
HAL Id: hal-01711774
https://hal.science/hal-01711774v1

Submitted on 23 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Multi-Criteria Waypoint Selection for
Autonomous Vehicle Navigation in Structured

Environment
José Vilca, Lounis Adouane, Youcef Mezouar

To cite this version:
José Vilca, Lounis Adouane, Youcef Mezouar. Optimal Multi-Criteria Waypoint Selection for Au-
tonomous Vehicle Navigation in Structured Environment. Journal of Intelligent and Robotic Systems,
2016, 82 (2), pp.301 - 324. �10.1007/s10846-015-0223-1�. �hal-01711774�

https://hal.science/hal-01711774v1
https://hal.archives-ouvertes.fr

Intelligent and Robotic Systems manuscript No.
(will be inserted by the editor)

Optimal Multi-Criteria Waypoint Selection for Autonomous
Vehicle Navigation in Structured Environment

José Vilca · Lounis Adouane · Youcef Mezouar

Received: date / Accepted: date

Abstract This paper deals with autonomous naviga-

tion of unmanned ground vehicles (UGV). The UGV

has to reach its assigned final configuration in a struc-

tured environments (e.g. a warehouse or an urban envi-

ronment), and to avoid colliding neither with the route

boundaries nor any obstructing obstacles. In this paper,

vehicle planning/set-points definition is addressed. A

new efficient and flexible methodology for vehicle nav-

igation throughout optimal and discrete selected way-

points is proposed. Combining multi-criteria optimiza-

tion and expanding tree allows safe, smooth and fast ve-

hicle overall navigation. This navigation through way-

points permits to avoid any path/trajectory planning

which could be time consuming and complex, mainly

in cluttered and dynamic environment. To evaluate the

flexibility and the efficiency of the proposed methodol-
ogy based on expanding tree (taking into account the

vehicle model and uncertainties), an important part of

this paper is dedicated to give an accurate comparison

with another proposed optimization based on the com-

monly used grid map. A set of simulations, comparison

with other methods and experiments, using an urban

electric vehicle, are presented and demonstrate the re-

liability of our proposals.

Keywords Autonomous vehicle navigation · Optimal

planning · Waypoints generation · Multi-criteria

optimization · Vehicle’s kinematic constraints ·
Localization under uncertainties.

José Vilca · Lounis Adouane · Youcef Mezouar
Institut Pascal, Blaise Pascal University – UMR CNRS 6602,
Clermont-Ferrand, France
Tel.: +33-47340-5532
Fax: +33-47340-7262
E-mail: Firstname.Lastname@univ-bpclermont.fr

1 Introduction

Fully autonomous vehicle navigation is a complex prob-

lem of major interest for the research community. Sys-

tems capable of performing efficient and robust autono-

mous navigation are unquestionably useful in many ro-

botic applications such as manufacturing technologies

[27], urban transportation [19], assistance to disabled or

elderly people [25] and surveillance [30]. Even if a lot of

progress has been made, some specific technologies have

to be improved for real applications. This paper ad-

dresses specifically the problem of planning/set-points

definition for autonomous navigation of vehicle in an

urban environment (cf. Fig. 1).

1.1 Overview of navigation strategies

Different strategies for autonomous navigation have been

proposed in the literature [2], [10] and [22]. The most

popular approaches are based on the tracking of a pre-

defined reference trajectory [24]. The reference trajec-

Fig. 1 Autonomous navigation of UGVs in a dedicated
structured environment (Clermont-Ferrand, France).

2 José Vilca et al.

tory can be obtained using a combination of path plan-

ning and trajectory generation techniques [21]. The com-

putation of a time-parameterized path while taking into

account different vehicle constraints and environment

characteristics is time-consuming [18] and [7]. Different

algorithms for computation of a safe path (without tem-

poral reference) require less computational time [21].

Typically, to obtain the reference path to be followed by

the vehicle, arc-lines, B-splines or polynomial equations

are used to interpolate points/waypoints [11], [8], [19]

and [22]. A method to obtain these points was proposed

in [28]. In [28], the authors use agent’s observation and

the geometric characteristics of the environment to se-

lect the waypoints. These waypoints can be used to re-

duce the planning time of existing planners. However,

the method is based only on the position, the orien-

tation and vehicle model are not taken into account.

In [10], a feasible path is obtained using a polynomial

curvature spiral. In [6], the trajectory generation me-

thod generates a smooth path considering the kinody-

namic constraints of the vehicle. In [19], trajectories are

built using user assigned points and interpolation func-

tions such as cubic splines, trigonometric splines and

clothoids. Moreover, velocity profiles along the trajec-

tory are specified to improve the passengers comfort

which is related to the acceleration. Nevertheless, tra-

jectory generation presents some drawbacks such as the

necessity of a specific planning method, a guarantee of

continuity between different segments of the trajectory

and more flexibility for dynamic replanning.

Otherwise, contrary to follow/track a trajectory to

lead the robot toward its objective, few works in the

literature propose to use only specific way-points in the

environment to lead the robot toward its final objec-

tive. In [3], the authors propose a navigation via as-

signed static points for a unicycle robot. Nevertheless,

the definition of the mission is less accurate because this

strategy does not consider: the kinematic constraints of

the robot (maximum velocity and steering), the orien-

tation error and the velocity profile of the robot when

it reaches the assigned point. In this paper, we present

a navigation strategy which avoids the generation of

a specific reference trajectory. Vehicle movements are

generated using the control law that we have recently

proposed in [33]. We will demonstrate in this paper that

only few waypoints will be sufficient to guarantee safe

and flexible vehicle navigation. We propose two meth-

ods to obtain these optimal waypoints in a known envi-

ronment. These methods can take into account vehicle

kinematic and perception/vehicle model uncertainties.

The main advantage of this navigation strategy is its

flexibility. The vehicle can perform different movements

between waypoints without the necessity of replanning

any reference trajectory, and it can also add or change

the location of the successive waypoints according to

the environment configuration or the task to achieve.

This strategy allows thus flexible navigation while tak-

ing into account appropriate waypoints suitably placed

in the environment.

1.2 Related works

Different algorithms can be used to obtain waypoints

configuration such as A∗, D∗ [7], Rapidly Random Tree

(RRT) [18], Sparse A∗ Search (SAS) [31]. At this aim,

Configuration space (C-space), space of all possible con-

figuration of the robot [29], enables the identification of

the safe area where the vehicle can navigate without a

collision risk (free space C-spacefree). C-space is used

to compute the minimum distance to C-spaceobst (ob-

stacle or road boundaries space). Fig. 2 shows the C-

space and its Voronöı diagram [20] in gray scale w.r.t.

the distance to the closest C-spaceobst (the whitest area

represents the safest area).

Typically, algorithms based on grid map (e.g., A∗

or D∗) produce the shortest path by optimization of

a criterion such as the distance to the goal, distance

to the risk area, etc. [7]. The algorithm begins gener-

ally at the final cell (final position) and traverses the

cell’s neighbors until to reach the initial position. The

cost of traveling through the neighbor is added to the

total cost, the neighbor with the lowest total cost is

selected, and so on. The process terminates once the

initial position is reached. The path is given through

the cell positions of the grid map while backtracking

Obstacle 1

Obstacle 2

Road

(a)

C-spaceobst1

C-spaceobst2

C-spacefree

C-spaceobst3

(b)

Fig. 2 (a) Road scheme and (b) its C-space with its Voronöı
diagram.

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 3

the cells which have the lower path cost, sometimes a

polynomial interpolation is used to obtain a smooth

path [8]. In [34], the authors present an A∗ algorithm

using clothoid trajectories assuming constant velocity

along them. Therefore, appropriate waypoints can be

selected from this shortest path while only considering

the cells where an orientation change occurs (w.r.t. its

predecessor). Nonetheless, this algorithm does not con-

sider neither former/initial vehicle orientation nor its

kinematic constraints.

Instead of using grid map, it is possible also to ob-

tain safe, feasible and smooth path using expanding

tree algorithms (e.g., RRT, RRT* or SAS [21], [18],

[15] and [31]). This could be done by providing to the

vehicle-model the commands to reach the successive se-

lected nodes until the goal [21], [18] and [31]. The basic

process of RRT consists in selecting, at each sample

time, a random node qrandom in the C-spacefree. This

selection considers generally only position qrandom =

(xrandom, yrandom) without any a priori vehicle orien-

tation [21]. Then, the commands (discrete values) are

applied to vehicle (from its current position and orien-

tation) during a constant time texp. The vehicle model

and constant commands allow to predict the final ve-

hicle position at the end of texp. The commands that

produce the closest position qchosen (a node which op-

timizes a dedicated task criterion [32]) to current ran-

dom node qrandom are selected and stored with qchoose.

A new expansion starts until to reach qrandom or to

select a new random node qnewrandom. Therefore, the way-

points can be selected, as in the case of grid map,

while only considering the nodes where an orientation

change occurs (w.r.t. its predecessor node). Algorithms

based on RRT are very useful for motion planning be-

cause they can provide the commands (based on the

kinematic/dynamic model of the vehicle) to reach the

desired final configuration [18] and [32]. Moreover, it

avoids the use of grid maps that can increase the com-

putation time for large environment. In [31], the au-

thors use the expanding tree for trajectory planning in-

troducing different constraints such as maximum turn-

ing angle and route distance. Nevertheless, this me-

thod does not consider neither the vehicle movements

along the trajectory nor localization uncertainties. In

[14], sequential composition of controllers (e.g., go to

the landmark and wall following controller) are used to

generate valid vehicle states qchoose to the navigation

function. This approach avoids to find a single glob-

ally attractive control law and allows to use some ad-

ditional sensing capability of the robot when the land-

mark is unreachable (e.g. GPS-denied area). However,

the obtained navigation function has a complex compu-

tational processing. The most important drawbacks of

expanding tree algorithms are the slow convergence to

cover all space until to reach the goal and that in most

cases it does not provide the shortest path since the

nodes are randomly selected [1]. Furthermore, it is im-

portant to underline that in the RRT the control com-

mands are maintained during a certain time, whereas

in this paper the vehicle movement takes into account

the definition of the used control law in addition to the

vehicle model (cf. subsection 3.2). A comparison with

RRT and Voronöı approaches is shown in subsection

4.1.2.

In this paper, we propose a method based on ex-

panding tree to obtain the optimal waypoint configura-

tion in a structured environment (cf. Fig. 4). It allows

to consider constraints such as the kinematic model and

the used control law. Criteria to optimize are related to

the kinematic constraints of the vehicle (non-holonomy,

maximum velocity and steering angle) and localization

uncertainties. To highlight the advantages and flexibil-

ity of our proposal, a comparison with another proposed

method, based on the commonly used grid map, is pre-

sented (cf. Section 3). The method based on grid map

algorithm considers the vehicle as one cell without con-

straints and it can move only through the cells of the

grid map. The trajectory of the vehicle depends on the

choice of the waypoint configuration (cf. Section 4). We

will show that the method based on grid map is less

flexible and less efficient with regards to the methods

based on expanding tree (cf. Section 4).

The rest of the paper is organized as follows: the

next section presents the navigation framework, the

waypoint assignment strategy for navigation, the vehi-

cle model and its control law. The selection of waypoint

configurations in the environment using a multi-criteria

optimization techniques is described in Section 3. Sim-

ulation and experiments are given in Section 4. Finally,

Section 5 provides a conclusion and prospects for future

studies.

2 Overall autonomous navigation framework

An important condition in the field of autonomous ve-

hicle is to ensure safe and flexible vehicle navigation

(cf. Fig. 4). In this work, safe navigation consists in

not colliding with the road limits and other obstacles

while respecting the physical constraints of the vehicle.

Flexible navigation consists in allowing different possi-

ble movements to achieve the task, while guaranteeing

a smooth trajectory of the vehicle. Certainly, the main

idea of the proposed work is to guarantee both criteria

simultaneously.

This paper focuses on the method to obtain the op-

timal set of waypoints appropriately located in the en-

4 José Vilca et al.

vironment to perform a safe, flexible and fast vehicle

navigation (cf. Section 3). Nevertheless, before detail-

ing this multi-criteria optimization problem, let us first

present in subsection 2.1 the details of the autonomous

navigation strategy based on finite and sequential way-

points assignment described in [33].

2.1 Navigation from sequential waypoint assignment

A waypoint corresponds to a specific key configurations

(xqi , yqi , θqi , vqi) (where (xqi , yqi)
T , θqi and vqi denote

to respectively the position, the orientation and the ve-

locity of the waypoint qi) in the environment as given

in Fig. 3 (cf. Section 3). A vehicle navigation using only

waypoints allows to avoid any path/trajectory planning

which could be time-consuming and complex, mainly

in cluttered and dynamic environment. Moreover, this

kind of navigation does not require the pose of the clos-

est point to any trajectory (w.r.t. the robot configura-

tion) and/or the value of the curvature at this point

[10]. Consequently, the navigation problem is simpli-

fied to a waypoint reaching problem, i.e, the UGV is

guided by waypoints (cf. Fig. 3) instead of following a

specific fixed path. Moreover, it is important to notice

that if the successive waypoints are closer to each other

then the vehicle tends to perform a path following nav-

igation. To simplify the computation of the waypoints,

they could be selected from a pre-defined path if it is

available [33]. Indeed, a safe reference path can be ob-

tained by different algorithms such as a Voronöı dia-

gram [20] or potential fields [17]. Nevertheless, adding

this step of path planning (with all its possible draw-

backs (cf. section 4)) before obtaining the set of way-

points, restricts considerably the C-spacefree to only a

curvilinear line. Thus, the optimality of the obtained

set of Waypoints is not guaranteed (cf. Section 3).

wR

w
R

qj

qj+1

qj-1

Lj-1 Lj

Lj+1

θqj

Dj+1

v

Edis E

D j+2

Yqj

Xqj

qj+2

Lj+2

qj

θqj

Edis

Yqj

Xqj

Dj

Dj+1

Dj

E

Fig. 3 Description of waypoints assignment.

Algorithm 1 Sequential waypoint assignment

Require: Vehicle pose, current waypoint qj and set of way-
points

Ensure: Next waypoint qj+1

1: if ((d ≤ Edis and eθ ≤ E∠)) or (xqj ≥ 0) then
. xqj is the coordinate of the vehicle in the local frame of
the current waypoint XqjYqj (cf. Fig. 3)

2: Switch from the current waypoint qj to the next se-
quential waypoint qj+1

3: else
4: Keep going to waypoint qj
5: end if

The strategy proposed in [33] uses a sequence of

waypoints suitably positioned in the environment. To

navigate between successive waypoints (e.g. qj and qj+1),

the distance of the vehicle to the target d and the error

eθ between the orientation of the vehicle and the target

are used. Their maximum values (Edis and E∠ respec-

tively (cf. Fig. 3)) are imposed to the current waypoint

qj to be reached. These values are notably related to

the inaccuracies of the vehicle localization and/or the

performance of the used control law. The maximum au-

thorized values allow to keep a reliable vehicle control

towards the target Tj (cf. Fig. 3) while guaranteeing

the appropriate vehicle configuration to reach the next

target Tj+1.

Figure 3 shows a set of successive waypoints. Dj is

the Euclidean distance between the waypoints qj−1 and

qj . For simplicity, the orientation of the waypoint θqj is

represented as the orientation of the line that joins qj
and qj+1. The strategy to assign at each sample time

the appropriate waypoint is shown in Algorithm 1. The

parameters of the control law enable the vehicle to reach

the next waypoint (cf. Subsection 2.3) while ensuring

that the vehicle trajectory is always within the road

boundaries (cf. Section 4). The error conditions, Edis
and E∠, are used to switch to the next waypoint when

the vehicle position enters a circle with a radius equal

to Edis and center (xqj , yqj). The current waypoint is

updated with the following waypoint and the vehicle

starts the movement to reach this new waypoint. If the

vehicle does not satisfy the distance and orientation er-

ror conditions w.r.t. the current waypoint qj then the

perpendicular line Lj (Yqj axis) to the road at the cur-

rent waypoint is used to switch to the next waypoint

when the vehicle crosses Lj (cf. Fig. 3).

Before presenting briefly the control law to reach

sequentially each single waypoint (cf. subsection 2.3),

let us present the navigation scenario and the model of

the vehicle used for the control law definition.

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 5

Pi Pf

wR

vehicle

Initial

position

Final

position

Road

width

waypoint

Bou
ton

Bo
ut
on

Bouton

Bouton

Obstacles

Fig. 4 Nominal scenario related to the effective platform (cf.
Fig. 23) with the road map and the vehicle navigation.

2.2 Navigation scenario and vehicle modeling

The following scenario is considered (cf. Fig. 2 and 4):

– The environment of navigation is known throughout

a map, containing the position of all static obstacles.

– The kinematic/dynamic model of the vehicle is known

(with potentials uncertainties).

– The vehicle starts at the initial pose Pi and it has

to reach the final position Pf (in certain cases, Pi =

Pf).

The UGV evolves in asphalt road and in cluttered

urban environment with relatively low speed (less than

vmax = 3 m/s). Hence, the use of kinematic model

of the UGV is sufficient (which relies on pure rolling
without slipping). The kinematic model of the UGV is

based on the tricycle model [23]. The two front wheels

are replaced by a single virtual wheel located at the

center between the front wheels (cf. Fig. 5). In [13], dif-

ferent tricycle designs are described giving the relation

between the vehicle wheels velocities and the global ve-

hicle kinematic model (linear and angular velocities).

This relation is important to take into account for dy-

namic modeling of the vehicle [13]. Nevertheless, as

mentioned above, the kinematic model is enough for

our application. The kinematic model is given by (cf.

Fig. 5):
ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v tan(γ)/lb

(1)

where (x, y, θ) is the vehicle pose in the global ref-

erence frame XGYG. v and γ are respectively the linear

velocity and orientation of the vehicle front wheel. lb is

the wheelbase of the vehicle.

YG

OG

y

wb

γ
l b

XG

Y m
X m

Om

x

Target

θ

d

vT
ex

ey

θT

eθ

Icc

γ

rc
θRT

eRT
yT

xT

dl
v

Fig. 5 UGV and target configuration variables in Cartesian
references frames (local and global).

2.3 Target reaching controller

The target set-point modeling corresponds to a sin-

gle waypoint configuration (xT , yT , θT , vT), where

(xT , yT , θT) and vT are respectively the pose and ve-

locity of the target. For static target reaching, vT 6= 0

is considered as a desired velocity value for the vehicle

when it reaches the desired target pose.

The target reaching controller guides the vehicle se-

quentially towards the current assigned static target (cf.

subsection 2.1). Before briefly describing the used con-

trol law [33], let us define the following notation (cf.

Fig. 5):

– OG and Om are respectively the origin of global and

local reference frames of the vehicle.

– Icc is the instantaneous center of curvature of the

vehicle trajectory, rc = lb/ tan(γ) is the radius of

curvature and cc = 1/rc is the curvature.

– (ex, ey, eθ) are the errors w.r.t local frame (XmYm)

between the vehicle and the target poses.

– θRT and d are respectively the angle and distance

between the target and vehicle positions.

– eRT is the error related to the vehicle position (x, y)

w.r.t the target orientation.

– dl is the distance from the vehicle to the target ori-

entation line.

This controller is based on the pose control of the

UGV w.r.t. the target. Let us first introduce the er-

ror variables (ex, ey, eθ) (cf. Fig. 5) defined in the local

reference frame XmYm:
ex = cos(θ)(xT − x) + sin(θ)(yT − y)

ey = − sin(θ)(xT − x) + cos(θ)(yT − y)

eθ = θT − θ
(2)

The error function eRT is added to the canonical

error system (2). The parameters d and θRT can be

6 José Vilca et al.

written as (cf. Fig. 5):

d =
√

(xT − x)2 + (yT − y)2 (3){
θRT = arctan ((yT − y)/(xT − x)) if d > ξ

θRT = θT if d ≤ ξ (4)

where ξ is a small positive value (ξ ≈ 0). The error eRT
is defined as (cf. Fig. 5):

eRT = θT − θRT (5)

It can be written as a function of ex, ey and eθ as:

tan(eRT) = tan(eθ − (θRT − θ))

=
ex tan(eθ)− ey
ex + tan(eθ)ey

(6)

where tan(θRT − θ) = ey/ex (cf. Fig. 5).

Finally the pose errors and velocities (ex, ey, eθ, vT)

are the input of the control law. The control law is ob-

tained from Lyapunov stability analysis (cf. Appendix).

It guarantees that the static or dynamic target will

be reached [33]. The desired vehicle linear velocity v

and its front wheel orientation γ, that make the errors

(ex, ey, eθ) converge to zero, can be chosen as:

v = vT cos(eθ) + vb (7)

γ = arctan(lbcc) (8)

where vb and cc are given by:

vb =Kx (Kdex +Kld sin(eRT) sin(eθ) +Ko sin(eθ)cc)

(9)

cc =
1

rcT cos(eθ)
+
d2Kl sin(eRT) cos(eRT)

rcTKo sin(eθ) cos(eθ)
+Kθ tan(eθ)

+
Kdey −Kld sin(eRT) cos(eθ)

Ko cos(eθ)
+
KRT sin2(eRT)

sin(eθ) cos(eθ)
(10)

K = (Kd,Kl,Ko,Kx,KRT ,Kθ) is a vector of posi-

tive constants defined by the designer. Kd, Kl and Ko

are respectively related to the desired convergence of

the distance and lateral and angular errors w.r.t. the

assigned target. Kx, KRT and Kθ are related to the

maximum linear and angular vehicle velocities (more

details are given in [33]).

3 Optimal Multi-criteria Waypoint Selection

(OMWS)

This section is dedicated to the selection of the discrete

waypoints in structured environment (cf. Figure 4) in

order to perform safe and flexible vehicle navigation.

The waypoints are obtained from an efficient and flex-

ible methodology based on multi-criteria optimization

using either grid map (cf. section 3.1) or expanding tree

(cf. section 3.2).

In the both proposed OMWS (i.e., based on Grid

Map (GM) and Expanding Tree (ET)), waypoints are

selected considering safe position on the road, feasibility

of trajectories (smooth changes between the successive

points and vehicle constraints) and uncertainties.

The waypoints assignment strategies (cf. sections

3.1 and 3.2) are formulated as an optimization problem

and solved using dynamic programming [4] (cf. Formu-

lation 1).

Formulation 1 (Optimization problem) For each

discrete state xk ∈ X where X is a nonempty and finite

state space. The objective is to obtain the sequence of

states to reach the final state xK while minimizing the

following cost function:

C(xK) =

K∑
k=1

g(Predxk → xk) + h(xK) (11)

where Predxk is the predecessor state of xk. g is the

immediate traveling cost function to go from Predxk to

xk. h is the future traveling cost function (heuristic) to

go from the current state to the final state xK . When

the current state is the final state xK then h(xK) is

equal to zero. This function h contributes to improve

the convergence of the suboptimal solutions towards the

global optimal one [5].

3.1 Optimal Multi-criteria Waypoint Selection based

on Grid Map (OMWS-GM)

Before describing the proposed algorithm and the crite-

rion to optimize, let us provide some useful definitions.

A grid map corresponds to a limited environment area

decomposed generally on square cells [7] (cf. Fig. 6 and

7). Each cell of the grid map can be an obstacle or a free

space (cf. subsection 1.2 for the definition of C-spaceobst
and C-spacefree). The exterior limits of the C-spacefree
area are defined by the user, even for open environment

(cf. Fig. 4). For simplification, the dimension of the cells

in the grid map is chosen according to the vehicle di-

mension. Therefore, the vehicle is contained, at each

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 7

sample time, in only one cell [7]. We consider the cen-

ter of the cell (i, j) as its position. Each cell (i, j) is

defined by the following parameters:

– w̄ij ∈ [0, 1] is related to the normalized distance

dij To Obst to the closest C-spaceobst, and it is given

by:

w̄ij = 1− dij To Obst
dmax To Obst

(12)

where dmax To Obst is the maximum value among

all dcell To Obst of all cells in the C-spacefree. As an

example, Fig. 7 shows different distances of cells lo-

calized at (a, b), (i, j) and (m,n) to the C-spaceobst.

dmax To Obst is equal, in this example, to the maxi-

mum distance dmn To Obst.

– S is the cell state, which has three possible values,

Init (Initialization), Open (when it is in the expan-

sion queue) and Close (when it has already been

expanded).

– A set of neighbors defined by:

SN (cellij) = {(i±∆iN , j±∆jN)|(∆iN , ∆jN) 6= (0, 0)}
(13)

where ∆iN , ∆jN = 1 . . . , Nh. Nh is the neighbor-

hood value (cf. Fig. 8). Fig. 8(a) shows the case

where Nh = 1 (which implies 8 neighbor cells). Fig.

8(b) shows a larger neighbor cells when Nh = 2 (24

neighbors).

– Predij is the neighbor cell of ij which minimizes the

total cost C(ij) (cf. Fig. 6).

– g(Predij → ij) is the traveling cost from the prede-

cessor cell until the current cell ij.

– h(ij) is the heuristic traveling cost from the current

cell ij to the final cell. As conventional, this cost

depends on the euclidean distance from the cell ij

to the final cell.

The traveling cost function g(Predij → ij) = g(mn→
ij), from mn to ij, is normalized (g ∈ [0, 1]). It is also

designed to take into account the variation of cell orien-

tation (cf. Fig. 6). It allows to obtain an optimal path

consisting of minimum number of straight lines. There-

fore, a lowest possible number of waypoints in the safe

area can be extracted from this optimal path. The cost

function g(mn→ ij) is given by:

g(mn→ ij) = kgw̄ij + (1− kg)
|αij − αmn|

2π
(14)

where the first term of (14) is related to the safety of

the obtained solution, and the real constant kg ∈ [0, 1]

is used to increase or to decrease the significance of

this term. The second term of (14) is related to the

smoothness of the obtained solution, i.e, the path has

(i, j+1)

(i+1, j)

Pred = []

S = Init

(i, j-1)

(a, b)

Pred = []

S = Init

(i+1, j+1)(i-1, j+1)

Pred = []

S = Init

Pred = []

S = Init

Pred = []

S = Init

(m, n)(i-1, j-1)

Pred = []

S = Init

Pred = []

S = Init

Pred = []

S = Close

Pred = [m,n]

S = Open

(i, j)

45°

0°

-90°-135°

135° 90°

αij αhk

Fig. 6 A group of cells of the
global grid map, the current
cell ij (red), its predecessor
cell (blue) and its probable
successive cell (green). S is
the cell state and Pred is the
predecessor of the cell.

C-spaceobst1

C-spacefree

C-spaceobst2

dij_To_Obst

(i,j)

dmn_To_Obst

(m,n)

dab_To_Obst

(a,b)

Fig. 7 Representation in
gray scale w.r.t the distance
to the closest C-spaceobst

(the whitest area represents
the safest area).

a limited and minimum orientation change. The cell

orientations αmn, αij ∈]−π, π] are computed using the

position of the current cell (i, j), its predecessor (m,n)

and its probable successor (a, b) (cf. Fig. 6). They are

computed as:

αij = arctan ([a− i]/[b− j]) (15)

αmn = arctan ([i−m]/j − n]) (16)

The heuristic traveling cost h(ij) ∈ [0, 1] (refers to

(11)) is designed in function of the euclidean distance

dij from the cell ij to the final cell. It is also used for

the OMWS-ET (cf. subsection 3.2). The cost function

h(ij) is given by:

h(ij) = kh

(
1− e−dij/ke

)
(17)

where kh ∈ [0, 1] allows to tune the significance of h(ij)

in the total cost function (11). The exponential function

was chosen because it gives values between 0 and 1 for

positive values of dij . The constant ke ∈ R+ is used

to scale the value of dij according to the dimensions

of the environment. The value of h(ij) (17) decreases

while the next selected cell goes closer to the final cell.

Algorithm 2 shows in pseudocode, the first proposed

method to obtain the set of waypoints in a structured

and cluttered environment. It starts from the final vehi-

cle position (initial cell). The algorithm selects the cells

that have the lower total cost C(ij) (11) until to reach

the final cell. The set of waypoints is finally obtained,

while tracking the predecessor cell of each selected cell

which minimizes the total cost.

8 José Vilca et al.

Algorithm 2 Waypoint selection based on a grid map

Require: Initial position pi, final position pf and a
Gridmap

Ensure: Set of waypoints Sp
1: Init stateij = INIT , gij = 0 and Predij = �, ∀ ij ∈
Gridmap

2: Init cellij = pf and the set of neighbors SN (cellij)
3: while cellij 6= pi do . Until to reach the initial position
4: Set stateij = CLOSE
5: for cellN ∈ SN (cellij) do
6: if w̄cellN 6= 0 then . Only cells in the free space
7: Obtain cellpred = Predecessor(cellij)
8: . When cellij 6= pf
9: Compute αij (15) and αmn (16)

10: . These values are 0 when cellij = pf
11: Compute the total cost C(cellN) (11)
12: if statecellN == INIT then
13: PredcellN = cellij and add to the queue Q
14: Set statecellN = OPEN
15: else if statecellN == OPEN then
16: Update the queue Q
17: PredcellN is the cell with lower total cost
18: end if
19: end if
20: end for
21: Sort the queue Q in ascending order of total cost C
22: Get the first value of queue cellij = Q(first) and

remove it from Q
23: end while
24: Sp is the set of predecessor cells of cellij = pi.

The obtained path is defined by straight lines con-

necting each two consecutive waypoints which belong

to the set of obtained waypoints (cf. Algorithm 2). The

smoothness of the path depends on the number of pos-

sible neighbors of the expanded cell defined by Nh (cf.

Fig. 9). The drawback of using a large number of neigh-

bors is obviously the increasing of processing time. When

Nh > 1, it is mandatory to check if the current neigh-

bor is blocked by some other forbidden neighbor (cf.

Fig. 8(b)). For an off-line planning, Nh > 1 can always

be used to obtain a coherent and optimal solution re-

gardless of time consumption.

3.2 Optimal Multi-criteria Waypoint Selection based

on Expanding tree (OMWS-ET)

This subsection presents in details the main contribu-

tion of this paper for the optimal planning of the vehicle

path, using an appropriate expanding tree. The formu-

lation of this expanding tree integrates the kinematic

model of the vehicle as well as the used control law

definition and the vehicle localization uncertainties.

Before describing the proposed method and the cri-

terion to be optimized, let us present the definition of

expanding tree. The expanding tree is composed by

nodes and edges which have the following properties:

(0, 1) (0, 2)(0, 0)

w00, g00, h00

Pred = []

S = Init

w01, g01, h01

Pred = []

S = Init

w02, g02, h02

Pred = []

S = Init

(1, 0)

w10, g10, h10

Pred = []

S = Init

(1, 2)

w12, g12, h12

Pred = []

S = Init

(2, 1) (2, 2)(2, 0)

w20, g20, h20

Pred = []

S = Init

w21, g21, h21

Pred = []

S = Init

w22, g22, h22

Pred = []

S = Init

w11, g11, h11

Pred = []

S = Open

(1, 1)

45°

0°

-45°
-90°

-135°

180°

135° 90°

(a) Nh = 1.

(0, 1) (0, 2)(0, 0)

w00, g00, h00

Pred = []

S = Init

w01, g01, h01

Pred = []

S = Init

w02, g02, h02

Pred = []

S = Init

(1, 0)

w10, g10, h10

Pred = []

S = Init

(1, 2)

w12, g12, h12

Pred = []

S = Init

(2, 1)(2, 0)

w20, g20, h20

Pred = []

S = Init

w21, g21, h21

Pred = []

S = Init

w22, g22, h22

Pred = []

S = Open

w11, g11, h11

Pred = []

S = Init

(1, 1)

(3, 1) (3, 2)(3, 0)

w30, g30, h30

Pred = []

S = Init

w31, g31=0, h31

Pred = []

S = Init

w32, g32, h32

Pred = []

S = Init

(0, 3)

w03, g03, h03

Pred = []

S = Init

(1, 3)

w13, g13, h13

Pred = []

S = Init

(2, 3)

w23, g23, h23

Pred = []

S = Init

(3, 3)

w33, g33, h33

Pred = []

S = Init

(0, 4)

w04, g04, h04

Pred = []

S = Init

(1, 4)

w14, g14, h14

Pred = []

S = Init

(2, 4)

w24, g24, h24

Pred = []

S = Init

(3, 4)

w34, g34, h34

Pred = []

S = Init

(4, 1) (4, 2)(4, 0)

w40, g40, h40

Pred = []

S = Init

w41, g41, h41

Pred = []

S = Init

w42, g42, h42

Pred = []

S = Init

(4, 3)

w43, g43, h43

Pred = []

S = Init

(4, 4)

w44, g44, h44

Pred = []

S = Init

45°

0°

-45°
-90°

-135°

180°

135° 90°

(2, 2)

26,5°

-26,5°

63,4°

153,4°

116,5°

-153,4°

-116,5° -63,4°

(b) Nh = 2.

Fig. 8 Different neighborhood values Nh of the current cell
(red). A gray cell represents a cell where the movements are
forbidden.

(a) Nh = 1. (b) Nh = 3.

Fig. 9 Different sets of waypoints for different number of
possible neighbor cells.

– Each node qj is defined by its pose (xqj , yqj , θqj)
T ,

one predecessor node qi (except for the initial node)

and a traveling cost values g(qj) and h(qj) (cf. eq.

(11)).

– Each edge ξij corresponds to the link between qi to

qj nodes.

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 9

– g(qi → qj) = g(ξij) is the traveling cost from qi to

qj .

– h(qj) is the heuristic traveling cost from the current

node qj to the final node (final vehicle pose). It is

defined by (17) (cf. Subsection 3.1).

The traveling cost g(ξij) ∈ [0, 1] is designed to ob-

tain an appropriate balance among safe, smooth, feasi-

ble and fast trajectory of the vehicle. It is defined as:

g(ξij) = k1w̄j + k2∆v̄ij + k3∆γ̄ij + k4∆ēlij (18)

where k1, k2, k3 and k4 ∈ R+ are constants which

are defined by the designer to give the right balance

(according to context of navigation, e.g., focus more on

the safety with regard to the smoothness) of each term

of the criterion (18). To normalize the traveling cost,

ki|i = 1, . . . , 4 must satisfy:

k1 + k2 + k3 + k4 = 1 (19)

The normalization of the individual criterion given

in (18) allows to simplify the choice of ki to select the

priority of a term w.r.t. the others according to the

navigation context. In Section 4, different set of val-

ues k1, k2, k3 and k4 will be considered for different

scenarios.

The first term of the cost function (18) is related

to the safety of the navigation (12). The second and

third terms are respectively related to the speed (20)

and smoothness (23) of the trajectory. The fourth term

is related to feasibility of the vehicle trajectory while

considering localization uncertainties, i.e., the risk to

collide with an obstacle while considering inaccuracies

in the vehicle position and orientation (a detailed ex-

planation of this term is given later in this subsection).

This last term allows to consider the kinematic model

of the vehicle and the control law. The details of each

term is given in the following:

– The term w̄j ∈ [0, 1] is related to the distance from

the node qj to the closest C-spaceobst. It is given by

(12) (cf. Subsection 3.1).

– The term ∆v̄ij ∈ [0, 1] is related to the velocity

from qi to qj , vij . It is given by:

∆v̄ij = 1− vij
vmax

(20)

where vmax is the maximum velocity of the vehicle.

We estimate vij as a function of the curvature of the

trajectory. The maximum velocity occurs when the

curvature is zero (straight line) and the minimum

velocity vmin 6= 0 occurs when the curvature is big-

ger than the value corresponding to γmax (cf. Fig.

5). This consideration allows the vehicle maneuvers

without risk of collisions while enhancing the pas-

senger comfort [19] (indeed, this permits to limit

the centripetal forces). The minimum and maximum

values of velocity and steering angle are defined by

the designer according to the vehicle characteristics.

The curvature is estimated using the orientation of

the current node and its predecessor. Therefore, vij
is computed as:

vij = vmax −∆θ̄ij(vmax − vmin) (21)

where ∆θ̄ij ∈ [0, 1] is the normalized estimated

curvature related to the variation of orientation be-

tween the current node qj and its predecessor qi. It

is defined as:

∆θ̄ij =
|θj − θi|
∆θmax

(22)

where ∆θmax is the maximum variation between a

probable orientation of the current node w.r.t the

orientation of its predecessor. This value is defined

according to the steering capability of the vehicle.

θj and θi are computed using the node positions and

eq. (15) and (16) (cf. Subsection 3.1).

– The term ∆γ̄ij ∈ [0, 1] is related to the variation of

steering angle along the vehicle trajectory from qi to

qj (for instance, Fig. 10 shows a vehicle trajectory

between two nodes). It is given by:

∆γ̄ij =

∑qj
qi
|∆γij |

nqijγmax
(23)

where nqij is the considered point number of the ve-

hicle trajectory between qi and qj , and γmax is the

maximum steering angle of the vehicle. This term

∆γ̄ij (23) computes the sum of the ∆γij to obtain

the total variation of the steering angle along the ve-

hicle trajectory. ∆γ̄ij uses the kinematic model and

the control law to estimate the vehicle trajectory

and commands or control set-points.

– The term ∆ēlij ∈ [0, 1] is the normalized maximum

deviation of vehicle trajectory w.r.t. the straight line

that joins the positions (xq, yq) of qi and qj (cf. Fig.

10). It is computed as:

∆ēlij =
|∆elij |

max{∆el}
(24)

where max{∆el} is the maximum deviation of all

trajectories from the node qi to the node qj while

considering the position and orientation uncertain-

ties (εd and εθ respectively given in Fig. 10). This

term ∆ēlij allows to estimate the collision risk us-

ing the vehicle trajectory that takes into account

the kinematic model, the control law and localiza-

tion uncertainties (position and orientation). Fig.

10 José Vilca et al.

YG

OG XG

qj
qi

vT
θT v ξij

Δel

εd

εθ
Eloc

εd
t

l

Vehicle’s
trajectories

max

max

max

Fig. 10 Vehicle’s trajectories which starts from extreme configurations (±εldmax , ±εtdmax and ±εθmax) in the localization
uncertainties ellipse Eloc.∆el is the maximum lateral deviation of all vehicle trajectories.

10 shows an illustration where the vehicle has an

ellipse of localization uncertainties with axes εld and

εtd. The vehicle trajectories start at ±εld in lateral

distance (longitudinal distance is set to 0), and ±εtd
in longitudinal distance (lateral distance is set to 0)

from the vehicle position with a ±εθ from the ve-

hicle presumed orientation, i.e., we consider all ex-

treme configurations to obtain, according to these

maximum error configurations, the maximum lat-

eral deviation (∆el). The trajectories are obtained

using the kinematic model and the used control law

in an offline simulated procedure.

Algorithm 3 shows in pseudocode, the proposed me-

thod which uses expanding tree to obtain the optimal

waypoints configurations w.r.t. the optimized multi-criteria

function (18). Fig. 11 shows the first steps of the algo-

rithm where, for instance, the branch numbers of each

Algorithm 3 Waypoint selection based on expanding tree

Require: Initial pose pi, final pose pf , branch number nt,
edge distance ξ, branch orientation ∆α, tolerable error
distance ε and C-spacefree

Ensure: Set of waypoints Sp
1: Init the initial node q0 = pi, g0 = 0 and Predq0 = �
2: Init the current node to expand qi = q0
3: Init Tree(qi) =Expansion Tree (Procedure 4) with α = 0
. Initial expansion

4: Set the new node to expand qi = rt where rt ∈ Tree(qi)
5: Set Predrt = qi and compute the total cost C(rt) (11)
6: while |qi − pf | < ε do
7: Compute the Tree(qi) = Expansion Tree
8: . refers to Procedure 4 with the set of α = ±i∆α
9: for rt ∈ Tree(qi) do

10: if rt ∈ C-spacefree then
11: Compute the total cost C(rt)(11)
12: Predrt = qi
13: Add rt to the queue Q
14: end if
15: end for
16: Sort the queue Q in ascending order of total cost C
17: Get the first value of queue qi = Q(first) and remove

it from Q
18: end while
19: Sp is the set of predecessor nodes of qi = pf .

node is nt = 3 and each branch orientation w.r.t. the

vehicle orientation is given by:

α = ±i∆α, i =

{
0, 1, . . . , (nt − 1)/2; if nt is odd

1, 2, . . . , nt/2; if nt is even

(25)

where ∆α is a constant angle defined according to the

vehicle characteristics.

The edge distance ξ is the Euclidean distance be-

tween two successive nodes and it depends on the en-

vironment dimensions, e.g., if the environment has a

narrow passage then ξ must cope with this dimension.

We consider that the edge orientation is the vehicle ori-

entation at the current node position (cf. Fig. 11). Thus,

at beginning the first expansion of q0 is given with

α = 0 because the vehicle starts at initial fixed pose

(cf. line 3 − 5 of Algorithm 3). This initial expansion

is made to respect the kinematic constraints where the

rotation of the vehicle requires a displacement (linear

velocity 6= 0) of the vehicle. Therefore, the successive
node q1 has different possible orientation and so on (cf.

Fig. 11). The algorithm selects the node which has the

lower total cost C(qj) (11). When two or more nodes

have the same cost, the algorithm selects the last saved

node. Fig. 11 shows the successive steps, the node q2
was selected from the expansion of q1 {q2, q3, q4}, which

has the lower total cost value. The set of waypoints is

obtained while tracking the predecessor nodes of the

nodes with lower total cost. The selection of the node

with lower total cost (cf. Algorithm 3, line 16− 17) al-

Procedure 4 Expansion Tree

Require: Current node qi, set of α S(α), edge distance ξ
Ensure: Nodes of Tree(qi)
1: Init Tree(qi) = �
2: for αt ∈ S(α) do
3: Compute the orientation θrt = θqi + αt
4: Compute pose rt = qi + [ξ cos(θrt), ξ sin(θrt), αt]

T

5: Add rt to Tree(qi)
6: end for

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 11

q1

Pred = q0

Cost = C1

Δα°

0°

-Δα°
Pred = []

Cost = 0

q0

Pred = q1

Cost = C2

q2

Pred = q1

Cost = C4

q4

Pred = q1

Cost = C3
q3

qf

Δα° 0°

-Δα°

Pred = q2

Cost = C5 q5

Pred = q2

Cost = C7

q7

Pred = q2

Cost = C6
q6

ξ25

ξ01

ξ12

ξ13

ξ14

ξ26

ξ27

Fig. 11 Expanding tree method to obtain the appropriate
set of waypoints.

lows to avoid the deadlock areas because the successive

branches from the nodes in this deadlock area will be

in C-spaceobst (cf. Fig. 12(a)).

The smoothness of the vehicle trajectory depends on

number of branches of each tree nt, maximum branch

orientation αmax = nt∆α/2 and edge distance ξ (cf.

Section 4). The drawback of using a large number of

nt is the increasing of the processing time required to

obtain the set of waypoints. The vertex distance ξ is set

to detect obstacles between the successive nodes.

This method uses deterministic selection of expand-

ing tree to obtain the optimal solution with lowest to-

tal cost. Nevertheless, a feasible solution can be ob-

tained using a probabilistic selection of expanding tree

to decrease the processing time (cf. Section 4), i.e., the

branch orientation α and edge distance ξ are randomly

selected in a fixed interval [21]. In simulation, we will

show in subsection 4.1 the case where these parameters

are randomly chosen.

As described above, the traveling cost (18) depends

on four parameters (ki|i = 1, . . . , 4, which satisfy (19))

related respectively to the safety, velocity, less steer-

ing and taking into account uncertainties. The values

of these parameters are fixed according to the desired

navigation and environment conditions. A pragmatical

procedure to set these parameters consists in first iden-

tifying the main desired vehicle behavior and setting

its parameter ki with a value greater than 0.5 (cf. Fig.

12). The other parameters will be tuned according to

the designers secondary priorities. Fig. 12 shows the set

of waypoints when only the term with highest priority is

considered in the traveling cost function. For instance,

in Fig. 12(a) and 12(b) the priority is given respectively

to the safest and the shortest paths. More examples of

different tuned parameters will be shown in subsection

4.1.

Initial
position

Final
position

Waypoint
orientation

Road limits

(a) Safest path: k1 = 1.0, k2 = k3 = k4 = 0.0 and
kh = 0.1

Road limits

(b) Shortest path: k2 = 1.0, k1 = k3 = k4 = 0.0
and kh = 0.1

Fig. 12 Set of waypoints for different parameters values ki
of the traveling cost.

3.3 Minimum set of waypoints

Algorithm 2 and 3 were applied to obtain a set of way-

points Sp characterized by (xqj , yqj , θqj , vqj) on a spe-

cific environment. The proposed Algorithm 5 will allow

to reduce the number of waypoints. Basically, this al-

gorithm keeps only the waypoints (its pose, velocity

and predecessor are stored) which have an orientation

changes w.r.t. its predecessors.

Algorithm 5 Minimum set of waypoints

Require: Set of waypoints Sp and ∆θmax ∈ R+

Ensure: Minimum set of waypoints Spmin
1: Init Spmin = {q0}
2: for qi ∈ Sp with i > 1 do . Current waypoint compares

its orientation w.r.t. predecessor waypoint
3: Compute ∆θ = |θqi − θqi−1

|
4: if ∆θ ≥ ∆θmax then
5: . Check if predecessor waypoint belongs to Spmin
6: if qi−1 /∈ Spmin then
7: Add predecessor waypoint qi−1 to Spmin
8: end if
9: Add current waypoint qi to Spmin

10: end if
11: end for

12 José Vilca et al.

4 Validation

This section presents a set of experiments to demon-

strate the efficiency of our methods for autonomous

navigation in a structured environment. Section 4.1 pro-

vides different scenarios to show the validity of our pro-

posals. Section 4.2 discusses experimental results ap-

plied to an urban electric vehicle.

4.1 Simulations results

This section shows optimal sets of waypoints, obtained

according to the environment characteristics and/or the

task to achieve. In what follows, it will be shown: a

comparison between grid map and expanding tree al-

gorithms (cf. subsection 4.1.1); a comparison between

the proposed OMWS-ET and a variation of RRT (cf.

subsection 4.1.2); different specific scenarios such as

trajectory generation (cf. subsection 4.1.3); a compari-

son between deterministic and probabilistic waypoints

selection (cf. subsection 4.1.4); an application of the

proposed methodology of waypoints selection for multi-

robot formation (cf. subsection 4.1.5) and finally, sub-

section 4.1.6 shows the flexibility of our proposal for

local replanning of the waypoints configurations when

unexpected obstacles are detected. For these simula-

tions, the physical parameters of the UGV are based

on the urban vehicle VIPALAB (cf. Fig. 22) which is

modeled as a tricycle (1). Its dimensions are 1.27 m

(width), 1.96 m (length) and 2.11 m (height). The UGV

constraints are minimum movement velocity vmin =

0.1 m/s, maximum velocity 1.5 m/s, maximum steer-

ing angle γmax = ±30◦ and maximum linear acceler-

ation 1.0 m/s2. The controller parameters are set to

K = (1, 2.2, 8, 0.1, 0.01, 0.6) (cf. subsection 2.3). These

parameters were chosen to obtain a good balance be-

tween: accurate and fast response and smooth trajec-

tory while taking into account the limits of the vehi-

cle structural capacities. We consider that the sample

time is 0.01 s and a maximum number of iteration is

nI = 5000 to stop both algorithms, OMWS-GM (Al-

gorithm 2) and OMWS-ET (Algorithm 3), when none

solution can be obtained.

4.1.1 Grid map versus Expanding tree

These simulations show two set of waypoints obtained

by the two proposed methods based on grid map and

expanding tree (cf. Algorithms 2 and 3 respectively).

Fig. 13(a) and Fig. 14(a) show the set of obtained way-

points according to Algorithm 2 and 3. The minimum

set of waypoints, obtained according to Algorithm 5,

are given afterward in Fig. 13(b) and Fig. 14(b).

For the grid map case, the cell has the vehicle dimen-

sion (2 m) and its neighborhood is Nh = 1. The con-

stant value of kg is 0.6 (14) and kh is 0.1 (17). The min-

imum set of obtained waypoints has nw = 27 elements.

An additional constraint is considered for OMWS-GM

(before line 11 of the Algorithm 2), the angle variation

(second term of eq. (14) must be less than a threshold

θth). This constraint enables the processing time of the

algorithm to be reduced since it considers only the cells

with an orientation change, w.r.t the last cell orienta-

tion, less than θth (cf. Fig. 6).

For Expanding Tree case, the branch number nt is 5,

the edge distance ξ is 2.5 m and ∆α is 15◦. We consider

the safety gain k1 (cf. eq. (18)) as the highest priority in

this simulation. The constant values of ki|i = 1, . . . , 4

(18) are k1 = 0.6, k2 = 0.2, k3 = 0.1, k4 = 0.1 and

kh = 0.1 (17). The minimum set of obtained waypoints

has nw = 19 elements. The minimum set of waypoint

obtained by OMWS-ET is smaller than the method

OMWS-GM which does not consider the orientation

neither the vehicle’s model. To avoid a large growing of

the tree branch of OMWS-ET, a position and orienta-

tion comparison between nodes can be added at line 13

of the Algorithm 3. If two nodes from different branches

have the same position and orientation then the node

with lowest total cost function value (cf. eq. (11)) is

stored and the other node is removed.

Table 1 shows different performance criteria to com-

pare the set of waypoints where: nw is the number of

waypoints, length is the sum of distance between two

successive waypoints, dborder is the sum of minimum

distance to the road boundaries. Therefore, the method

based on OMWS-ET is more safe, accurate and efficient

than the one based on OMWS-GM, mainly when the

criterion to optimize is related to the vehicle’s model

(velocity and steering angle).

4.1.2 OMWS-ET versus RRT*

To highlight the advantages and the flexibility of the

proposed OMWS-ET, a comparison with the popular

RRT* algorithm [15] is presented in this subsection.

The RRT* is based on the RRT (Rapidly-exploring

Random Tree) already described in Section 1.2 with an

addition of the rewiring function which allows to recon-

nect the nodes to ensure that the edges have the path

with minimum total cost. RRT* provides thus an op-

nw length[m] dborder[m]
OMWS-GM 27 77.22 52.1268
OMWS-ET 19 77.50 56.7217

Table 1 Comparison between the OMWS-GM and ET.

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 13

Initial
position

Final
position

(a)

Initial
position

Final
position

Waypoint
orientation

(b)

Fig. 13 a) Set of obtained waypoints using Algorithm 2 based on grid map and b) Minimum set of waypoints obtained by
Algorithm 5.

Initial
position

Final
position

Localization
uncertainties

Lj (perpendicular
line to waypoint j)

(a)

Initial
position

Final
position

Waypoint
orientation

(b)

Fig. 14 a) Set of obtained waypoints using Algorithm 3 based on expanding tree and b) Minimum set of waypoints obtained
by Algorithm 5.

timal solution with minimal computational and mem-

ory requirements [15]. Moreover, RRT* is a sampling-

based algorithm and the optimal solution depends on

the number of iterations of the RRT* algorithm, i.e.,

more is the number of iterations (more samples in the

C-spacefree) closer is the obtained solution to the ef-

fective optimal global solution. Therefore, to compare

the solutions obtained by the OMWS-ET with those

obtained by the RRT* some little modifications in Al-

gorithm 3 were made. The line 6 of Algorithm 3 was

changed by a for loop from 0 to the maximum itera-

tion number and the selection of the final pose at each

iteration is obtained by the sampling in C-spacefree
(qrandom) as the RRT* Algorithm [15]. It is to be noted

that qrandom corresponds to a random sample (position)

from a uniform distribution in the C-spacefree.

To compare the two algorithms (OMWS-ET and

RRT*), the safest obtained solution (wich maximizes

the distance to the border) is used as criterion. There-

fore, the parameters of the cost function of OMWS-ET

(18) are fixed to: k1 = 1.0, k2 = k3 = k4 = 0.0 and

kh = 0.1. In addition, the other parameters are fixed as:

the branch number nt = 5; the edge distance ξ = 2.5 m

and ∆α = 15◦. The RRT* algorithm described in [15]

was also modified to obtain a cost function according to
the safety w̄i (distance to the border) instead of an Eu-

clidean distance between nodes. The kinematic model

(5) with constant linear velocity and steering angles

(v = 1.0 m/s and γ = −15,−7.5, 0, 7.5, 15◦) respec-

tively, during texp = 2.5 s was used to produce the

new nodes of the RRT* (cf. Section 1.2). The maxi-

mum number of iteration for both algorithm is fixed to

nI = 5000.

Fig. 15 shows the obtained path solutions accord-

ing to RRT*, OMWS-ET and also to Voronöı [20] al-

gorithms. The Voronöı obtained path (cf. Fig. 15(c))

is given only because it is the best reference w.r.t. the

adopted comparison criterion (safety criterion). Indeed,

Voronöı path permits always to obtain the safest pos-

sible path [20] It can be noted that the two obtained

path using RRT* and OMWS-ET are generally enough

close and far from the way border (cf. Fig. 15(a) and

15(b)). Important differences are nevertheless observed

in the obtained final results (cf. Fig. 15(c)). In fact,

14 José Vilca et al.

Initial
position

Final
position

(a) RRT* with a few branches

Initial
position

Final
position

(b) OMWS-ET with a few branches

Initial
position

Final
position

(c) Comparison with Voronöı

Fig. 15 Three obtained path according to Voronöı, RRT* and OMWS-ET.

the obtained set of waypoint using RRT* are closer

to the border which is due to the fact that RRT* ex-

pands its branches while adopting constant commands

(v, γ, texp). These constant commands generate the

next nodes with only a single possible orientation (for

each node). Contrary to that, in the proposed OMWS-

ET, each new obtained node qj has different possible

orientations and velocities, thus, for the same position,

much more possible vehicle’s states (different orienta-

tions and velocity set-points) are taking into account in

the optimization process.

Table 2 shows, as in the last subsection, different

performance criteria to compare the obtained path. It

is shown that the obtained path based on OMWS-ET

is closer than the RRT* to the optimal obtained solu-

tion using Voronöı methodology. It validates that the

proposed OMWS-ET is more efficient than the RRT*,

in the sens that it explores much more possibilities in

the vehicle/environment/task state space.

It is important to mention also, that the proposed

OMWS-ET methodology is related to the adopted nav-

igation strategy (cf. Section 2), which uses set-points

based on suitable static/dynamic waypoints instead of

trajectory tracking methods. OMWS-ET method takes

into account the vehicle’s kinematics constraints and

uncertainites as well as the used control law (cf. subsec-

tion 3.2). RRT* method is more suitable for navigation

strategies based on trajectory following [15].

4.1.3 Specific scenario cases

We show in what follows other minimum set of ob-

tained waypoints for different scenarios using the me-

thod based on expanding tree (Algorithm 3). Fig. 16(a)

length[m] dborder[m]
Voronöı 86.00 69.2931
RRT* 83.42 62.1736

OMWS-ET 82.50 65.5926

Table 2 Comparison between Voronöı, RRT* and OMWS-
ET.

shows the set of waypoints while considering the edge

distance ξ = 10 m with an objective to obtain the

fastest trajectory from the initial to the final positions,

while not colliding with the road limits. The constant

values are k1 = 0.1, k2 = 0.7, k3 = 0.1, k4 = 0.1 and

kh = 0.1. The minimum set of waypoints allows the ve-

hicle to generate a minimum time trajectory as in [26].

This trajectory has a segment close to the route bound-

aries (tangent to the borders) which allows to navigate

applying the maximum velocity.

Fig. 16(b) shows the use of the proposed OMWS-

ET for the specific case where a reference path already

exists for the navigation of the vehicle. In this case, the

set of waypoints will be chosen as close as possible to

the considered path (depends on the chosen values of

ξ and ∆α in Algorithm 3). The set of waypoints ob-

tained using OMWS-ET allows thus more flexible and

safe navigation of the vehicle between the waypoints

(cf. the criterion to optimize in (18)). The edge dis-

tance ξ is set to 1 m. The minimum set of waypoints

are obtained while considering the term w̄j (18) as the

normalized minimum distance of the node qj to the ref-

erence path. The constant values are set to k1 = 0.6,

k2 = 0.2, k3 = 0.1, k4 = 0.1 and kh = 0.1. The values

of ξ and ∆α can produce some waypoints outside the

reference trajectory, e.g., if we decrease the values of ξ

and ∆α and increase the number of branches nt then

the waypoints will be on the reference trajectory. In

[33], the waypoints are selected while considering only

the points in the reference trajectory. It consists on an-

alyzing the orientation variation of each points on the

trajectory. In our case, the waypoints are selected in

the environment to be close to the reference trajectory

which allows to obtain less number of waypoints than

the method used in [33].

4.1.4 Deterministic versus probabilistic

This simulation shows the comparison between a deter-

ministic and probabilistic expanding tree (i.e., where

the values of ξ and α are probabilistically taken from

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 15

Initial
position

Waypoint
orientation

Final
position

Road limits

Waypoints tangent
to the road limits

(a) Minimum set of waypoints for fastest trajectory.

Initial
position

Final
position

Waypoint
orientation

Reference
trajectory

(b) Minimum set of waypoints in a reference path.

Fig. 16 Different scenario for OMWS-ET.

Initial
position

Final
position

Waypoint
orientation

Fig. 17 Set of waypoints using probabilistic expanding tree.

an interval, instead of, to be fixed by the designer).

Fig. 17 shows the minimum set of waypoints obtained

using probabilistic expanding tree, where ξ ∈ [0, 2.5]

and α ∈ [−30◦, 30◦]. The constant values are k1 = 0.6,

k2 = 0.2, k3 = 0.1, k4 = 0.1 and kh = 0.1. The process-

ing time of the method with probabilistic expanding

tree is less than the method with deterministic expand-

ing tree. Nevertheless, the set of waypoints are not the

optimal solution. The advantages of probabilistic selec-

tion of ξ and α is to reduce the convergence time and

to obtain an online implementation [18], [32]. In future

works, the choice of the variation of ξ and α will be

oriented to improve the efficiency of the algorithm.

4.1.5 Extension to multi-robot formation

Our method based on expanding tree (Algorithm 3) was

extended to multi-robot formation where the formation

is defined only according to the leader configuration

[9] (cf. Fig. 18). As mentioned before, the OMWS-ET

algorithm takes into account the vehicle model. To cope

with this multi-robot task, it is sufficient to adapt the

term ∆ēlij (24) in order to consider all trajectories of

the group of UGVs. Fig. 19 shows the minimum set of

waypoints for a line formation (di = 6m and φi = 180◦)

with two vehicles. The constant values are the same as

the last simulation. The set of waypoints for the leader

UGV are close to the curve road boundaries because

the formation needs enough space to turn while keeping

the rigid formation shape. The follower (blue square) is

always inside of the road boundaries.

Lviv

ifollower

jfollower

jv

Formation

shape

Leader

180i

180j

di

dj

Fig. 18 Multi-robot formation (straight line shape).

Initial
position

Final
positionWaypoint

orientation

Leader

Follower

Fig. 19 Minimum set of waypoints for multi-robot formation
obtained by Algorithm 3 based on expanding tree.

16 José Vilca et al.

Initial
position

Final
position

Current target
with its axes

Range
sensor

New
obstacle

Waypoint
orientation

Xq2

Yq2

(a) Unexpected obstacle is detected.

Initial
position

Final
position

New set of
waypoint

New
obstacle

(b) Local replanning.

Initial
position

Final
position

New
obstacle

Yq15

Yq14

Yq23

Target
axis

Impacts of the
range sensor

(c) Safe vehicle trajectory.

Fig. 21 Local replanning for unexpected obstacle.

4.1.6 Local replanning for unexpected obstacles

The proposed method OMWS-ET is adapted to local

replanning when an unexpected static obstacle is de-

tected in the environment. Fig. 20 shows the used ar-

chitecture to activate the replanning of the vehicle’s

movements based on an initial set of waypoints already

obtained using OMWS-ET. The vehicle starts the navi-

gation through the successive waypoints (cf. subsection

2.1) from the initial set of waypoints. They were already

computed using the OMWS-ET in the known environ-

ment (cf. subsection 3.2). The vehicle uses a range sen-

sor to detect any unforeseen obstacle (cf. Fig. 21(a)).

A local replanning is activated when any new obstacle

is detected. This replanning takes into account the cur-

rent environment state, the current vehicle pose and the

current waypoint to obtain a new local set of waypoints

(cf. Fig. 21(b)). If the current waypoint is unreachable

(due to the presence of the obstacle) then the final po-

sition is replaced by the next waypoint in the list and

so on. If no solution is found then the vehicle will stop

in its current pose. Figure 21(b) shows an example of

the local replanning using the set of waypoints given

CURRENT

ROADMAP

Unmanned ground

vehicle

INITIAL

OMWS-ET

Current posture (x, y, θ, δ, v)

Set of waypoints

CONTROL LAW

TARGET

ASSIGNMENT

Commands

 (v, δ)

Current target

(xT, yT, θT, vT, ωT)

Replanning

OMWS-ET

Environment

perception

Initial set of

waypoints

Fig. 20 Schema of the local replanning.

in subsection 4.1.1 (as initial set of waypoints) (cf. Fig.

14(b)). Finally, the vehicle moves through the new set

of waypoints while guaranteeing a safe navigation (cf.

Fig. 21(c)).

4.2 Experimental results

The navigation strategy and the proposed method based

on expanding tree was also experimented with the ac-

tual VIPALAB vehicle (cf. Fig. 22) in an experimental

environment named PAVIN (Plate-forme d’Auvergne

pour Véhicules INtelligents) (cf. Fig 23). These exper-

iments can be found online1. This vehicle carry differ-

ent embedded proprioceptive and exteroceptive sensors

such as odometers, gyrometer, steering angle sensor and

an RTK-GPS. Each vehicle uses a combination of RTK-

GPS and gyrometer to estimate its current position and

orientation at a sample time of Ts = 0.01 s.

1
http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/OMWS.mp4

wv = 1.27 m lv = 1.27 m

hv = 1.27 m

Fig. 22 VIPALAB electric urban vehicle.

Fig. 23 PAVIN experimental platform (Clermont-Ferrand,
France).

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 17

(a) First experiment: Safe planning. (b) Second experiment: Steering angle
minimization.

(c) Comparison between experiments.

Fig. 24 Different set of obtained waypoints.

(a) First experiment. (b) Second experiment. (c) Comparison between actual exper-
iments.

Fig. 25 Actual vehicle’s trajectories for different obtained set of waypoints.

A metric map of the environment PAVIN [12] is used

by the proposed method (Algorithm 3). This map al-

lows to implement the navigation through successive

waypoints in a real vehicle (cf. Section 2.1). The pro-

posed method based on expanding tree computes the

set of geo-referenced waypoints with optimal configura-

tion. Certain areas are restricted to guide the Algorithm

3 through PAVIN platform which has intersections and

roundabout (cf. Fig. 24). In our case, these restricted

areas were selected by the user, nevertheless the selec-

tion can be made by considering the topological map of

the environment. We experiment the proposed OMWS-

ET to make a comparison between two cases: the first,

corresponds to give more priority for the safety criteria

in (18) and the second gives more priority for the min-

imum angle steering rate. The analysis of the obtained

solutions will be given in what follows. Moreover, the

actual vehicle’s trajectories are compared for these dif-

ferent set of waypoints.

Fig. 24 and 25 show respectively the minimum ob-

tained set of waypoints and the corresponding vehicle’s

trajectories (in simulation and actual experiment). Fig.
24(a) shows the set of waypoints of the first experiment

where the constant values of the cost function (18) are

k1 = 0.6, k2 = 0.2, k3 = 0.1, k4 = 0.1 and kh = 0.4.

The safety (k1) has the highest priority in this exper-

iment. Therefore, these waypoints guide the vehicle to

be close to the middle of the route (cf. Fig. 25(a)). Fig.

24(b) shows the set of waypoints of the second experi-

ment where the constant values are k1 = 0.3, k2 = 0.2,

k3 = 0.4, k4 = 0.1 and kh = 0.4. The minimal steering

angle rate k3 has the highest priority in this experiment.

The obtained result shows that the obtained waypoints

are localized very close to the border of the road (cf.

Fig. 25(b)). Fig. 25(a) and 25(b) show the simulated

and the actual vehicle trajectories. It can be observed

that they are very close (maximal error between them is

less than 0.15 m). We can conclude thus that the pro-

posed optimal multi-criteria waypoint selection based

on Expanding Tree (OMWS-ET, performed off-line (cf.

Section 3.2)) permits to cope accurately with actual

environment and experiments.

18 José Vilca et al.

Fig. 26 Vehicle velocities and steering angles progress for
each set of obtained waypoints.

Fig. 24(c) and 25(c) show the comparison between

the set of waypoints and the real trajectories of both

experiments. The velocities and steering angle of the

vehicle while tracking each waypoint are shown in Fig.

26. This figure shows the values with noise due to the

encoder inaccuracies.

Table 3 shows different performance criteria to com-

pare the set of waypoints where: nw is the number of

waypoints, T is the navigation time, lUGV is the trav-

eled distance, dborder is the sum of minimum distance

to the road boundaries and ∆γ is the root mean square

(rms) of the steering angle rate. We note that the first

experiment has nw greater than the second experiment.

It is due to the fact that the first experiment has the

safety as a priority. The proposed Algorithm 3 selects

thus more waypoints to allows the vehicle to navigate

as farther as possible from the road borders. It can be

noticed by dborder where its value is bigger in the first

experiment than the second. Furthermore, the values of

∆γ is less in the second experiment because the high-

est priority was for the steering angle rate. Therefore,

the vehicle can navigate with higher velocity along the

trajectory and the navigation time is smaller than the

first experiment.

nw T [s] lUGV [m] dborder[m] ∆γ[◦]
1rst Sim. 41 200 132.81 67.35 0.3123
exp. Real 41 203 132.68 67.25 0.2945
2nd Sim. 39 199 133.00 66.54 0.3089
exp. Real 39 198 132.79 66.64 0.2922

Table 3 Comparison among the set of waypoints

5 Conclusion

This paper has presented two planning methods to ob-

tain the optimal waypoints configuration (Optimal Multi-

criteria Waypoints Selection based on Expanding Tree

(OMWS-ET) and Grid Map (OMWS-GM)) which guar-

antees safe, smooth and feasible vehicle navigation in a

structured environment. The flexible navigation strat-

egy throughout optimal and discrete selected waypoints

was also presented. It allows to avoid any trajectory

planning which could be time consuming. The proposed

OMWS-GM is based on the A∗ algorithm with an addi-

tional term to consider the orientation change between

successive cells. OMWS-ET uses a multi-criteria func-

tion which takes into account the vehicle model and un-

certainties to obtain the optimal set of waypoints con-

figurations (position, orientation and velocity). More-

over, it has been shown that the proposed OMWS-ET

is much more accurate and flexible than OMWS-GM.

A multitude of simulations and experimental results

demonstrate the efficiency and reliability of the pro-

posed OMWS-ET in different cases (trajectory speci-

fication, deterministic versus probabilistic, comparison

with RRT*, multi-robot task, local replanning accord-

ing to the multi-criteria optimization).

In future works, an extension using the dynamic

model of the vehicle and 3D position will be devel-

oped (notably for unmanned aerial vehicle). The en-

hancement of the proposed methods for hard real time

application will be developed. Genetic algorithm will

be notably investigated. In addition, we will extend the

proposed strategies for robust navigation in formation

of a group of robots.

Appendix

This section described briefly the stability analysis based

on Lyapunov method used to demonstrate the conver-

gence of the vehicle to the target posture, i.e., for a finite

time, the error system (ex, ey, eθ) converges to zero [16].

Let us first define the Lyapunov function V by (26). It

is a function of three parameters which depend on: the

distance d between the target and vehicle positions, the

distance dl from the vehicle to the target line (line that

pass through the target position with orientation equal

to the target orientation), this term is related to the

Line of Sight and Flight of the target, and the orien-

tation error eθ between the vehicle and the target (cf.

Fig. 5). It is represented by:

V =
1

2
Kdd

2 +
1

2
Kld

2
l +Ko[1− cos(eθ)]

=
1

2
Kdd

2 +
1

2
Kld

2 sin2(eRT) +Ko[1− cos(eθ)] (26)

Optimal Multi-Criteria Waypoint Selection for Autonomous Vehicle Navigation in Structured Environment 19

where the initial values of eRT and eθ satisfy:

eRT ∈]− π/2, π/2[and eθ ∈]− π/2, π/2[(27)

These conditions (27) guarantee that the target is ahead

to the vehicle w.r.t. its orientation. Moreover, (27) has

open interval that allows to avoid local minimum. There-

fore, V is a positive-definite function [16].

The Lyapunov function (26) can be written accord-

ing to ex, ey as follows:

V =
1

2

(
e2x + e2y

)
[Kd +Kl sin

2(eRT)] +Ko[1− cos(eθ)]

(28)

To guarantee the system stability, V̇ has to be negative-

definite [16]. By taking the derivate of (28) , (2) and (4)

and using (7) and (8), V̇ can be written:

V̇ =(exėx + ey ėy)[Kd +Kl sin
2(eRT)]

+Kld
2 sin(eRT) cos(eRT)ėRT +Ko sin(eθ)ėθ

=[−exvb + vT ey sin(eθ)][Kd +Kl sin
2(eRT)]

+Kl sin(eRT) cos(eRT)

[
d2vT
rcT

− vT ex sin(eθ)− eyvb
]

+Ko sin(eθ)

(
vT
rcT
− vT cos(eθ)cc − vbcc

)
(29)

Using (6) in the first two terms of (29) and factor-

izing the common terms, it holds that:

V̇ =vT sin(eθ)[Kdey −Kld sin(eRT) cos(eθ)]

+
vT
rcT

[d2Kl sin(eRT) cos(eRT) +Ko sin(eθ)]

− vb[Kdex +Kld sin(eRT) sin(eθ) +Ko sin(eθ)cc]

− vTKo sin(eθ) cos(eθ)cc (30)

Finally, using (9) and (10) in (30), we obtain:

V̇ =−Kx[Kdex +Kld sin(eRT) sin(eθ) +Ko sin(eθ)cc]
2

− vTKoKθ sin2(eθ)− vTKoKRT sin2(eRT) ≤ 0

(31)

Eq. (31) shows that the system is stable while the

initial conditions (27) are satisfied. To ensure the asymp-

totic stability of the error system, V̇ has to be a negative-

definite function. Let us exhibit the case where V̇ = 0

with vT > 0 and vT = 0. Firstly, when vT > 0 and us-

ing the initial assumption K > 0, it is straightforward

to show that ex, eθ, eRT are equal to zero to satisfy

(31), then according to (5), (4) and (27) d is equal to

zero (ey = 0). Hence, V̇ is equal to zero when vT > 0,

only if (ex, ey, eθ) = (0, 0, 0).

Secondly, let us consider the case where vT = 0.

The initial assumption is identical. Hence, the second

and third terms of (31) are equal to zero when vT = 0.

Additionally, when vT = 0, we consider that rcT →∞,

consequently the first term of V̇ is equal to zero when:

Kdex +Kld sin(eRT) sin(eθ) +Ko sin(eθ)cc = 0 (32)

Replacing (10) with rcT →∞ in (32), the following

expression is obtained:

0 =Kdex +Kld sin(eRT) sin(eθ)

+ tan(eθ)[Kdey −Kld sin(eRT) cos(eθ)]

+Ko sin(eθ)

[
Kθ tan(eθ) +

KRT sin2(eRT)

sin(eθ) cos(eθ)

]
=Kd[ex + ey tan(eθ)] +KoKθ

sin2(eθ)

cos(eθ)

+KoKRT
sin2(eRT)

cos(eθ)
(33)

Using (6) in (33), we obtain:

Kdd
cos(eRT)

cos(eθ)
+KoKθ

sin2(eθ)

cos(eθ)
+KoKRT

sin2(eRT)

cos(eθ)
= 0

(34)

Eq. (34) exhibits quadratic terms. Consequently, con-

sidering the initial conditions (27), cos(eRT) and cos(eθ)

are greater than zero. Therefore, all the terms of (34)

are positive and they must be equal to zero, i.e., d =

eθ = eRT = 0, and if d = 0 then ex, ey = 0. Hence, from

(34), V̇ is equal to zero when vT = 0 and rcT →∞, only

if (ex, ey, eθ) = (0, 0, 0).

Conclusively, if vT > 0 and vT = 0, V is always

strictly positive and V̇ is always strictly negative while

(ex, ey, eθ) 6= (0, 0, 0). Therefore, the errors system is

asymptotically stable while the initial vehicle condi-

tions (27) are satisfied.

References

1. Abbadi, A., Matousek, R., Petr Minar, P.S.: RRTs re-
view and options. In: International Conference on En-
ergy, Environment, Economics, Devices, Systems, Com-
munications, Computers (2011)

2. Adouane, L., Benzerrouk, A., Martinet, P.: Mobile robot
navigation in cluttered environment using reactive ellip-
tic trajectories. In: 18th IFAC World Congress (2011)

3. Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.:
Closed loop steering of unicycle like vehicles via lyapunov
techniques. Robotics Automation Magazine, IEEE 2(1),
27–35 (1995)

4. Bellman, R.: A markovian decision process. Journal of
Mathematics and Mechanics 6, 679 – 684 (1957)

5. Bertsekas, D.P.: Dynamic Programming and Optimal
Control, vol. I. Athena Scientific (1995)

6. Bonfè, M., Secchi, C., Scioni, E.: Online trajectory gen-
eration for mobile robots with kinodynamic constraints
and embedded control systems. In: 10th International
IFAC Symposium on Robot Control. Croatia (2012)

20 José Vilca et al.

7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.,
Burgard, W., Kavraki, L.E., Thrun, S.: Principles of
Robot Motion: Theory, Algorithms, and Implementation.
MIT Press (2005)

8. Connors, J., Elkaim, G.H.: Manipulating b-spline based
paths for obstacle avoidance in autonomous ground ve-
hicles. In: ION National Technical Meeting, ION NTM
2007. San Diego, CA, USA (2007)

9. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.:
Leader-follower formation control of nonholonomic mo-
bile robots with input constraints. Automatica 44(5),
1343 – 1349 (2008)

10. Gu, T., Dolan, J.M.: On-road motion planning for
autonomous vehicles. In: C.Y. Su, S. Rakheja, H. Liu
(eds.) Intelligent Robotics and Applications, vol. 7508.
Springer Berlin Heidelberg (2012)

11. Horst, J., Barbera, A.: Trajectory generation for an on-
road autonomous vehicle. Proceedings of the SPIE: Un-
manned Systems Technology VIII (2006)

12. The Institut Pascal Data Sets: (2013). URL
http://ipds.univ-bpclermont.fr.

13. Jazar, R. N.: Vehicle Dynamics: Theory and Application,
Chapter 7. Springer-Verlag (2014)

14. Kallem, V., Komoroski, A., Kumar, V.: Sequential com-
position for navigating a nonholonomic cart in the pres-
ence of obstacles. IEEE Transactions on Robotics 27(6),
1152 – 1159 (2011)

15. Karaman, S. and Frazzoli, E.: Sampling-based Algo-
rithms for Optimal Motion Planning. International Jour-
nal of Robotics Research 30(7), 846 – 894 (2011)

16. Khalil, H. K.: Nonlinear Systems. Prentice Hall (2002)
(1986)

17. Khatib, O.: Real-time obstacle avoidance for manipula-
tors and mobile robots. The International Journal of
Robotics Research 5, pp.90–99 (1986)

18. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.:
Motion planning for urban driving using rrt. In: Inter-
national Conference on Intelligent Robots and Systems,
pp. 1681 – 1686 (2008)

19. Labakhua, L., Nunes, U., Rodrigues, R., Leite, F.:
Smooth trajectory planning for fully automated passen-
gers vehicles: Spline and clothoid based methods and its
simulation. In: J. Cetto, J.L. Ferrier, J.M. Costa dias
Pereira, J. Filipe (eds.) Informatics in Control Automa-
tion and Robotics, Lecture Notes Electrical Engineering,
vol. 15, pp. 169–182. Springer Berlin Heidelberg (2008)

20. Latombe, J.C.: Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA (1991)

21. LaValle, S.M.: Planning Algorithms. Cambridge Univ.
Press (2006)

22. Lee, J.W., Litkouhi, B.: A unified framework of the
automated lane centering/changing control for mo-
tion smoothness adaptation. In: 15th International
IEEE Conference on Intelligent Transportation Systems
(ITSC), pp. 282–287 (2012)

23. Luca, A.D., Oriolo, G., Samson, C.: Feedback control
of a nonholonomic car-like robot. In: J.P. Laumond
(ed.) Robot Motion Planning and Control, pp. 171–253.
Springer-Verlag, Berlin (1998)

24. Maalouf, E., Saad, M., Saliah, H.: A higher level path
tracking controller for a four-wheel differentially steered
mobile robot. Robotics and Autonomous Systems 54, 23
– 33 (2006)

25. Martins, M.M., Santos, C.P., Frizera-Neto, A., Ceres,
R.: Assistive mobility devices focusing on smart walk-
ers: Classification and review. Robotics and Autonomous
Systems 60(4), 548 – 562 (2012)

26. Rucco, A., Notarstefano, G., Hauser, J.: Computing min-
imum lap-time trajectories for a single-track car with load
transfer. In: Decision and Control (CDC), 2012 IEEE
51st Annual Conference on, pp. 6321–6326 (2012)

27. Sezen, B.: Modeling automated guided vehicle systems in
material handling. Otomatiklestirilmi Rehberli Arac Sis-
temlerinin Transport Tekniginde Modellemesi, Dou Uni-
versitesi Dergisi, 4(2), 207 – 216 (2011)

28. Sharma, S., Taylor, M.E.: Autonomous waypoint selec-
tion for navigation and path planning: A navigation
framework for multiple planning algorithms. Tech. rep.
(2012)

29. Siciliano, B., Khatib, O. (eds.): Springer Handbook of
Robotics, Part E-34. Springer (2008)

30. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen,
C.P., Gini, M., Hougen, D.F., Papanikolopoulos, N.: A
robot team for surveillance tasks: Design and architec-
ture. Robotics and Autonomous Systems 40(2-3), 173 –
183 (2002)

31. Szczerba, R., Galkowski, P., Glicktein, I., Ternullo, N.:
Robust algorithm for real-time route planning. IEEE
Transactions on Aerospace and Electronic Systems 36(3),
869–878 (2000)

32. Vaz, D.A., Inoue, R.S., Grassi Jr., V.: Kinodynamic mo-
tion planning of a skid-steering mobile robot using rrts.
In: Proceedings of the 2010 Latin American Robotics
Symposium and Intelligent Robotics Meeting, LARS ’10,
pp. 73–78. IEEE Computer Society (2010)

33. Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An over-
all control strategy based on target reaching for the nav-
igation of an urban electric vehicle. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS’13). Tokyo - Japan (2013)

34. Ziegler, J., Werling, M., Schroeder, J.: Navigating car-
like robots in unstructured environment using an obstacle
sensitive cost function. In: Proc. IEEE Intelligent Vehicle
Sympsium (IV), pp. 787 – 791. Netherlands (2008)

