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ABSTRACT
We address the problem of mining maximally informative
k -itemsets (miki) in data streams based on joint entropy.
We propose PentroS, a highly scalable parallel miki mining
algorithm. PentroS renders the mining process of large vol-
umes of incoming data very efficient. It is designed to take
into account the continuous aspect of data streams, particu-
larly by reducing the computations of need for updating the
miki results after arrival/departure of transactions to/from
the sliding window. PentroS has been extensively evaluated
using massive real-world data streams. Our experimental re-
sults confirm the effectiveness of our proposal which allows
excellent throughput with high itemset length.

1. INTRODUCTION
Pattern mining [1] is a core data mining operation and has
been extensively studied over the last decade. Recently,
mining informative patterns over big data has attracted re-
search interests [2]. Compared with other big data queries,
informative pattern mining poses great challenges due to
high memory and computational costs, as well as accuracy
requirement of the mining results. Such patterns can be
itemsets, sequences, sub-trees, or sub-graphs, depending on
the mining tasks and targeting datasets. It has important
differences with frequent itemsets mining (FIM) [3]. In-
deed, the latter puts focus on discovering frequently occur-
ring patterns from different types of datasets, including un-
structured ones such as transaction and text datasets, semi-
structured ones such as XML datasets, and structured ones
such as graph datasets. However, in data analysis [4], fre-
quency of itemsets can not always be an effective measure
to give relevant results for a various range of applications,
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Figure 1: An example of data stream, with records com-
prised of features. Here, the records are documents, and
their features the words they contain. We define on the
stream an observation sliding window w of size 10 and a
sliding interval of size 2. At the initialization of the stream,
the first window (w1) contains the first 10 documents. After
one update, the new window (w2) contains the most up to
date 10 documents.

including information retrieval [5]. Indeed, the informative-
ness of an itemset could result in discovering interesting new
patterns that were not previously known.

As stated by information theory [6], the informativeness of
one pattern may be calculated through its joint entropy.
Therefore, the pattern having the highest joint entropy em-
beds the highest information about the objects in the dataset.
Such a pattern is called Maximally Informative k -itemset
(miki in short) of length k [7]. Miki extraction has been
shown to be of interest in many potential applications, for
example it can serve as a basic tool for data mining tasks in-
cluding classification, clustering, and change detection. Un-
fortunately, existing miki selection algorithms were designed
towards static data. Therefore, miki mining over data streams
becomes an important research topic with big challenges.
The problem is to extract the miki over dynamic and very
large amount of incoming data, taking into account the evo-



lution of the data streams over time. Example 1 illustrates
a use case of miki to retrieve a set of documents over a data
stream.

Example 1. Consider similarity queries in
high-dimensional datasets. In this case, we are interested
in only using a small subset of the dimensions (or features)
for fast record comparisons. Figure 1 represents a set of
features A, B, C, D, E contained in a stream of documents
{d1, . . . , d12} arriving at different time points. In this data,
”1” means that the word occurs in the corresponding docu-
ment, and ”0” otherwise. Since a data stream cannot fit into
main memory, a usual approach is to consider an observa-
tion time window that concerns the most up to date data.
This is w1 and w2 in Figure 1. At each step, we focus on
the data of the latest window only. w1 is the first window,
at the initialization of the stream. w2 is the second one,
available after to updates in the stream, and so on. Let us
now consider w1. {D,E} is a frequent itemset over w1, but
this information actually provides little help for similarity
queries. Given a document q in our data streams, and based
on its values of D and E, we will not be able to decide which
document is the closest to q. In the meanwhile, the itemset
{A,B,C} is infrequent on w1, but much more helpful for this
task. With the values {1, 0, 0} (resp. {0, 1, 1}) we could
find the corresponding document d3 (resp. d6). {A,B,C} is
called a maximally informative itemset (miki) of size k = 3
over this stream of documents. Our goal is to discover the
most up to date miki, continuously and after each update in
the stream. In the case of Figure 1, this is still {A,B,C} in
w2, but this might not be the case after a few updates.

In the last few years, some new miki algorithms have been
developed [8, 2]. However, to the best of our knowledge,
there is no efficient solution in the literature for parallel miki
discovery over data streams.

For miki mining in data streams, we have to address the
following challenges. First, a miki mining algorithm needs
to explore a search space with an exponential number of
candidates. The length of the temporary answer set itself
can be very large. Thus, in a streaming environment, even
generating an approximate answer set can cost much more
space than the available one. Therefore, the mining algo-
rithm needs to be very memory efficient. Second, the com-
putations become more challenging in presence of high speed
data, since we have to quickly extract results and efficiently
manage fast sliding window shifts that may affect miki can-
didates.

In this paper, we propose a parallel solution that deals with
the above challenges. We exploit the Spark Streaming frame-
work [9] and propose a clever combination of both informa-
tion theory and massive distribution principles. We propose
a new fast parallel algorithm for computing streaming en-
tropies of miki, called PentroS, intended to discover miki
over data streams, in massively distributed environments. In
PentroS, we propose optimizing strategies to maximize the
parallelism and to take into account the continuous aspect of
the data streams. Particularly, we propose approaches that
incrementally update the miki results after arrival and de-
parture of transactions to/from the distributed sliding win-
dows. Our algorithm has been extensively evaluated us-

ing large scale real-world streaming data. The experimental
results show that PentroS allows considerable performance
gains compared to baseline approaches, and confirm its high
throughput on large continuous streams generated from a
real world dataset of one Terabyte.

The remainder of this paper is organized as follows. Section
2 gives the formal definitions of informative itemsets and the
necessary background. In Section 3, we propose our PentroS
algorithm. Section 4 reports our experimental results over
real-world transactional data streams. Section 5 discusses
related work, and Section 6 concludes.

2. BACKGROUND
In this section, we formally define the problem, which we
address and sketch the Spark Streaming system as the mas-
sively distributed streaming environment.

2.1 Data Streams
In a data stream, transactions arrive continuously and the
volume of transactions can be potentially infinite. Formally,
a data stream D can be defined as a sequence of transactions,
D = (t1, t2, ..., ti, ...), where ti is the ith arrived transaction.
To process and mine data streams, different window models
are often used. A window is a sub-sequence between ith and
jth arrived transactions, denoted as W [i, j] = (ti, ti+1, ..., tj)
with i < j. A user can ask different types of pattern min-
ing questions over different types of window models. The
most popular type is the sliding window[10]. Given a slid-
ing window of size w, and a current time point t, we are
interested in the continuous pattern discovery in the win-
dow W [t−w + 1, t]. As time changes, the window keeps its
size and moves along with the current time point.

2.2 Miki
Below, we define the problem of mining mikis (maximally
informative k-itemsets) [7].

Definition 1. Let F = {i1, i2, . . . , in} be a set of literals
called features. An itemset X is a set of features from F ,
i.e., X ⊆ F . The size or length of the itemset X is the num-
ber of features in it. A transaction t is a set of elements such
that t ⊆ F and t 6= ∅. A dataset T is a set of transactions.

Definition 2. The entropy of a feature i in a dataset
T measures the expected amount of information needed to
specify the state of uncertainty or disorder for the feature
i in T . Let i be a feature in T , and P (i = n) be the
probability that i has value n in T (we consider categorical
data, where the value will be ’1’ if the object has the feature
and ’0’ otherwise). The entropy of the feature i is given by
H(i) = −(P (i = 0)log(P (i = 0)) + P (i = 1)log(P (i = 1))),
where the logarithm base is 2 [6].

Definition 3. The binary projection, or projection of an
itemset X in a transaction t is a bitmap of size |X| where
each item (i.e., feature) of X is replaced by ’1’ if it occurs
in t and by ’0’ otherwise. Given a dataset T , then D(TX)
is the set of all projections of X to the transactions of T .
The projection counting of X in a dataset T is finding the
projections of X in T , and associating each projection with
its number of occurrences.



Example 2. Let us consider Figure 1. The projection of
{B,C,D} in d1 is (0, 1, 1). The projections of {D,E} in
Figure 1 are (1, 1) with eleven occurrences and (0, 1) with
one occurrence.

Definition 4. Given an itemset X = {x1, x2, . . . , xk}
and a set of transactions T , the joint entropy of X in T
is defined as: H(T , X) = −

∑
J∈{0,1}|k| P (J) × log(P (J)),

where each J is a possible projection of X in the transac-
tions, and P (J) is the probability of this projection.

The higher the value of H(T , X), the more information X
provides in T . For simplicity, we use the term entropy of an
itemset X to denote its joint entropy.

Example 3. Let us consider the dataset of Figure 1. The
joint entropy of X = {D,E} on w1 is given by H(T , X) =
− 9

10
log( 9

10
)− 1

10
log( 1

10
) = 0.468, where the quantities 9

10
and

1
10

respectively represent the probabilities of the projection
values (1, 1) and (0, 1) in the dataset. Note that there are
two projections for {D,E} in the dataset: (1, 1) with nine
occurrences , and (0, 1) with one occurrence.

Definition 5. Given a dataset T , a set F = {i1, i2, . . . , in}
of features. An itemset X ⊆ F of length k is said to be max-
imally informative k-itemset, if for all itemsets Y ⊆ F of
size k, H(T , Y ) ≤ H(T , X). Hence, a maximally informa-
tive k-itemset is the itemset of size k with the highest joint
entropy value.

Now, we can define the problem of mining maximally infor-
mative k-itemsets, in a static dataset, as follows.

Definition 6. Given a dataset T which consists of a set
of n features F = {f1, f2, . . . , fn}. Given a number k, the
problem of miki mining is to return a subset F ′ ⊆ F with
size k, i.e., |F ′| = k, having the highest joint entropy in T ,
i.e., ∀F ′′ ⊆ F ∧ |F ′′| = k ⇒ H(T ,F ′′) ≤ H(T ,F ′).

2.3 Forward-Selection
In [7], a heuristic algorithm, called Forward-Selection, has
been proposed to extract informative itemset of size k with
the highest entropy. The Forward-Selection algorithm per-
forms multiple scans over the dataset in k iterations. In the
first iteration, the algorithm chooses the item with the max-
imum entropy. Then in each iteration j (for 2 ≤ j ≤ k),
the remaining n features are added to the current itemset
to generate n candidates. The candidate itemset having the
highest entropy is found by means of dataset scans, and is
declared as the new miki of size j. The authors of [7] showed
the advantage of Forward-Selection over the brute force algo-
rithms that evaluate the entropies of all the possible subsets
of size k.

In a data stream environment, a naive approach for miki
mining would be a straightforward implementation of Forward-
Selection (see Section 2.3) repeatedly on multiple sets of
transactions. The idea is simple, the transaction data stream
is divided into multiple batches (stored in RDDs) which ar-
rive at different time points and on each RDD, we mine the
corresponding miki. Clearly, the corresponding generating
and pruning principles lead to very bad performances and

are not suited for distributed environment like Spark [9] and
MapReduce [11]. Worse still, since it is a transaction data
streams, patterns could be truncated by batches and con-
nections between batches are cut, thus the obtained miki
result may not be correct.

In this respect, we propose an algorithm to extract mikis
correctly from continuous data in a massively distributed
environment, introducing a new incremental principles for
updating the miki results over a data stream.

3. DISTRIBUTED MIKI MINING
Our approach starts with a complete miki discovery, from
scratch, on the first sliding window, at the initialization of
the process. This discovery from scratch might also be done
at regular points in the stream whenever incremental com-
putation is not possible (details given in Section 3.1). This
initial miki discovery proceeds in two major rounds. In the
first round, it computes the local miki on each split of the
sliding window. Then, it considers the union of all the local
mikis as a set of candidates to be checked over the global
distributed sliding window in the second round. To perform
the first round, for a given sliding window SW at a time
point t in the stream, presented as an RDD containing all
the transactions arriving between ti and tj with i < j, we
apply the principles of Forward-Selection in parallel on each
split of the RDD. The straightforward approach would be
to centralize the local mikis obtained in the first round, and
hope to find the global miki among this set in the second
round.

However, this heuristic is optimistic since it considers that
the global miki will appear in at least one split. Actually,
it is possible that the global miki is never found as a local
miki in the first round1. This is why, in the second round,
we need a larger number of candidate itemsets, in order to
maximize the chances to obtain the actual miki. This can
be done by exploiting the set of candidates that are built,
locally on each split, in the first round. The last step of
Forward-Selection aims at calculating the projection count-
ing of |F| − k candidates and then computing their local
entropy. Instead of only considering the itemset having the
highest entropy, we will emit to an RDD, for each candidate
X, its projection counting in the split. The new RDD will
include, for each local candidate Xi (1 ≤ i ≤ m, where m
is the number of splits), the projection counting of X in a
subset of T .

Doing so, the chances to obtain the actual global miki in
the second round are higher, but it is still possible that a
local candidate X has not been proposed in the entire set
of splits in the first round. Consider, for example, a biased
data distribution, where a split contains some features with
high entropies, and these features have low entropies on the
other splits. Then, X is proposed in some splits and not the
other ones. Therefore, for each candidate X obtained in the
first round, we have two possible cases:

1. X is a candidate itemset on all the splits, so we have its
projections in all the splits, and we are able to calculate

1The illustration supporting this claim is omitted due to
lack of space, however it is easy to show a counter-example.



its exact projection counting on T .

2. There is (at least) one split where X has not been gen-
erated as a candidate and we are not able to calculate
its exact projection counting on T .

In the first case, we have collected all the necessary infor-
mation for calculating the entropy of X on T in the second
round with no further data scans. The second case is more
difficult since X might be the miki, but we cannot be sure
due to lack of information about its local entropy on (at
least) one split. Therefore, in the second round, we need to
check the entropy of X on T by means of a new distributed
data scan in order to compute its exact projection counting.
The goal of this second round is therefore to check whether
no local candidate has been ignored at the global scale. At
the end of this round, we have the respective entropies of
all the promising candidate itemsets and we are able to pick
the one with the highest entropy.

To compute the global projection counting of a candidate in
the splits of the sliding window, we proceed as follows. Let
W be a sliding window. When W is divided into multiple
splits, we have to count for each projection p of an itemset
X, its corresponding number of occurrences over the entire
W . To do so, in a first step, we start by emitting X with its
projection p from each split of W (done using the flatMap
transformation in Spark Streaming). Then, after the inclu-
sion tests of the projection over transactions, we count the
total number of occurrences in all splits. Afterwards, we
compute the global counting of the projection (in Spark,
this is done by means of the reduceByKey transformation).

The above mentioned approach is the basic version of Pen-
troS (without optimizations), and is referred to in the re-
mainder as Basic-PentroS. As shown by our experiments
reported in Section 4, Basic-PentroS outperforms Forward-
Selection over sliding windows. However, by exploiting some
concepts of information theory, and proposing new entropy
computing principles, we significantly improve its perfor-
mance. Our goal is to gain more than one order of magni-
tude, by further speeding up its execution at different parts
of the process, as explained in the remainder. It is worth of
mention that though PentroS is implemented here in Spark
Streaming, our generic theoretical contribution can be used
for fast incremental computation of itemsets’entropies in any
distributed data streaming environment.

3.1 Streaming Principle
After the initialization step described above, PentroS con-
tinuously evaluates the entropies of miki candidates of size
j (1 ≤ j < k). At any point in the data stream, we have the
entropies of all the miki candidates of size j obtained at the
previous step. However, we cannot guarantee that the miki
over the current window is actually in the set of candidates
obtained at the previous step. Therefore, in order to main-
tain a reliable result, PentroS adopts the following strategy.
After an update in the sliding window, if the itemsets of
size j having the highest entropy do not change then the
miki does not change between the previous window and the
current one; otherwise, we will generate new candidates. In
other words, if for any value of j the local miki of size j in a
split has changed (i.e., a candidate of size j has became the

new miki of size j) then we apply Forward-Selection on this
split, starting from size j to k. The following sections are
dedicated to i) fast incremental entropy computation strate-
gies applied to updating the entropy of the current miki of
size 1 to k; and ii) optimized candidate enumeration in the
case we need to re-compute the current miki, starting from
any size j.

3.2 Incremental Entropy Computation
If we locally applied Forward-Selection after each update in
the data stream, the algorithm would perform many scans
over the sliding windows to compute the entropy of candi-
dates and to find the local mikis. Actually, let k be the size
of the requested itemset, and |F | be the number of features
in the dataset, the local cost of applying Forward-Selection
on a split is given by the product of the number of scans
and the number of candidates at each scan, i.e., O(k× |F |).

This high complexity degrades the performance of local miki
generation. Therefore, in this section, we propose an effi-
cient approach to significantly reduce the cost of updating
candidate entropies. Actually, our approach only needs a
unique operation (thus O(1)) to update the entropy of an
itemset whether a transaction is added to (or removed from)
the data stream. It relies on new principles for incremen-
tal entropy computation that will allow extremely efficient
updates on the entropy of an itemset.

These principles are detailed with Theorems 3.2 and 3.3 that
facilitate the joint entropy computations. First, we need to
reformulate the computation of the entropy of an itemset
through Lemma 3.1.

Lemma 3.1. Given an itemset X and a dataset T with
size n. Let D(TX) be the set of projections of X in the
dataset T . For each projection t ∈ D(TX), let ft be the
frequency of t in the dataset. Then, the joint entropy of X
in T can be computed as:

H(T , X) = log(n)− 1

n

∑
t∈D(TX )

ft × log(ft) (1)

Proof. The total number of projections of X in the dataset
T is n. For each projection t ∈ D(TX), let ft be the fre-
quency of t in the dataset. Thus, the probability of t is
p(t) = ft

n
. Therefore, we have:

H(T , X) = −
∑

t∈D(TX )

ft
n
×log(

ft
n

) = − 1

n

∑
t∈D(TX )

ft×log(
ft
n

)

We know that log a
b

= log(a)− log(b). Thus, we have:

H(T , X) = − 1

n
(

∑
t∈D(TX )

ft × log(ft)−
∑

t∈D(TX )

ft × log(n))

= − 1

n
(

∑
t∈D(TX )

ft × log(ft)− log(n)×
∑

t∈D(TX )

(ft))

The sum of the frequencies of the projections in D(TX) is
equal to the total number of transactions in T , i.e. n. In



other words, we have
∑

t∈D(TX )

ft = n. Thus, H(T , X) can

be simplified as:

H(T , X) = − 1

n
(

∑
t∈D(TX )

ft × log(ft)− log(n)× n)

= log(n)− 1

n
(

∑
t∈D(TX )

ft × log(ft))2

3.2.1 Entropy Computation After the Arrival of a new
Transaction

By introducing Theorem 3.2, based on our previous Lemma,
we propose a very fast computation of the entropy of an
intemset after the arrival of a new transaction to the sliding
window.

Theorem 3.2. Given an itemset X and two datasets T
and T ′ = T ∪ {t′}. Then, the joint entropy of X in T ′ can
be computed by using the joint entropy of X in T , and the
frequency of t′ ∩X in T ′, denoted as ft′ , as follows:

1. if ft′ = 1, then

H(T ∪ {t′}, X) = log(n+ 1)− n
n+1

(log(n)−H(T , X))

2. if ft′ > 1, then

H(T ∪{t′}, X) = log(n+1)− 1
n+1

(n(log(n)−H(T , X))+

ft′ × log(ft′)− (ft′ − 1)× log(ft′ − 1)

Proof. Using Lemma 3.1, the joint entropy of X in T ′ can
be written as:

H(T ′, X) = log(n + 1)− 1

n + 1

∑
t∈D(T ′

X
)

ft × log(ft) (2)

Let t′ ∩X be the intersection of the new transaction t′ and
X, and ft′ the frequency of t′ ∩ X in the new dataset T ′.
Let T be the old dataset, i.e. the dataset before arrival of t′.
Thus, we have T ′ = T ∪ {t′}. In our proof, we consider two
cases : 1) t′ ∩X exists in T , thus ft′ > 1; 2) t′ ∩X doesn’t
exist in T , thus ft′ = 1. In the case where t′ ∩ X ∈ T ,
for updating the entropy for the new dataset T ′, we have to
remove the old frequency of t′ ∩ X (i.e., ft′ − 1 ) from the
entropy formula, and replace it by the new frequency (i.e.,
ft′ ). Thus, Equation 2 can be written as:

H(T ′, X) = log(n + 1)− 1

n + 1
(

∑
t∈D(TX )

ft × log(ft) + ft′

× log(ft′)− (ft′ − 1)× log(ft′ − 1))

From Lemma 3.1, we have :∑
t∈D(TX )

ft × log(ft) = n× (log(n)−H(T , X)) (3)

Thus, in this case, the joint entropy of X in T ′ can be written
as:

H(T ′, X) = log(n + 1)− 1

n + 1
(n× (log(n)−H(T , X))

+ ft′ × log(ft′)− (ft′ − 1)× log(ft′ − 1))

In the second case, where t′∩X /∈ T , we can write Equation
2 as follows:

H(T ′, X) = log(n + 1)− 1

n + 1
(

∑
t∈D(TX )

ft × log(ft)

+ ft′ × log(ft′))

Since ft′ = 1 and log(1) = 0, we can simplify the above
equation as:

H(T ′, X) = log(n + 1)− 1
n+1

(
∑

t∈D(TX )

ft × log(ft))

Therefore, by using Equation 3, the above equation can be
written as:

H(T ′, X) = log(n + 1)− 1
n+1

(n× (log(n)−H(T , X))) 2

By using Theorem 3.2, after the arrival of a new transaction
t′ to the sliding window, the entropy of a candidate X can
be computed simply by using its last entropy (before the
arrival of t′) and the frequency of t′ ∩X (i.e., the intersec-
tion of the new transaction and X) in the sliding window.
This significantly reduces the cost of updating the candidate
entropies in the sliding windows.

3.2.2 Entropy Computation After Departure of a Trans-
action

The second challenge in entropy computation appears when
removing transactions from the data stream. Indeed, the
entropy of an itemset candidate may change when a trans-
action gets out of the current sliding window. To maintain
the correctness of our results with the transactions that leave
the sliding window, we propose the following theorem.

Theorem 3.3. Given an itemset X, a dataset T , and a
transaction t′ ∈ T . Then, the joint entropy of X in T ′ =
T − {t′} can be computed by using the joint entropy of X
in T , and the frequency of t′ ∩X in T ′, denoted as ft′ , as
follows:

1. if ft′ = 0, then

H(T −{t′}, X) = log(n− 1)− n
n−1

(log(n)−H(T , X))

2. if ft′ > 0, then

H(T −{t′}, X) = log(n−1)− 1
n−1

(n(log(n)−H(T , X))+

ft′ × log(ft′)− (ft′ + 1)× log(ft′ + 1))

The proof can be done in a similar way as that of Theorem
3.2.

By using the above theorems, we can update the candidate
entropies just by taking into account their intersection with
the added/removed transactions.



3.3 Reducing the Number of Candidates
The theoretical framework, proposed in the previous subsec-
tion, allows us to update an itemset entropy with very high
efficiency. However, there are still cases where we need to
send candidates to a global entropy counting in the second
round of PentroS. Unfortunately, computing the entropies of
all miki candidates might result in low response time. This
is particularly the case i) for large sliding windows, as it will
be illustrated by our experiments in Section 4 and ; ii) when
the features are not uniformly distributed in the splits of
RDDs.

Here, we propose an efficient technique for significantly re-
ducing the number of candidates. The main idea is to com-
pute an upper bound for the entropy of the partially sent
itemsets, and discard them if they have no chance to be a
global miki. To do so, we exploit the available information
about the miki candidates flat-mapped to the second form
of the RDD.

Let us describe formally our approach. Let X be a partially
sent itemset, and P be a partition that has not sent X and

its projection frequencies to the transformed partition P
′

that is responsible for computing the entropy of X. In P
′
,

the frequency of X projections for a part of the dataset
is missing, i.e., in the split of P . We call them missing
frequencies. We compute an upper bound for the entropy of
X by estimating its missing frequencies. This is done in two
steps: i) finding the biggest subset of X, say Y , for which
all frequencies are available; ii) distributing the frequencies
of Y among the projections of X in such a way that the
entropy of X is maximized.

To do so, the idea behind the first step is that the frequencies
of the projections of an itemset X can be derived from the
projections of its subsets. For example, suppose two itemsets
X = {A,B,C,D} and Y = {A,B}, then the frequency of
the projection p = (1, 1) of Y is equal to the sum of the
following projections in X: p1 = (1, 1, 0, 0), p2 = (1, 1, 0, 1),
p3 = (1, 1, 1, 0) and p4 = (1, 1, 1, 1). The reason is that in
all these four projections, the features A and B exist, thus
the number of times that p occurs in the dataset is equal
to the total number of times that the four projections p1 to
p4 occur. In the second step, let Y be the largest available

subset of X in the new partition P
′
. After choosing Y , we

distribute the frequency of each projection p of Y among
the projections of X that are derived from p. There may be
many ways to distribute the frequencies. For instance, in the
example of the first step, if the frequency of p is 6, then the
number of combinations for distributing 6 among the four
projections p1 to p4 is equal to the solutions which can be
found for the following equation: x1 +x2 +x3 +x4 = 6 when
xi ≥ 0. In general, the number of solutions for distributing
a frequency f among n projections may be huge.

Among all these solutions, we choose a solution that maxi-
mizes the entropy of X. The following lemma shows how to
choose such a solution.

Lemma 3.4. Let T be a dataset, and X be an itemset.
Then, the entropy of X in T is the maximum if the possible
projections of X in T have the same frequency.

Proof. The proof is done by implying the fact that in the

entropy definition (see Definition 2), the maximum entropy
is obtained for the case where all possible combinations have
the same probability. Since, the probability is proportional
to the frequency, then the maximum entropy is obtained in
the case where the frequencies are the same. 2

The above lemma proposes that for finding an upper bound
for the entropy of X (i.e., finding its maximal possible en-
tropy), we should distribute equally (or almost equally) the
frequency of each projection in Y among the derived pro-
jections in X. Let f be the frequency of a projection in Y
and n be the number of its derived projections, if (f modulo
n) = 0 then we distribute equally the frequency, otherwise
we first distribute the quotient among the projections, and
then the remainder randomly.

After computing the upper bound for entropy of X in each
sliding window that we handle, we compare it with the max-
imum entropy of the itemsets for which we have received all
projections (so we know their actual entropy value), and
discard X if its upper bound is lower than the current max-
imum found entropy. This strategy allows PentroS to sig-
nificantly reduce the number of candidates sent for entropy
counting in the second round.

3.4 Complete Approach
Algorithms 1 and 2 summarize the main steps of PentroS
algorithm for miki discovery over a data stream in Spark
Streaming. Algorithm 1 depicts the first job of PentroS over
a sliding window SW in a data stream DS. The transac-
tions of a SW are partitioned and distributed across multiple
nodes (multiple splits Sn). Each node emits its local can-
didates and their appropriate projections. In case of miss-
ing information from one node or more, an upper bound
function is executed to estimate the frequency of candidate
projections in SW and a second job is performed to check
the accuracy of the obtained results. Algorithm 2 illustrates
steps of our second job in PentroS.

4. EXPERIMENTS
In this section, we evaluate the performance of PentroS algo-
rithm for miki mining through experiments over real-world
datasets. In the remainder of the section, we first describe
the experimental setup, and then report the obtained re-
sults.

4.1 Experimental Setup
To evaluate the performance of PentroS, we used a built-in
streaming source of Spark Streaming, fed from two real-life
datasets. The first one, called ”English Wikipedia”, repre-
sents a transformed set of Wikipedia articles into a transac-
tional dataset, such that each line mimics an article. It con-
tains 8 millions transactions with 7 millions distinct items
and the size of the whole dataset is 4.7 Gigabytes. The sec-
ond dataset2, called ”ClueWeb”, consists of Web pages that
were collected in January and February 2009 and is used by
several tracks of the TREC conference. During our experi-
ments, we used a part of this dataset including 632 million
transactions. The size of the considered ”ClueWeb” dataset

2http://www.lemurproject.org/clueweb09/



Algorithm 1: PentroS : First Job

Input: DS a transaction Data Stream, SW the length of
the sliding windows, k the size of miki

Output: A miki of Size k

flatMap( Si ∈ SW )
- Fi ← the set of features in Si

- ∀f ∈ Fi compute H(f) on Si //entropy of items
- TopF ← max(H(f)), ∀f ∈ Fi

while not end of the stream and i 6= k do
- Cn ← BuildCandidates(TopF, Fi\TopF)
- ∀c ∈ Cp, H(ci)← ComputeJointEntropy(c, Si)
- TopF ← max(H(c)), ∀c ∈ Cn

// Ck contains all the candidate itemsets of size k
// and ∀c ∈ Ck, the joint entropy of c is H(ci)
for c ∈ Ck do

- Pc ← projections(c, Si)
for p ∈ Pc do

- emit(key = c : value = p)

reduceByKey( key: itemset c, list(values):
projections(c) )

if c has been emitted by all the workers then

// we have all the projections of c on SW
- H(c)← IncrJointEntropy(c,projections(c))
- emit(c,H(c)) in a file Complete
else

// the upper bound of c’s joint entropy
- Est← UpperBound(c,projections(c))
- emit(c, Est) in a file ”Incomplete”

close( )
- Cmax ← CandidateWithMaxEntropy(”Complete”)
- emit(Cmax, H(Cmax))

in a file ”CompleteMax”
for c ∈ ”Incomplete” do

if Est(c) > H(Cmax) then
// c is potentially a miki, it has to be checked -
emit(c,Null) in a file ”ToBeTested”

is around one Terabyte. For each dataset, we performed a
data cleaning task, removed all English stop words from all
articles, and obtained datasets where each article represents
a transaction and the features are the corresponding words
in the article.

In our streaming process we have set our sliding windows
parameters to five batches as a window length and the sliding
interval at which the window operation is performed to four
batches. Each batch have been set to 5 seconds of incoming
data.

For comparison, we implemented a parallel version of Forward-
Selection in Spark Streaming. By taking the same default
values of experiments, it launches a simple Forward-Selection
process over each sliding window of the streaming. With new
incoming and outgoing data, Forward-Selection is performed
over RDDs with a default distribution, set by Spark Stream-
ing, over multiple splits. In our results, we denote this par-
allel implementation of Forward-Selection as ”ParaForward-
Selection”.

Algorithm 2: PentroS : Second Job

Input: SW The sliding windows, miki of size k
Output: A miki of Size k

flatMap( Whole SW )
- Read file ’ToBeTested’ from Job1 (once)
- F ← set of itemsets in ’ToBeTested’
for f ∈ F do

- p← projections(f , V1)
emit (key: f , value: p)

reduceByKey( key: itemset f ,
list(values): projections(f) )

- H(f)← IncrJointEntropy(f ,projections(f))
- write(f , H(f)) to a file ”CompleteFromJob2”
- emit (key: f , value: H(f))

close( )
// emit miki having highest joint entropy
- Max ← max(”CompleteMaxFromJob1”,

”CompleteFromJob2”)
- emit(miki,Max)

Our experiments were carried out on a cluster with 32 nodes
(384 cores in total), equipped with Spark 1.6.1. Each ma-
chine is equipped with a linux operating system, 96 Giga-
bytes of main memory, dual-Xeon X5670 with 2.93GHz 12
core CPUs and 320 Gigabytes SATA hard disk.

Reproductibility: Our code is available at https://infoproj.
github.io/PentroS/, with details and instructions.

4.2 Effectiveness
The first observation is that the mikis extracted by PentroS
are the same as the ones extracted by Forward-Selection, for
any sliding window on any dataset of our experiments. We
always obtain the best quality of miki with our approach.
So, we dedicate the rest of this section to performances in
terms of scalability.

4.3 Results
The performances of our algorithms are measured in terms
of ”throughput”. This is the number of transactions that
an algorithm is able to process in a batch. Since we have
batches of five seconds, throughput in our case is the number
of transactions processed within five seconds.

Figures 2a and 2b report our experimental results on the
whole English Wikipedia dataset. Figure 2a reports the per-
formance results for an itemset of size k varying from 1 to 8.
We see that the throughput of the Parallel Forward-Selection
algorithm is very low compared to other algorithms. Above
a size of k = 5 for the mikis, the quantity of transactions
treated by Parallel Forward-Selection converges to 0. This is
due to the multiple dataset scans performed in each sliding
window to determine an itemset of size k (i.e., Forward-
Selection needs to perform k rounds for each SW). On
the other hand, the performance of Basic-PentroS algo-
rithm is much better than Parallel Forward-Selection and
its throughput grows by a factor of 3, and it continues scal-
ing with higher k values. This difference in the performance
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Figure 2: Throughput multiplied by 10−3 in ”Wikipedia Articles” dataset with different values of k (miki size). All algorithms
were run with 32 nodes. The throughput of PentroS is around 10 times better than that of Parallel Forward-Selection
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Figure 3: Throughput multiplied by 10−3 in ”Clue Web” dataset with different values of k (miki size). Like in the Wikipedia
dataset, the throughput of PentroS over the Clue Web dataset is almost 10 times better than that of Parallel Forward-Selection
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Figure 4: Throughput of the algorithms by varying the number of nodes and k = 5 (the size of miki). PentroS outperforms
Basic-PentroS and Parallel Forward-Selection for all values. Over ClueWeb dataset, the throughput of PentroS is almost 10
times larger than that of Parallel Forward-Selection. We note a similar conclusion in Figure 4b

between the two algorithms illustrates the significant impact
of itemset mining in the two round architecture of PentroS.

Moreover, by using further optimizing techniques, we clearly
see the improvements in the performance. In particular,
starting from an itemset having size k = 8, we observe a
good performance behavior of PentroS compared to Basic-
PentroS. By taking advantage of our optimizing techniques,

particularly by incremental entropy computations and re-
ducing the number of data split scans, we record an improve-
ment in the throughput of an order of magnitude between
PentroS and Forward-Selection.

Figure 2b highlights the difference between the algorithms
that scale in Figure 2a. Although Basic-PentroS continues
to scale with k = 8, it is outperformed by PentroS algorithm.
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Figure 5: Behavior of the algorithms over multiple batches with 32 nodes, and size k = 5. The sliding window length is 5
batches, and the sliding interval is one batch. PentroS is almost 10 times more powerful than Parallel Forward-Selection

With itemsets of size k = 15, we clearly observe a significant
difference in the response time between Basic-PentroS and
PentroS.

In Figures 3a and 3b, similar experiments have been con-
ducted on the ClueWeb dataset. We observe that the same
order between all algorithms is kept compared to Figures 2a
and 2b. In particular, we see that Parallel Forward-Selection
algorithm suffers from the same limitations as could be ob-
served on the Wikipedia dataset in Figure 2a. For instance,
with k=3, in Figure 3a, the throughput of PentroS is 22
millions while that of Parallel Forward-Selection is only 2
millions.

Figure 4 illustrates the results obtained from running the
algorithms using different number of nodes. Figure 4a shows
the throughput over the ”Clue Web” dataset. The difference
in throughput between all algorithms is maintained while we
observe that Parallel Forward-Selection does not scale well
(it does not benefit from the addition of computing nodes).
In Figure 4b, similar experiments have been conducted on
the ”Wikipedia Articles” dataset and the same tendency is
maintained for all algorithms, showing the clear advantage
of PentroS.

In Figure 5, we show the behavior of the three algorithms
over batches of data through the streams. We settled the
length of a sliding window to 5 batches of 5 seconds, and
the sliding interval is four batches. For Basic-PentroS and
PentroS, we observe slight decreases in the throughput for
some windows. This is due to a scan over the splits in the
RDD by launching Forward-Selection in the case that an
itemset F−k has changed from one window to another. Even
though, PentroS keeps the same performance improvements,
compared to its competitors.

5. RELATED WORK
In the literature, several endeavors have been made to ex-
plore informative itemsets (or feature sets) in datasets [7,
12, 13, 14]. Different measures of itemset informativeness
(e.g., frequency of itemset co-occurrence) have been used
to identify and distinguish informative itemsets from non-
informative ones. Mining itemsets based on the co-occurrence
frequency (e.g., frequent itemset mining) measure does not

capture all dependencies and hidden relationships in the
dataset, especially when the data is sparse [14]. There-
fore, other measures must be taken into account. In [14],
low and high entropy measures of itemsets informativeness
were proposed. Heikinheimo et al. [14] propose the use of
a tree-based structure without specifying a length k of the
informative itemsets to be discovered. However, as men-
tioned in [14], such an approach results in a very large out-
put. Knobbe et al. [7] suggest to use the heuristic approach
described in Section 2.3.

Another algorithm proposed in [7] consists of fixing a pa-
rameter k that denotes the size of the miki to be discovered.
This algorithm proceeds by determining a top n miki of size
1 having the highest joint entropies, then, the algorithm de-
termines the combinations of 1-miki of size 2 and returns
the top n most informative itemsets. The process continues
until it returns the top n miki of size k. In [2], Salah et
al. propose PHIKS, an algorithm designed to extract the
sets of high entropy itemsets with multiple values k from
static datasets using the MapReduce framework. However,
the proposed algorithm is not appropriate for miki mining
over data streams, in which we need to compute the miki
dataset by taking into account the fast arrival (or depar-
ture) of data into (from) the sliding windows. There have
been interesting works for extracting frequent itemsets from
data streams, e.g. [15, 16]. In [17], Charikar et al. propose
a new sketching technique for finding frequent items in data
streams allowing to estimate the frequencies of all the items
in the stream. In [18], Gilbert et al. propose an itemset
mining algorithm based on Wavelet transformation for com-
puting small space representations of massive data streams.
In [19], Lam et al. propose an algorithm that based on the
characteristics of an item, counts its max-frequency over a
sliding window (while the length of the itemset dynamically
changes). However, these solutions are not adapted to miki
mining over missive data streams. In [8], Zhang et al. pro-
pose a centralized approach for discovering maximally infor-
mative itemsets from data streams based on a sliding win-
dow. However, the proposed approach does not scale to very
fast and large scale data streams, simply because the com-
puting resources of one machine are not sufficient to process
such volumes of data.

Indeed for miki processing over very large and high speed



data streams, we need parallel solutions taking into account
the nature of streams, in which the content of large slid-
ing windows change continuously and very quickly. In this
paper, we propose such a parallel solution. In our work,
we took advantage of Spark Streaming for managing the
data streams, and developed a parallel algorithm with effi-
cient optimizing strategies that reduce significantly the time
needed for updating the query results, particularly by incre-
mental entropy computation and minimizing the number of
miki candidates.

6. CONCLUSION
In this paper, we proposed PentroS a reliable parallel stream-
ing algorithm for maximally informative k -itemsets mining
using the Spark Streaming framework. PentroS has shown
a significant efficiency in terms of throughput and scalabil-
ity. It elegantly determines miki over a large number of
sliding windows. With PentroS, we propose multiple opti-
mizing techniques that render the miki mining process very
fast. They include the incremental updating of the miki re-
sults after arrival and departure of transactions to/from the
distributed sliding windows.

We extensively evaluated the performance of PentroS using
large scale real-world data streams. On the whole, the re-
sults show the strength and robustness of PentroS in the
discovery of mikis with high itemset size over sliding win-
dows with a high rate of incoming and outgoing data.
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