, Inf) and i ∈ A.

• Let I ⊆ A. i is the leader of I iff i is dogmatic and I ⊆ Sphere(i).

• i is a leader iff there is a subset I of A st i is the leader of I .

In other words, for being a leader, an agent must be the leader of a group. And,
for being the leader of a group of agents I , agent i must not be influenced by no other
agent and any agent of I must be directly or indirectly mostly influenced by i.

4. Properties of IODS

In this section, we consider some properties, many of them being introduced in
[16], and we check whether Importance-Based Opinion Structures satisfy them or not.

Proposition 6. Let S = (A,µ,B, Inf) be an IODS. Then, ∀i ∈ A ∀s ∈ N Bsi is
consistent.

This property corresponds to the property of BRG called Consistency Preservation
(CP) defined in [16] as: ∀i ∈ A, if Bi is consistent then ∀s ∈ N Bsi is consistent. In
the case of an IODS, the premisse is omitted because the initial opinions are consistent.
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Proposition 7. Let S = (A,µ,B, Inf) be an IODS. Then, ∀i ∈ A ∀s ∈ N Bsi |= µ.

This proposition shows that agents take integrity constraints into account to revise
their opinion.

Proposition 8. Let S = (A,µ,B, Inf) be an IODS and ϕ be a consistent formula of
L. Then, if ∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bsi .

This proves that IODS satisfy the property called Agreement Preservation (AP)
defined in [16]: if all agents initially agree on some alternatives then they will not
change their mind about them.

Proposition 9. Let S = (A,µ,B, Inf) be an IODS and let ϕ be a formula of L. Then,
if ∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈ N, Bsi |= ϕ

This proposition proves that any Importance-Based Opinion Structures satisfy the
property called Unanimity Preservation (UP) defined in [16]: every formula which is a
logical consequence of the initial opinions remains so after opinion diffusion. I.e, any
opinion initially shared by the agents remains so after opinion diffusion.

The property of Responsiveness (Resp) introduced in [16] states that an agent
should take into account the opinions of the agents who influence it whenever (i) its
opinions are inconsistent with the opinions of its acquaintances (but itself) and (ii) its
acquaintances (but itself) agree on some alternatives. It is adapted here as follows:

Definition 11 (Resp). S = (A,µ,B, Inf) satisfies (Resp) iff ∀i ∈ A ∀s ∈ N,
if ∀j ∈ Inf(i) \ {i} Bsj ∧ Bsi is inconsistent and if ∧j∈Inf(i)\{i}Bsj is consistent,
then Bs+1

i 6|= Bsi .

(Resp) is not necessarily satisfied here. As a counterexample, consider an IODS in
which A = {1, 2, 3}, Inf(1) = {1}, Inf(2) = {2}, Inf(3) = {3 ≺ 1 ≺ 2},
B1 = a ∧ b, B2 = a, B3 = ¬a and µ is a tautology. Notice that agents 1 and 2
influence agent 3 and that 1 and 2 agree on a. However, if the underlying distance is
Hamming, we have ∀s ≥ 1, Bs3 = ¬a ∧ b. Consequently, Bs3 |= B3.

Let us now focus on the property of Convergence (Conv) introduced in [16] and in
[11] as well, which states that there is a step in the evolution process when all opinions
stop evolving.

Definition 12 (Conv). An IODS S = (A,µ,B, Inf) satisfies (Conv) iff ∀i ∈ A
| Cyc(Bi) |= 1.

Some IODS satisfy (Conv) and some don’t. In example 2, S converges: the stable
opinions of 1, 2 and 3 are respectively a ∨ b, ¬a ∧ ¬b and (a ∨ b) ∧ (¬a ∨ ¬b). In
example 3, S does not converge.

In the case when opinions are single logical interpretations (i.e., ballots), [11]
proves that, if the aggregation operator satisfies the property of ballot-monotonicity,
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then a DAG with self-loops converges. In the present work, assumptions are differ-
ent since opinions are sets of logical interpretations (i.e., sets of ballots). Fortunately,
proposition 4 proves that ∆µ satisfies ballot-monotonicity and the proof given in [11]
does not use the fact that opinions are supposed to be ballots. Thus we can re-use the
proof of [11] and claim:

Proposition 10. IODS which are DAG with self-loops satisfy (Conv).

Let us finally consider the property of Acceptability given in [16]. We extend it for
IODS as follows:.

Definition 13 (Acceptability). Let S = (A,µ,B, Inf) be an IODS and ϕ a formula
of L. ϕ is accepted by agent i of A iff for all Bsi ∈ Cyc(Bi), we have Bsi |= ϕ. ϕ is
unanimously accepted in S iff ϕ is accepted by all i in A. ϕ is majoritary accepted if
the number of agents who accept it is strictly greater than the number of agents who
do not.

In example 2, for instance, a ∨ b is majoritary accepted, as well as ¬a ∨ ¬b.
The following proposition identifies cases in which an IODS satisfies Acceptability.

Proposition 11. Let S be an IODS and i the leader of a set of agents I . Then Bi is
accepted by any agent in I .

This means that the opinion of the leader of a group is accepted by any agent in this
group.

Proposition 12. Let S be an IODS and i a dogmatic agent. Then:
(i) If Sphere(i) = A then Bi is unanimously accepted.
(ii) If | Sphere(i) |> |A|

2 then Bi is majoritary accepted.

Obviously, if a dogmatic agent is the main infuencer of all agents in the population,
then its opinion is unanimously accepted. If a dogmatic agent is the main influencer of
more than a half population, then its opinion is majoritary accepted.

Proposition 13. Let S be an IODS and i a self-confident agent. Then ∀s Bsi |= Bs−1i

This shows that the opinion of a self-confident agent becomes stronger and stronger.
This is illustrated below.

Example 4. Assume µ is a taulology. Consider three agents 1, 2, 3 so that: Inf(1) =
{1}, Inf(2) = {1 ≺ 2}, Inf(3) = {3 ≺ 2 ≺ 1} and B1 = a,B2 = b, B3 = a ∨ ¬a.
Agent 3 is a self confident who initially has no opinion. At step 1, its opinion becomes
b, which is stronger. Finally, after step 2, its opinion is a ∧ b, which is even stronger.

Proposition 14. Let S be an IODS. Let i be a dogmatic agent st | Mod(Bi) |= 1.
Then ∀j ∈ Sphere(i) ∃k ∀s > k |Mod(Bsj ) |= 1

We can consider that an opinion with only one model is a strong opinion since, the
agent which has this opinion has a firm position (yes or no) towards each propositional
letter. This proposition shows that any agent in the sphere of influence of a dogmatic
agent whose opinion is strong converges to an opinion which is strong.
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5. Taking topics into account

In this section, we extend IODS in order to take topics of opinions into account. Our
motivation is to model the fact that an agent may influence another agent for opinions
which belong to a given topic only and not for every opinion. As a consequence, topics
will parametrize the ranking of influencers, i.e., for each agent, there will be as many
rankings of influencers as topics.

5.1. Topics
Definition 14 (Topics). Topics T1, ..., Tm of L are some sets of propositional literals
of L so that: (i) any literal of L belongs to a topic; (ii) for any proposition letter p of
L, for any topic Ti in {T1, ...Tm}, we have: p ∈ Ti ⇐⇒ ¬p ∈ Ti.

Example 5. Suppose that the letters of the language are a, b, c. We can define: T1 =
{a,¬a} and T2 = {b,¬b, c,¬c}. In this case these two topics are disjoint. We can also
define: T1 = {a,¬a, b,¬b}, T2 = {b,¬b, c,¬c}, T3 = {b,¬b}. There, T3 = T1 ∩ T2.

As written, each agent will rank its influencers according to several rankings, each
of them depending on a topic. So the question of compatibility between the topics and
the rankings they parametrize must be addressed: in particular, given a set of influ-
encers, is there a relation between their ranking parametrized by the topic T and their
ranking parametrized by a topic T ′ ⊆ T ? More generally, is there a relation between
their ranking parametrized by the topic T and their ranking parametrized by a topic
T ′ when T ∩ T ′ 6= ∅ ? We answer this question by considering that if an agent i is
strictly more influent than another agent j for opinions related to the topic T , then j
cannot be strictly more influent than i for opinions related to topic T ′ when T ∩T ′ 6= ∅.
Indeed, if it was not the case, then, for any opinion belonging to T ∩ T ′, i would be
considered as strictly more influent than j because T ∩T ′ ⊆ T and j would be consid-
ered as strictly more influent than i because T ∩ T ′ ⊆ T ′. Which is not possible. For
instance, consider the two topics skiing and ballets (i.e choregraphic disciplines). They
are not disjoint because acroski is a kind of skiing with a choregraphy. Consider now
two agents Paul and Mary providing information related to these topics. Assume
that Paul influences you strictly more than Mary regarding skiing and that Mary
influences you strictly more than Paul regarding ballets. On a first hand, you can
conclude that Paul influences you strictly more than Mary regarding acroski since
acroski is a kind of skiing. On the other hand, you can conclude that Mary influences
you strictly more than Paul regarding acroski since since acroski is a kind of ballets.
But concluding both is impossible.

The following definition characterize rankins which are compatible with topics.

Definition 15 (Topic compatible orders). Considerm topics T1...Tm. Let≺T1
.... ≺Tm

be m total orders on a given set of formulas. We say that ≺T1
.... ≺Tm

are topic-
compatible iff for any i and j, if Ti ∩ Tj 6= ∅ then ≺Ti

and ≺Tj
are identical.

Notice that we could have followed a different solution and adopted a default rea-
soning by stating that: if an agent i is strictly more influent than another agent j for
opinions related to the topic T , and if T ∩ T ′ 6= ∅ then, typically, j cannot be strictly
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more influent than i for opinions related to topic T ′. This rule could be modeled in
Default Logic [15]. In the example, this would lead to two extensions: one in which
Paul is considered as strictly more influent than Mary for opinions related to acroski;
the other in which Mary is considered as strictly more influent than Paul for opinions
related to acroski. This is not the solution we followed in the present paper.

5.2. Topic-dependent Importance-Based Merging Operators

We now extend the notion of Importance-Based Merging Operators for taking top-
ics into account. Before, we introduce the following definition:

Definition 16. Let ϕ a formula and Ti a topic.
∏
i ϕ is the formula defined by:

Mod(
∏
i ϕ) = {w ∩ Ti : w ∈Mod(ϕ)}

Definition 17 ( Topic-dependent Importance-Based Merging Operator). A Topic-
dependent Importance-Based Merging Operator, is a function Θ which, given a for-
mula µ, given a multi-set of consistent formulas of L and m topic-compatible orders
on this multi-set denoted ≺T1

... ≺Tm
, produces a formula denoted Θµ(≺T1

... ≺Tm
)

so that:

Mod(Θµ(≺T1 ... ≺Tm)) =
⊕

i=1...m

Mod(∆∏
i µ

(≺Ti))

with

• ∆ an importance-based merging operator as defined in 1.

•
⊕

i=1...mMi = {w : w ∈ Mod(µ) and ∀i w ∩ Ti ∈ Mi} if not empty;⊕
i=1...mMi = Mod(µ) else.

First, Θ merges formulas topic by topic and computes Mod(∆∏
i µ

(≺Ti
)). Then it

agregates the results with operator
⊕

. This agregation operator aims at selecting mod-
els of µwhose projections on all topics are results of independent mergings (i.e., belong
to Mod(∆∏

i µ
(≺Ti

))). But it may happen that no model of µ satisfies this condition,
even if each initial formula satisfies µ as shown in example 6. In such a case, the oper-
ator selects all the models of µ i.e., the merging is vacuous and the resulting formula is
nothing else than µ. Notice that, when µ is consistent, Mod(∆µ(≺T1

... ≺Tm
)) is not

empty.

Example 6. Consider a language with two letters a, b and two topics: T1 = {a,¬a},
T2 = {b,¬b}. Consider ϕ1 = a ∧ b, ϕ2 = ¬a ∧ ¬b , µ = a→ b. Notice that ϕ1 |= µ
and ϕ2 |= µ. Consider two orders, {ϕ1 ≺T1

ϕ2, ϕ2 ≺T2
ϕ1}. If we consider the first

topic only we get: Mod(∆∏
T1
µ(≺T1

)) = {{a}}. If we consider the second topic only
we get: Mod((∆∏

T2
µ(≺T2) = {{¬b}}. By definition 17 we get {{a}} ⊕ {{¬b}} =

Mod(µ) because {a,¬b} 6∈ Mod(µ). Finally, we get Mod(Θµ(≺T1≺T2) = Mod(µ)
i.e., Θµ(≺T1

≺T2
) = a→ b.
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Notice that definition 1 is a special case of definition 17 i.e., if there is only one topic
and only one order on a multi-set of formulas, then Θµ(≺) as defined in definition 17
is identical to ∆µ(≺) as defined in definition 1.

Again, we consider the different postulates that merging operators should satisfy
according to [14]. Here, we focus on the only ones which will be necessary for proving
properties about TIODS. We reformulate them within the context of several orders.

Proposition 15.

• Θµ(≺T1
... ≺Tm

) |= µ

• If µ is consistent then Θµ(≺T1
... ≺Tm

) is consistent

• If
∧n
i=1 ϕi ∧ µ is consistent then |= Θµ(≺T1 ... ≺Tm)↔

∧n
i=1 ϕi ∧ µ

Proposition 16. Consider n formulas ϕ1, ...ϕn and m orders on these formulas ≺T1

... ≺Tm . Let k ∈ {1, ...n} and ≺kT1
, ... ≺kTm

be the orders obtained from ≺T1 ... ≺Tm

by replacing ϕk by Θµ(≺T1
... ≺Tm

)). Then,

Mod(Θµ(≺T1
... ≺Tm

)) = Mod(Θµ(≺kT1
≺ ... ≺kTm

))

This shows that the result of merging different formulas ordered by several topic-
dependant orders does not change when one formula, whatever its importance in any
order, is replaced by the merged formula. This is an extension of proposition 4.

5.3. Topic-dependent Influence-Based Opinion Diffusion Structure (TIODS)

We now extend the notion of Influence-Based Opinion Diffusion Structure to take
topics into account.

Definition 18 (Topic-dependent Influence-Based Opinion Diffusion Structure). A
Topic-dependent Influence-Based Opinion Diffusion Structure (TIODS) is a quadruplet
S = (A,µ,B, Inf) where:

• A = {1, ..., n} is a finite set of agents.

• µ is a consistent formula of L.

• B is a function which associates any agent i of A with a consistent formula of L
denoted Bi such that Bi |= µ.

• For any agent i of A, Inf(i) = {≺T1
, ...,≺Tm

} where ≺T1
,... ≺Tm

are m total
topic-compatible orders on a single set of agents {ii1 ...ini

}.

A, µ, Bi are defined as before. Inf(i) is here defined by m orders on the set of
i’s influencers. Each order corresponds to a topic. Given a topic Tk and ≺Tk

∈ Inf(i),
i1 ≺Tk

i2 means that i’s opinion is more influenced by i1’s opinion than by i2’s opinion
regarding the topic Tk. Obviously, this definition extends definition 3.
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Definition 19 (Topic-dependent Influence-Based Opinion Sequence). Consider a TIODS
S = (A,µ,B, Inf). Let i ∈ A with Inf(i) = {≺T1 , ... ≺Tm} m orders on the
set {ii1 ...ini

}. The Topic-dependent Influence-Based Opinion Sequence of i, denoted
(Bsi )s∈N, is defined as follows:

• B0
i = Bi

• ∀s ∈ N, Bs+1
i = ΘBs

i1
∨...∨Bs

ini

(≺T1 ... ≺Tm) with Bsi1 ≺Tk
Bsi2 iff i1 ≺Tk

i2

for any k ∈ {1...m}.

As before, the Opinion Sequence of agent i, (Bsi )s∈N, represents the history of
i’s opinion evolution. Here, i’s opinion evolves according to the Topic-Dependant
Importance-Based Merging Operator Θ. More precisely, i’s opinion at step s is the
result of ΘBs

i1
∨...∨Bs

ini

applied to the multi-set of opinions: Bsi1 ....B
s
ini

ordered topic
by topic by ≺T1

... ≺Tm
. The following proposition shows that definition 19 extends

definition 4.

Proposition 17. When there is only one topic and only one order on a multi-set of
formulas, then the Topic-dependent Influence-Based Opinion Diffusion Sequence as
defined in definition 19 is identical to the Influence-Based Opinion Diffusion Sequence
as defined in definition 4.

Proposition 18. In a TIODS, the opinion sequence of any agent is cyclic i.e., the opin-
ion sequence of any agent i is characterized by an initial segment B0

i ...B
b−1
i and a

cycle Bbi ...B
e
i which will be repeated ad infinitum.

Example 7. Consider a language whose topics are T1 = {a,¬a} and T2 = {b,¬b}
and a TIODS S = (A,µ,B, Inf) with: A = {1, 2}, µ is a tautology, Inf(1) = {1},
Inf(2) = {1 ≺T1 2, 2 ≺T2 1}, B1 = a, B2 = ¬a ∧ b. In other words, we consider
two agents 1 and 2. 1 is its own and only influencer. Regarding topic T1, 2 is influenced
by 1 and by itself, but more by 1 than by itself; regarding topic T2, 2 is influenced by 1
and by itself, but more by itself than by 1. Initially, 1’s opinion is a and 2’s opinion is
¬a ∧ b. Table 3 shows the evolution of opinions (for distance dH and dD as well).

s = 0 s ≥ 1
i = 1 a a
i = 2 ¬a ∧ b a ∧ b

Table 3: Opinion evolution in example 7

5.4. Some properties of TIODS
We present here some results about TIODS. First we prove that Consistency preser-

vation, Agreement preservation and Unanimity preservation are still satisfied.

Proposition 19. Let S = (A,µ,B, Inf) be a TIODS. Then ∀i ∈ A ∀s ∈ N Bsi |= µ.
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Proposition 20. Let S = (A,µ,B, Inf) be a TIODS. Then ∀i ∈ A ∀s ∈ N Bsi is
consistent.

Proposition 21. Let S = (A,µ,B, Inf) be a TIODS and ϕ a consistent formula of L.
If ∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bsi .

Proposition 22. Let S = (A,µ,B, Inf) be a TIODS and ϕ a consistent formula of L.
If ∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈ N, Bsi |= ϕ.

Responsiveness is obviously not satisfied (see counter example given in section 4).
Moreover, the definition of DAG with self-loops can obviously be extended to TIODS,
as well as the definition of convergence. Then we can prove the following:

Proposition 23. TIODS which are DAG with self-loops converge.

6. Conclusion and perspectives

The present paper adressed opinion diffusion in the case when opinions are mod-
eled by propositional formulas. In a first part, we have presented a formal model which
assumes that each agent changes its opinion by merging the opinions of its influencers,
from the most influential to the least one. In a second part, we have extended this model
in order to take the topics of opinions into account. This work is original since such
models had never been studied before and properties that have been proved are rather
encouraging.

However,this work is based on several assumptions which can be discussed and
changing them opens up new perspectives. Let’s present some of them.

The first main assumption on IODS is that each agent has a fixed set of influencers
and the way it orders them is fixed also. This means that all their life long, agents are
influenced by the same people, in the same way. This is of course very restrictive and
a model in which, for each agent, the ordered set Inf(i) may change would be much
more general than the one presented here. For sure, convergence will not be guaranteed.
Notice that Inf(i) could change because the preorder≺ changes or because the agents
in Inf(i) change (for instance, i choses its influencers mong the ones whose opinions
are close to its own).

The second assumption made here is that agents order their influencers according
to a strict order (or according to several strict orders if many topics). Thus, two agents
cannot be considered as equally influential for a given agent. Changing this assumption
will lead us to consider preorders instead of orders. Defining a merging operator which
takes into account preorders is an open question.

Moreover, in TIODS, an agent has a single set of influencers,which are ordered
differently depending on the topics. Again, this is restrictive and it will be interesting
to consider that the sets of influencers are themselves topic-dependent.

A generalization of this work will be to consider that there is no global integrity
constraint as it is the case here, but only some local ones, shared by the agents who, in
some way, belong the same community. Studying the acceptability property in such a
context is challenging.
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Another perspective we plan to work on in the near future is to inject in our model
the Bounded-Confidence assumption. According to this assumption, agents are only
influenced by people whose opinions are not absolutely different from their owns. In
the present model, there is no such constraint on influencers but we plan to take it into
account and to examine what become the properties of IODS then.

We would also like to extend our model in order to take the communication du-
rations into account. Indeed, the present models assume that agent opinions change
regularly at the same time. This comes to assume that communication between agents
have the same duration. But this is a too strong assumption because in real applications,
some interactions may be very short (electronic communications, emails, telephone..)
and some others may be longer (mails, physical meeting ...). Taking this into account
will lead ud to redefine the notion of Opinion Sequence and to wheck if the properties
are still satisfied.

Finally, we would like to revisit our work in order to represent uncertain agents
i.e., agents whose opinions are weighted propositional formulas, weights intending to
represent the degrees of uncertainty of agents. Following [8, 3, 7] we think that the
Belief Functions theory is a good candidate for doing so. But redefining IODS in such
formal tool and studying their properties is an open question.
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Appendix: Proofs

Proposition 1.

Proof 1.

• The first item is obviously satisfied.

• The second item is satisfied. Indeed, if µ is consistent then Mod(µ) 6= ∅, thus
Mod(∆µ(ϕ1 ≺ ... ≺ ϕn) 6= ∅, i.e, ∆µ(ϕ1 ≺ ... ≺ ϕn) is consistent.

• The third item is satisfied. Indeed, assume that
∧
i=1..n ϕi ∧ µ is consistent.

– Considerw |= ∆µ(ϕ1 ≺ ... ≺ ϕn). This implies that [D(w,ϕ1), ...D(w,ϕn)]
is minimal in Mod(µ). But, since

∧
i=1..n ϕi ∧ µ is consistent, there exists

w0 st w0 |=
∧
i=1..n ϕi ∧ µ. Thus [D(w0, ϕ1), ...D(w0, ϕn)] = [0, ..., 0],

i.e, [D(w0, ϕ1), ...D(w0, ϕn)] is minimal. Consequently, ∀i D(w,ϕi) = 0
i.e, ∀i w |= ϕi. Thus w |=

∧
i=1..n ϕi ∧ µ.

– Now consider w |=
∧
i=1..n ϕi∧µ. (such a model exists since

∧
i=1..n ϕi∧

µ is consistent). Thus by definition, w |= µ and ∀i = 1...n D(w,ϕi) = 0.
Thus [D(w,ϕ1), ...D(w,ϕn)] is minimal inMod(µ). Thus w |= ∆µ(ϕ1 ≺
... ≺ ϕn).

• If |= µ ↔ µ′ and ∀i = 1...n, |= ϕi ↔ ϕ′i then Mod(µ) = Mod(µ′). Thus
Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) = Mod(∆µ′(ϕ

′
1 ≺ ... ≺ ϕ′n)) i.e., |= ∆µ(ϕ1 ≺

... ≺ ϕn)↔ ∆µ′(ϕ
′
1 ≺ ... ≺ ϕ′n)

• Consider µ a tautology, ϕ1 = a ∧ b and ϕ2 = a ∧ ¬b. We have ϕ1 |= µ,
ϕ2 |= µ and ∆µ(ϕ1 ≺ ϕ2) = a ∧ b. ∆µ(ϕ1 ≺ ϕ2) ∧ ϕ1 is consistent but
∆(ϕ1 ≺ ϕ2) ∧ ϕ2 is inconsistent.

• Considerw andw′ two models of µ. We can show that: If [D(w,ϕ1), ..., D(w,ϕn] ≤lex

[D(w′, ϕ1), ..., D(w′, ϕn] and [D(w,ϕn+1), ..., D(w,ϕm] ≤lex [D(w′, ϕn+1), ..., D(w′, ϕm]

then [D(w,ϕ1), ..., D(w,ϕm] ≤lex [D(w′, ϕ1), ..., D(w′, ϕm]. Thus, if w |= ∆(ϕ1 ≺
... ≺ ϕn) and w |= ∆(ϕn+1 ≺ ... ≺ ϕm) then w |= ∆(ϕ1 ≺ ... ≺ ϕm)
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• Assume ∆(ϕ1 ≺ ... ≺ ϕn) ∧ ∆(ϕn+1 ≺ ... ≺ ϕm) consistent. Thus ∃w0 st
[D(w0, ϕ1), ..., D(w0, ϕn)] and [D(w0, ϕn+1), ..., D(w0, ϕm)] are minimal in
Mod(µ). Thus [D(w0, ϕ1), ..., D(w0, ϕm)] is minimal in Mod(µ).

Consider w |= ∆(ϕ1 ≺ ... ≺ ϕm). I.e, [D(w,ϕ1), ..., D(w,ϕm)] is minimal in
Mod(µ). Thus ∀i,D(w,ϕi) = D(w0, ϕi). Thus both [D(w,ϕ1), ..., D(w,ϕn)]
and [D(w,ϕn+1), ..., D(w,ϕm)] are minimal in Mod(µ). Thus, w |= ∆(ϕ1 ≺
... ≺ ϕn) and w |= ∆(ϕn+1 ≺ ... ≺ ϕm), i.e, ∆(ϕ1 ≺ ... ≺ ϕm) |= ∆(ϕ1 ≺
... ≺ ϕn) ∧∆(ϕn+1 ≺ ... ≺ ϕm)

• If w |= ∆µ(ϕ1 ≺ ... ≺ ϕn) ∧ µ′ then w |= µ′ and w |= ∆µ(ϕ1 ≺ ... ≺ ϕn).
Thus w ∈ Mod(µ ∧ µ′) and ∀w′ ∈ Mod(µ) [D(w,ϕ1), ..., D(w,ϕn)] ≤lex
[D(w′, ϕ1), ..., D(w′, ϕn)].

Letw′′ ∈Mod(µ∧w′). Thusw′′ ∈Mod(µ) thus [D(w,ϕ1), ..., D(w,ϕn)] ≤lex
[D(w′′, ϕ1), ..., D(w′′, ϕn)]. Thus w |= ∆µ∧µ′(ϕ1 ≺ ... ≺ ϕn).

• Assume ∆µ1
(ϕ1 ≺ ... ≺ ϕn) ∧ µ2 is consistent. Then ∃w0 ∈ Mod(µ1 ∧ µ2)

st [D(w0, ϕ1), ..., D(w0, ϕn)] is minimal in Mod(µ1). I.e., ∀w′ ∈ Mod(µ1)
[D(w0, ϕ1), ..., D(w0, ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′, ϕn)].

Consider w |= ∆µ1∧µ2(ϕ1 ≺ ... ≺ ϕn). Then w ∈ Mod(µ1) and w ∈
Mod(µ2) and [D(w,ϕ1), ..., D(w,ϕn)] is minimal inMod(µ1∧µ2). I.e., ∀w′ ∈
Mod(µ1 ∧ µ2) [D(w,ϕ1), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′, ϕn)]. In
particular [D(w,ϕ1), ..., D(w,ϕn)]≤lex [D(w0, ϕ1), ..., D(w0, ϕn)]. Thus ∀w′ ∈
Mod(µ1), [D(w,ϕ1), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′, ϕn)]. Conse-
quently, [D(w,ϕ1), ..., D(w,ϕn)] is minimal in Mod(µ1). I.e., w |= ∆µ1

(ϕ1 ≺
... ≺ ϕn).

Proposition 2. If ϕ1 |= µ then

Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) = Mod(∆ϕ1(ϕ1 ≺ ... ≺ ϕn))

Proof 2.

• Assume Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) 6⊆Mod(∆ϕ1(ϕ1 ≺ ... ≺ ϕn). Then
∃wO ∈Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) st w0 6∈Mod(∆ϕ1(ϕ1 ≺ ... ≺ ϕn)).

On the first hand, wO ∈Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)) implies
∀w ∈Mod(µ), [D(w0, ϕ1), ..., [D(w0, ϕn)] ≤ [D(w,ϕ1), ..., [D(w,ϕn)]

On the other hand, w0 6∈ Mod(∆ϕ1
(ϕ1 ≺ ... ≺ ϕn)) implies ∃w1 ∈ Mod(ϕ1)

st [D(w1, ϕ1), ..., [D(w1, ϕn)] < [D(w0, ϕ1), ..., [D(w0, ϕn)].

Since, ϕ1 |= µ, we have Mod(ϕ1) ⊆ mod(µ). Thus the two previous assertions
are contradictory.

• Assume Mod(∆ϕ1
(ϕ1 ≺ ... ≺ ϕn)) 6⊆ Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)). Then

∃w1 ∈ Mod(∆ϕ1
(ϕ1 ≺ ... ≺ ϕn)) st w1 6∈ Mod(∆µ(ϕ1 ≺ ... ≺ ϕn)). I.e,

∃w2 ∈Mod(µ) st [D(w2, ϕ1), ..., D(w2, ϕn)] < [D(w1, ϕ1), ..., D(w2, ϕn)].

But, w1 ∈ Mod(∆ϕ1(ϕ1 ≺ ... ≺ ϕn)) implies D(w1, ϕ1) = 0 (because of the
first point of proposition 1). Thus [D(w2, ϕ1), ...] < [D(w1, ϕ1), ...] is impossi-
ble.
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Proposition 3. If ϕ1 |= µ then ∆µ(ϕ1 ≺ ... ≺ ϕn) |= ϕ1.

Proof 3. This is a consequence of proposition 1 and proposition 2.

Proposition 4. Consider n formulas ϕ1, ..., ϕn and≺ an order on these formulas. Let
k ∈ {1...n} and let≺k be the order obtained from≺ by replacing ϕk by ∆µ(≺). Then,
Mod(∆µ(≺)) = Mod(∆µ(≺k)).

Proof 4.
Let us assume that ≺ is defined by ϕ1 ≺ ... ≺ ϕn. Let k ∈ {1...n}.

(⊆) Let w |= ∆µ(≺). Thus (1) w ∈ Mod(µ), (2) [D(w,ϕ1), ..., D(w,ϕn)] is
minimal in Mod(µ) and (3) D(w,∆µ(≺)) = 0.

(2) implies, ∀w′ ∈Mod(µ) [D(w,ϕ1), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′, ϕn)].
I.e., ∀j = 1..n D(w′, ϕj) = D(w,ϕj) or ∃k′ ∈ {1, ..., n} st ∀j < k′ D(w,ϕj) =
D(w′, ϕj) and D(w,ϕk′) < D(w′, ϕk′)

• Suppose ∀j = 1..n D(w′, ϕj) = D(w,ϕj). Then w′ ∈ ∆µ(≺)). Thus
[D(w′, ϕ1), ..., D(w′,∆µ(≺)), ..., D(w′, ϕn)] = [D(w′, ϕ1), ..., 0, ..., D(w′, ϕn)] =
[D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(w,ϕn)]. Finally,

[D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′,∆µ(≺
)), ..., D(w′, ϕn)].

• Suppose ∃k′ ∈ {1, ..., n} st ∀j < k′ D(w,ϕj) = D(w′, ϕj) and D(w,ϕk′) <
D(w′, ϕk′)

– If k′ ≥ k then [D(w,ϕ1), ..., D(w,ϕk)] = [D(w′, ϕ1), ..., D(w′, ϕk)].
Thus [D(w,ϕ1), ..., 0] ≤lex [D(w′, ϕ1), ..., D(w′,∆µ(≺))]. Finally,
[D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(w,ϕn)] ≤lex [D(w′, ϕ1), ..., D(w′,∆µ(≺
)), ..., D(w′, ϕn)].

– If k′ < k, since [D(w,ϕ1), ..., D(w,ϕk′)] < [D(w′, ϕ1), ..., D(w′, ϕk′)],
we have [D(w,ϕ1), ..., D(w,ϕk′), ..., D(w,∆µ(≺)), ..., D(w,ϕn)] <
[D(w′, ϕ1), ..., D(w′, ϕk′), ..., D(w′,∆µ(≺)), ..., D(w′, ϕn)].

Thus finally, in any case we have:
[D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(wϕn)] ≤lex [D(w′, ϕ1), ..., D(w′,∆µ(≺)), ..., D(w′ϕn)].

I.e., w |= ∆µ(≺k)

(⊇) Let w |= ∆µ(≺k). Then (4) [D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(w,ϕn] is
minimal in Mod(µ). Suppose that w 6|= ∆µ(≺) and consider w′ |= ∆µ(≺). Then
(5) [D(w′, ϕ1), ..., D(w′, ϕk), ..., D(w′, ϕn)] is minimal; (6) D(w′,∆µ(≺)) = 0 and
(7) D(w,∆µ(≺)) 6= 0.

(4) and (5) implies [D(w′, ϕ1), ..., D(w′, ϕk), ..., D(w′, ϕn)] < [D(w,ϕ1), ..., D(w,ϕk), ..., D(w,ϕn)]
Thus, (6) ∃k′ = 1..n ∀j < k′ D(w′, ϕj) = D(w,ϕj) and D(w′, ϕk′) <

D(w,ϕk′).
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• Suppose k′ ≤ k
(6) implies [D(w′, ϕ1), ..., D(w′, ϕk′)] < [D(w,ϕ1)...D(w,ϕk′ ]. Thus

[D(w′, ϕ1), ..., D(w′, ϕk′), ..., D(w′,∆µ(≺), ..., D(w′, ϕn))] <
[D(w,ϕ1), ..., D(w,ϕk′), ..., D(w,∆µ(≺), ..., D(w,ϕ]. This contradicts (4).

• Suppose k < k′. Then (6) implies [D(w′, ϕ1), ..., D(w′, ϕk−1)] = [D(w,ϕ1), ..., D(w,ϕk−1)].
Besides, (5) and (7) implies D(w′,∆µ(≺)) < D(w,∆µ(≺)).

Finally, [D(w′, ϕ1), ..., D(w′,∆µ(≺)), ..., D(w′, ϕn] <lex [D(w,ϕ1), ..., D(w,∆µ(≺
), ..., D(w,ϕn]. Thus, [D(w,ϕ1), ..., D(w,∆µ(≺)), ..., D(w,ϕn] is not mini-
mal in Mod(µ). This contradicts (4).

Proposition 5. In an IODS, the opinion sequence of any agent is cyclic i.e., the opinion
sequence of any agent i is characterized by an initial segment B0

i ...B
b−1
i and a cycle

Bbi ...B
e
i which will be repeated up as infinitum.

Proof 5. This result has been proved in proposition 1 of [16]. The proof is based on
the fact that since the language is finite, the number of possible opinions which are
distinct up to logical equivalence is finite. Moreover, there is a finite number of agents
and for each agent, th set of its acquaintances is fixed. So the number of possible
n-uples BRGs = (Bs1, ...., B

s
n) (vectors of agent opinions at step s) is finite, up to

logical equivalence. Consequently, the belief sequence of each agent s cyclic. The
proof does not use the fact that revision policies have to be irrelevant to permutation
of their arguments. So we can transpose this proof for IODS.

Proposition 6. Let S = (A,µ,B, Inf) be an IODS. Then, ∀i ∈ A ∀s ∈ N Bsi is
consistent.

Proof 6. By definition, the initial opinion of agent i is consistent and µ is consistent.
Moreover, Importance-based Merging Operators satisfy proposition 1 (second item).
So i’s opinion remains consistent at any step of the sequence.

Proposition 7. Let S = (A,µ,B, Inf) be an IODS. Then, ∀i ∈ A ∀s ∈ N Bsi |= µ.

Proof 7. By definition, the initial opinion of agent i satisfies µ. Moreover Importance-
based Merging Operators satisfy 1 (first item). So i’ opinion satisfies µ at any step of
the sequence.

Proposition 8. Let S = (A,µ,B, Inf) be an IODS and a consistent formula ϕ of L.
Then, if ∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bsi .

Proof 8. This is proved by induction First, ∀i ∈ A ϕ |= B0
i . Then if ∀j ∈ Inf(i) ϕ |=

Bs−1ij
then ϕ |= ∧j∈Inf(i)Bs−1ij

∧ µ. Consequently, ∧j∈Inf(i)Bs−1ij
∧ µ is consistent.

Because Importance-based Merging Operators satisfy proposition 1 (third item), we
conclude that Bsi = ∧j∈Inf(i)Bs−1ij

∧ µ thus ϕ |= Bsi .

Proposition 9. Let S = (A,µ,B, Inf) be an IODS and let ϕ be a formula of L. Then,
if ∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈ N, Bsi |= ϕ
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Proof 9. We prove it by induction. Assume ∀i ∈ A, Bi |= ϕ.

• For s = 0. If ∀i ∈ A, Bi |= ϕ, then obviously ∀i ∈ A,B0
i |= ϕ

• Suppose the property true for any t ≤ s−1 and let’s prove it for s. By hypothesis
we have ∀i ∈ A Bs−1i |= ϕ. Consider an agent i so that Inf(i) = {i1 ≺ ...in}.
We have in particular, Bs−1i1

|= ϕ. By proposition 3, we have Bsi |= Bs−1i1
. Thus

Bsi |= ϕ

Proposition 10. IODS which are DAG with self-loops satisfy (Conv).

Proof 10. In the case when opinions are single logical interpretations (i.e., ballots),
[11] proves that, if the aggregation operator satisfies the property of “ballot-monotonicity”
then a DAG with self-loops converges. Here, assumptions are different since opinions
are sets of logical interpretations (i.e., sets of ballots). But fortunately, proposition 4
proves that ∆µ satisfies ballot-monotonicity. Moreover, the proof given in [11] does
not use the fact that opinions are supposed to be ballots. Thus we can re-use the proof
of [11] in our case.

Proposition 11. Let S be an IODS and i the leader of a set of agents I . Then Bi is
accepted by any agent in I .

Proof 11. We first show that for i being dogmatic, ∀j ∈ Sphere(i), ∃sj ∀k ≥ sj Bkj |=
Bi. I.e, Bi is accepted by any agent in Sphere(i).

First, notice that since i is dogmatic, ∀k ≥ 0 Bki = Bi.
Now, consider j ∈ Sphere(i).

• Suppose that Inf(j) = {i ≺ ...}. Then ∀k ≥ 1, Bkj = ∆µ(Bi ≺ ...). Thus,
because Bi |= µ, we have Bkj |= Bi, i.e, Bi is accepted by j.

• Suppose that there exists j1...jk−1 so that Inf(j1) = {i ≺ ...}, Inf(j2) =
{j1 ≺ ...}, Inf(jk−1) = {jk−2 ≺ ...}, Inf(j) = {jk−1 ≺ ...}. Thus ∀r ≥
1 Brj1 = Bi, ∀r ≥ 2 Brj2 = Bi,... , ∀r ≥ k Brj = Bi. I.e, Bi is accepted by j.

As a consequence, if i is the leader of a group I , then I ⊆ Sphere(i) thus Bi is
accepted by any agent in I .

Proposition 12. Let S be an IODS and i a dogmatic agent. Then:
(i) If Sphere(i) = A then Bi is unanimously accepted.
(ii) If | Sphere(i) |> |A|

2 then Bi is majoritary accepted.

Proof 12. This is a corollary of proposition 11

Proposition 13. Let S be an IODS and i a self-confident agent. Then

∀s Bsi |= Bs−1i

Proof 13. i being self-confident, we can write Inf(i) = {i ≺ i1 ≺ ...ini
} (with ni ≥

0). Because Bi |= µ, we can apply proposition 2 and conclude that ∀s∆µ(Bs−1i ≺
...Bs−1ini

) |= Bs−1i . I.e., Bsi |= Bs−1i . Thus Mod(Bsi ) ⊆ Mod(Bs−1i ), i.e., Bsi |=
Bs−1i .
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Proposition 14. Let S be an IODS. Let i be a dogmatic agent st | Mod(Bi) |= 1.
Then ∀j ∈ Sphere(i) ∃k ∀s > k |Mod(Bsj ) |= 1

Proof 14. This is a consequence of propositions 11 and 13.

Proposition 15.

• Θµ(≺T1
... ≺Tm

) |= µ

• If µ is consistent then Θµ(≺T1 ... ≺Tm) is consistent

• If
∧n
i=1 ϕi ∧ µ is consistent then |= Θµ(≺T1

... ≺Tm
)↔

∧n
i=1 ϕi ∧ µ

Proof 15.

• The first item is proved by definition of
⊕

.

• The second item is satisfied becauseMod(µ) 6= ∅ impliesMod(Θµ(≺T1
... ≺Tm

)) 6= ∅.

• The third item is satisfied. Indeed, if
∧
i ϕi∧µ is consistent, then

∏
k(
∧
i ϕi∧µ)

is consistent i.e.,
∏
k

∧
i ϕi ∧

∏
k µ is consistent. Since ∆ satisfies proposi-

tion 1 (third item), we get: Mod(∆∏
k
µ(≺k)) = Mod(

∏
k

∧
i ϕi ∧

∏
k µ).

Thus
⊕

k=1...mMod(∆∏
k µ

(≺k)) =
⊕

k=1...mMod(
∏
k

∧
i ϕi ∧

∏
k µ) =

Mod(
∧
i ϕi ∧ µ).

Proposition 16. Consider n formulas ϕ1, ...ϕn and m orders on these formulas ≺T1

... ≺Tm
. Let k ∈ {1, ...n} and ≺kT1

, ... ≺kTm
be the orders obtained from ≺T1

... ≺Tm

by replacing ϕk by Θµ(≺T1
... ≺Tm

)). Then,

Mod(Θµ(≺T1 ... ≺Tm)) = Mod(Θµ(≺kT1
... ≺kTm

))

Proof 16. Let k ∈ {1...n}. We can write {w : w ∈Mod(µ) and ∀i ∈ {1...m}
∏
i w ∈

Mod(∆∏
i µ

(≺Ti))} = Mod(µ) ∩ {w :
∏

1 w ∈ Mod(∆∏
1 µ

(≺T1))} ∩ ... ∩ {w :∏
m w ∈Mod(∆∏

m µ(≺Tm
))}. Thus, by proposition 4, {w : w ∈Mod(µ) and ∀i ∈

{1...m}
∏
i w ∈ Mod(∆∏

i µ
(≺Ti

))} = Mod(µ) ∩ {w :
∏

1 w ∈ Mod(∆∏
1 µ

(≺kT1

))} ∩ ... ∩ {w :
∏
m w ∈Mod(∆∏

m µ(≺kTm
))}. This allows us to conclude {w : w ∈

Mod(µ) and ∀i ∈ {1...m}
∏
i w ∈Mod(∆∏

i µ
(≺Ti

))} = {w : w ∈Mod(µ) and ∀i ∈
{1...m}

∏
i w ∈Mod(∆∏

i µ
(≺kTi

))}

• Suppose {w : w ∈ Mod(µ) and ∀i ∈ {1...m}
∏
i w ∈ Mod(∆∏

i µ
(≺Ti

))} =
∅. Then, by the previous remark, we also have {w : w ∈ Mod(µ) and ∀i ∈
{1...m}

∏
i w ∈ Mod(∆∏

i µ
(≺kTi

))} = ∅. Applying definition 18 twice, we
conclude Mod(Θµ(≺T1 ... ≺Tm)) = Mod(µ) and Mod(Θµ(≺kT1

... ≺kTm
)) =

Mod(µ). Finally, Mod(Θµ(≺T1 ... ≺Tm)) = Mod(Θµ(≺kT1
... ≺kTm

)).

• Assume now that {w : w ∈Mod(µ) and ∀i ∈ {1...m}
∏
i w ∈Mod(∆∏

i µ
(≺Ti

))} 6= ∅ We prove the result by induction on the number of topics.
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– Assume that there is only one topic. We haveMod(Θµ(≺)) = Mod(∆µ(≺
)) and Mod(Θµ(≺k)) = Mod(∆µ(≺k)). Moreover proposition 4 im-
plies that Mod(∆µ(≺)) = Mod(∆µ(≺k)). Thus finally, Mod(Θµ(≺)) =
Mod(Θµ(≺k))

– Assume that the property is true for t− 1 topics. Consider t topics.
By definition 18, we can write Mod(Θµ(≺T1

... ≺t)) = Mod(Θµ(≺T1

... ≺Tt−1
)) ∩Mod(Θµ(≺Tt

)). We can then apply the induction hypothe-
sis on both subsets and write: Mod(Θµ(≺T1

... ≺Tt
)) = Mod(Θµ(≺kT1

... ≺kTt−1
))∩Mod(Θµ(≺kTt

)). FinallyMod(Θµ(≺T1
... ≺Tt

)) = Mod(Θµ(≺kT1

... ≺kTt
))

Proposition 17. When there is only one topic and only one order on a multi-set of
formulas, then the Topic-dependant Influence-Based Opinion Diffusion Sequence, as
defined in definition 19, is identical to the Influence-Based Opinion Diffusion Sequence
as defined in definition 4.

Proof 17. We proveϕ1 |= µ =⇒ Mod(Θϕ1∨..∨ϕn(ϕ1 ≺ .. ≺ ϕn)) = Mod(∆µ(ϕ1 ≺
.. ≺ ϕn))

Definition 18 implies Mod(Θϕ1∨..∨ϕn
(ϕ1 ≺ .. ≺ ϕn)) = Mod(∆ϕ1∨..∨ϕn

(ϕ1 ≺
.. ≺ ϕn)). Proposition 2, allows us to conclude Mod(∆µ(ϕ1 ≺ .. ≺ ϕn)) =
Mod(∆ϕ1

(ϕ1 ≺ .. ≺ ϕn)) (since ϕ1 |= µ). Proposition 2 also allows us to con-
clude Mod(∆ϕ1∨..∨ϕn(ϕ1 ≺ .. ≺ ϕn)) = Mod(∆ϕ1(ϕ1 ≺ .. ≺ ϕn)) (since
ϕ1 |= ϕ1 ∨ ...∨ϕn). From these three equalities, we conclude Mod(Θϕ1∨..∨ϕn(ϕ1 ≺
.. ≺ ϕn) = Mod(∆µ(ϕ1 ≺ .. ≺ ϕn)).

Proposition 18. In a TIODS, the opinion sequence of any agent is cyclic i.e., the opin-
ion sequence of any agent i is characterized by an initial segment B0

i ...B
b−1
i and a

cycle Bbi ...B
e
i which will be repeated up as infinitum.

Proof 18. Here again, the propositional language is finite, the number of agents is
finite, the integrity constraint and the graph of influences topic-by-topic do not change
over the diffusion process.

Proposition 19. Let S = (A,µ,B, Inf) a TIODS. Then ∀i ∈ A ∀s ∈ N Bsi |= µ.

Proof 19. We prove this by induction on s.

• For s = 0 we have ∀i ∈ A B0
i |= µ by definition of TIODS.

• Suppose that the property is true till step s− 1.

Consider Bsi = ΘBs−1
i1
∨..∨Bs−1

ini

(≺T1 ... ≺Tm). Because Θ satisfies proposition

15 (second item), we haveBsi |= Bs−1i1
∨..∨Bs−1ini

. Thus, by induction hypothesis,
we have Bsi |= µ.

Proposition 20. Let S = (A,µ,B, Inf) a TIODS. Then ∀i ∈ A ∀s ∈ N Bsi is
consistent.
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Proof 20. We prove this by induction on s.

• For s = 0 we have ∀i ∈ A B0
i is consistent by definition of TIODS.

• Suppose that the property is true till step s− 1.

Consider Bsi = ΘBs−1
i1
∨..∨Bs−1

ini

(≺T1
... ≺Tm

). The induction hypothesis al-

lows us to conclude that Bs−1i1
∨ .. ∨ Bs−1ini

is consistent. Because Θ satisfies
proposition 15 (second item), we conclude Bsi is consistent.

Proposition 21. Let S = (A,µ,B, Inf) a TIODS and ϕ a consistent formula of L. If
∀i ∈ A,ϕ |= Bi then ∀i ∈ A ∀s ∈ N, ϕ |= Bsi .

Proof 21. We prove this by by induction on s. Suppose that ϕ is a consistent formula
such that ∀i ∈ A,ϕ |= Bi

• For s = 0, obviously ϕ |= B0
i

• Assume now that the property holds till s − 1. Let i ∈ A and i1...ini
its influ-

encers. We have ∀j = 1...ni, ϕ |= Bs−1ij
. This implies that ∧j=1...niB

s−1
ij
∧

(∨j=1...niB
s−1
ij

) is consistent. Because Topic-dependent Importance Merging
Operators satisfy proposition 15 (third item), we can conclude |= Bsi ↔ ∧j=1...ni

Bs−1ij
∧

(∨j=1...ni
Bs−1ij

) i.e., |= Bsi ↔ ∧j=1...ni
Bs−1ij

and finally, ϕ |= Bsi .

Proposition 22. Let S = (A,µ,B, Inf) a TIODS and ϕ a consistent formula of L. If
∀i ∈ A, Bi |= ϕ then ∀i ∈ A,∀s ∈ N, Bsi |= ϕ.

Proof 22. We prove this by induction.

• For s = 0 the property holds.

• Assume that the property holds till s − 1. Let i ∈ A and i1...ini
its influencers.

Because Θ satisfy proposition 15 (first item), we have: Bsi |= Bi1 ∨ ... ∨ Bini
.

By induction hypothesis, ∀j, Bs−1ij
|= ϕ. Then we conclude Bsi |= ϕ.

Proposition 23. TIODS which are DAG with self-loops converge.

Proof 23. The proof is similar to proof 10. This result is a consequence of proposition
16.
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