
HAL Id: hal-01711768
https://hal.science/hal-01711768

Submitted on 18 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strong Partial Clones and the Time Complexity of SAT
Problems

Peter Jonsson, Victor Lagerkvist, Gustav Nordh, Bruno Zanuttini

To cite this version:
Peter Jonsson, Victor Lagerkvist, Gustav Nordh, Bruno Zanuttini. Strong Partial Clones and the
Time Complexity of SAT Problems. Journal of Computer and System Sciences, 2017, 84, pp.52-78.
�hal-01711768�

https://hal.science/hal-01711768
https://hal.archives-ouvertes.fr

Strong Partial Clones and the Time Complexity of
SAT Problems

Peter Jonssona, Victor Lagerkvistb,∗, Gustav Nordhc, Bruno Zanuttinid

aDepartment of Computer and Information Science, Linköpings Universitet, Sweden.
bInstitut für Algebra, TU Dresden, Dresden, Germany

cKvarnvägen 6, 53374, Hällekis, Sweden.
dGREYC, Normandie Université, UNICAEN, CNRS, ENSICAEN, France

Abstract

Improving exact exponential-time algorithms for NP-complete problems is

an expanding research area. Unfortunately, general methods for comparing

the complexity of such problems is sorely lacking. In this article we study the

complexity of SAT(S) with reductions increasing the amount of variables by

a constant (CV-reductions) or a constant factor (LV-reductions). Using clone

theory we obtain a partial order ≤ on languages such that SAT(S) is CV-reducible

to SAT(S′) if S ≤ S′. With this ordering we identify the computationally easiest

NP-complete SAT(S) problem (SAT({R})), which is strictly easier than 1-in-3-

SAT. We determine many other languages in ≤ and bound their complexity in

relation to SAT({R}). Using LV-reductions we prove that the exponential-time

hypothesis is false if and only if all SAT(S) problems are subexponential. This is

extended to cover degree-bounded SAT(S) problems. Hence, using clone theory,

we obtain a solid understanding of the complexity of SAT(S) with CV- and

LV-reductions.
Keywords: satisfiability problems, computational complexity, clone theory,

universal algebra, subexponential time

∗Corresponding author.
Email addresses: peter.jonsson@liu.se (Peter Jonsson),

victor.lagerkvist@tu-dresden.de (Victor Lagerkvist), gustav.nordh@gmail.com (Gustav
Nordh), bruno.zanuttini@unicaen.fr (Bruno Zanuttini)

A preliminary version of this article appeared in Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA 2013), New Orleans, Louisiana USA.

Preprint submitted to Elsevier April 26, 2016

1. Introduction

This article is concerned with the time complexity of SAT(S) problems, i.e.,

problems where we are given a finite set of Boolean relations S, and the objective

is to decide whether a conjunction of constraints (where only relations from S

are used) is satisfiable or not. We have divided this introductory section into

three sections. We give a brief overview of SAT problems and describe how

clone theory can be used for studying time complexity in Section 1.1. Given

this approach, there are two kinds of reductions (CV- and LV-reductions) that

are natural to study. We discuss these reductions and applications of them in

Sections 1.2 and 1.3, respectively.

1.1. The Complexity of the Parameterized SAT(·) Problem

The class of SAT(·) problems is very rich and contains many problems that

are highly relevant both theoretically and in practice. Since Schaefer’s seminal

dichotomy result [34], the computational complexity up to polynomial-time

reducibility of SAT(S) is completely determined: we know for which S the

problem SAT(S) is polynomial-time solvable and for which it is NP-complete,

and these are the only possible cases. More recently, with a refined notion of

AC0 reductions, we have also gained a complete understanding of the SAT(·)

problem for the complexity classes within P [2].

On the other hand, judging from the running times of the many algorithms

that have been proposed for different NP-complete SAT(S) problems, it seems

that the computational complexity varies greatly for different S. As an example,

3-SAT (where S consists of all clauses of length at most 3) is only known to be

solvable in time O(1.308n) [16] (where n is the number of variables), and so it

seems to be a much harder problem than, for instance, monotone 1-in-3-SAT

(where S consists only of the relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}), which can

be solved in time O(1.0984n) [42]. It is fair to say that we have a very vague

understanding of the time complexity of NP-complete problems, and this fact is

clearly expressed in Cygan et al. [9].

2

What the field of exponential-time algorithms sorely lacks is a com-

plexity theoretic framework for showing running time lower bounds.

In this article, we initiate a systematic study of the relationships between the

worst-case complexity of different SAT(·) problems, with respect to even more

restricted reductions than AC0 reductions. More precisely we are interested in

reductions that only increase the amount of variables by a constant, constant

variable reductions, (CV-reductions), and reductions that increase the amount

of variables by a constant factor, linear variable reductions (LV-reductions).

With these reductions it is possible to obtain a much more refined view of the

seemingly large complexity differences between NP-complete SAT(·) problems.

Ultimately, one would like to have a ‘table’ that for each NP-complete SAT(S)

problem contains a number c such that SAT(S) can be solved in Θ(cn) time

but not faster. It seems that we are very far from this goal, unfortunately. Let

us imagine a weaker qualitative approach: construct a table that for every two

problems SAT(S) and SAT(S′) tells us whether SAT(S) and SAT(S′) can be

solved equally fast, whether SAT(S) can be solved strictly faster than SAT(S′),

or vice versa (assuming P 6= NP). That is, we have access to the underlying

total order on running times but we cannot say anything about the exact figures.

Not surprisingly, we are far from this goal, too. However, this table can, in a

sense, be approximated: there are non-trivial lattices satisfying the property that

whenever S and S′ are comparable to each other in the lattice, then SAT(S) is

not computationally harder than SAT(S′). To obtain such lattices, we exploit

clone theory [25, 40]. The theory of total clones has proven to be very powerful

when studying the complexity of SAT(S) and its multi-valued generalization

known as constraint satisfaction problems (CSP) [8]. However, it is not clear how

this theory can be used for studying the worst-case running times for algorithms

and how to obtain CV-reductions between SAT(·) problems. We show how to

use it for this purpose in Section 3, and our basic observation is that the lattice

of strong partial clones [4, 5, 32] has the required properties. We would like to

emphasize that this approach can be generalized in different ways, since it is

3

not restricted to Boolean problems and is applicable to other computational

problems, such as counting and enumeration.

1.2. “Easy” problems and CV-reductions

As a concrete application of the clone theoretical approach and CV-reductions,

we (in Section 4) identify the computationally easiest NP-complete SAT(S)

problem. By “computationally easiest”, we mean that if any NP-complete

SAT(S) problem can be solved in O(2(c+ε)n) time for all ε > 0, then so can

the easiest problem. Observe that our notion of “easiest” does not rule out the

existence of other constraint languages resulting in equally easy SAT(·) problems.

The easiest NP-complete SAT(S) problem is surprisingly simple: S consists

of a single 6-ary relation R 6= 6=6=1/3 which contains the three tuples (1, 0, 0, 0, 1, 1),

(0, 1, 0, 1, 0, 1), and (0, 0, 1, 1, 1, 0). This result is obtained by making use of

Schnoor and Schnoor’s [35] technique for constructing weak bases of Boolean

relational clones. Obviously the first question that any astute reader would ask

is exactly how easy SAT({R 6= 6= 6=1/3 }) is compared to other SAT(·) problems. We

answer this question in Section 5 and relate the complexity of SAT({R 6= 6= 6=1/3 }) to

1-in-3-SAT, and prove that SAT({R 6= 6=6=1/3 }) is solvable in time O(2(c+ε)n) for all

ε > 0 if and only if 1-in-3-SAT is solvable in time O(2(2c+ε)n) for all ε > 0. By 1-

in-3-SAT we mean SAT(S) where S contains all ternary relations corresponding

to exactly one of three literals being assigned to true, not to be confused with

monotone 1-in-3-SAT. Hence SAT({R 6= 6= 6=1/3 }) is strictly easier than 1-in-3-SAT but

still relatable to it within a small constant factor. Similar results are also proven

for other languages that like R 6=6= 6=1/3 contain a sufficient number of complementary

arguments.

We note that there has been an interest in identifying extremely easy NP-

complete problems before. For instance, van Rooij et al. [41] have shown that the

Partition Into Triangles problem restricted to graphs of maximum degree

four can be solved in O(1.02445n) time. They argue that practical algorithms

may arise from this kind of studies, and the very same observation has been

made by, for instance, Woeginger [43]. It is important to note that our results

4

give much more information than just the mere fact that SAT({R 6= 6= 6=1/3 }) is easy

to solve; they also tell us how this problem is related to all other problems

within the large and diverse class of SAT(S) problems. This is one of the major

advantages in using the clone-theoretical approach when studying this kind of

questions. Another reason to study such problems is that they, in some sense,

are close to the borderline between problems in P and NP-complete problems

(here we tacitly assume that P 6= NP). The structure of this borderline has been

studied with many different aims and many different methods; two well-known

examples are the articles by Ladner [22] and Schöning [39].

Having determined the easiest SAT(·) problem, it is natural to investigate

other properties of the lattice of strong partial clones. We do this in Section 6

and focus on two aspects. First, we provide a partial classification of all Boolean

constraint languages below monotone 1-in-3-SAT and among other prove that the

relations R 6=6=1/3 = {(1, 0, 0, 0, 1), (0, 1, 0, 1, 0), (0, 0, 1, 1, 1)} and R 6=1/3 = {(1, 0, 0, 0),

(0, 1, 0, 1), (0, 0, 1, 1)} reside in this structure. We conjecture that the strong

partial clones corresponding to these languages cover each other in the sense

that there are no languages of intermediate complexity in between. If this is true

then SAT({R 6= 6=1/3}) and SAT({R 6=1/3}) can be regarded as the second easiest and

third easiest SAT(·) problems, respectively. Combined with the results from

Section 5 this also shows that all Boolean constraint languages below 1-in-3-SAT

are in the worst case solvable in time O(2(2c+ε)n) for all ε > 0 if the easiest

problem SAT({R 6=6= 6=1/3 }) is solvable in time O(2(c+ε)n) for all ε > 0. Second, we

show that both monotone 1-in-k-SAT and k-SAT correspond to different strong

partial clones for every k and also that the strong partial clones corresponding

to monotone 1-in-(k+ 1)-SAT and k-SAT are incomparable. These proofs do not

require any particular complexity theoretical assumptions and may be interesting

to compare with existing work on the complexity of k-SAT [17].

1.3. Subexponential complexity and LV-reductions

The second part of the paper (Section 8) is devoted to relating the complexity

of SAT(·) problems to the exponential time hypothesis (ETH) [18], i.e., the

5

hypothesis that k-SAT cannot be solved in subexponential time for k ≥ 3. The

ETH has recently gained popularity when studying the computational complexity

of combinatorial problems, cf. the survey by Lokshtanov et al. [26].

To study the implications of the ETH for the SAT(·) problem we utilize

LV-reductions instead of CV-reductions, since the former results in more powerful

reductions but still preserves subexponential complexity. We let the results in

the previous sections guide us by exploiting the SAT({R 6= 6= 6=1/3 }) problem. This

problem is CV-reducible (and thus trivially LV-reducible) to any NP-complete

SAT(S), but the converse question of which SAT(S) problems are LV-reducible

to SAT({R 6= 6= 6=1/3 }) is more challenging. By utilizing sparsification [17, 18], we can

attack the more general problem of identifying degree bounded SAT(S)-DEG-B

problems that are subexponential if and only if 3-SAT is subexponential. Here

SAT(S)-DEG-B denotes the SAT(S) problem restricted to instances where

each variable occurs in at most B constraints. We do this in Section 8.3

and prove that the exponential-time hypothesis holds if and only if either of

SAT({R 6= 6= 6=1/3 })-DEG-2, SAT({R 6=6=1/3})-DEG-2 or SAT({R 6=1/3})-DEG-2 cannot be

solved in subexponential time. An important ingredient in the proof is the

result (proven in Section 7) that SAT({R 6= 6= 6=1/3 })-DEG-2 is NP-complete. This

also holds for SAT({R 6= 6=1/3}) and SAT({R 6=1/3}). We prove this by using results

by Dalmau and Ford [10] combined with the fact that R 6= 6= 6=1/3 , R 6= 6=1/3 and R 6=1/3 are

not ∆-matroid relations. This should be contrasted with monotone 1-in-3-SAT

or CNF-SAT, which are in P under the same restriction. We conclude that

SAT({R 6= 6=6=1/3 })-DEG-2, SAT({R 6= 6=1/3})-DEG-2 and SAT({R 6=1/3})-DEG-2 are all

good examples of problems with extremely simple structures but which remain

NP-complete.

Combining these results we show the following consequence: if ETH does not

hold, then SAT(S)-DEG-B is subexponential for every B whenever S is finite.

Thus, under LV-reductions, all SAT(S) problems and many SAT(S)-DEG-B

problems are equally hard. Impagliazzo et al. [18] prove that many NP-complete

problems in SNP (which contains the SAT(·) problem) are subexponential if

and only if k-SAT is subexponential. Hence we strengthen this result when

6

restricted to SAT(·) problems. In the process, we also prove a stronger version

of Impagliazzo et al.’s [18] sparsification lemma for k-SAT; namely that all finite

Boolean constraint languages S and S′ such that both SAT(S) and SAT(S′)

are NP-complete can be sparsified into each other. This can be contrasted with

Santhanam’s and Srinivasan’s [33] negative result, which states that the same

does not hold for the unrestricted SAT problem and, consequently, not for all

infinite Boolean constraint languages.

2. Preliminaries

We begin by introducing the notation and basic results that will be used in

the rest of this article, starting with Boolean satisfiability, followed by complexity

notation and size-preserving reductions.

2.1. The Boolean SAT Problem

The set of all k-tuples over {0, 1} is denoted by {0, 1}k. A k-ary relation is

a subset of {0, 1}k. If R is a k-ary relation then we let ar(R) = k. The set of

all finitary relations over {0, 1} is denoted by BR. A constraint language over

{0, 1} is a finite set S ⊂ BR. We insist that S is finite since this is essential for

most results in the article.

Definition 1. The Boolean satisfiability problem over the constraint language

S ⊂ BR, denoted by SAT(S), is defined to be the decision problem with instance

(V,C), where V is a set of Boolean variables, and C is a set of constraints

{C1, . . . , Cq}, in which each constraint Ci is a pair (si, Ri) with si a tuple of

variables of length ki, called the constraint scope, and Ri a ki-ary relation over

the set {0, 1}, belonging to S, called the constraint relation. The question is

whether there exists a solution to (V,C) or not, that is, a function from V to

{0, 1} such that, for each constraint in C, the image of the constraint scope is a

member of the constraint relation.

Typically we write R(x1, . . . , xk) instead of ((x1, . . . , xk), R) to denote a

constraint application of the relation R to the variables x1, . . . , xk. Also, we

7

often view an instance of SAT(S) as a formula φ = R1(x1)∧ . . .∧Rk(xk) where

R1, . . . , Rk are relations in S and each tuple of variables xi, 1 ≤ i ≤ k, contains

the same number of variables as the arity of Ri.

Example 1. Let RNAE be the following ternary relation on {0, 1}: RNAE =

{0, 1}3\{(0, 0, 0), (1, 1, 1)}. It is easy to see that the well known NP-complete prob-

lem monotone Not-All-Equal 3-Sat can be expressed as SAT({RNAE}). Similarly,

if we define the relation R1/3 to consist of the three tuples {(0, 0, 1), (0, 1, 0), (1, 0, 0)},

then SAT({R1/3}) corresponds to monotone 1-in-3-SAT.

Constraint languages where negation is normally used need some extra care:

let the sign pattern of a constraint γ(x1, . . . , xk) be the tuple (s1, . . . , sk), where

si = + if xi is unnegated, and si = − if xi is negated. For each sign pattern

we can then associate a relation that captures the satisfying assignments of

the constraint. For example, the sign pattern of RNAE(x,¬y,¬z) is the tuple

(+,−,−), and its associated relation is R(+,−,−)
NAE = {0, 1}3 \ {(0, 1, 1), (1, 0, 0)}.

More generally, we write ΓkNAE for the corresponding constraint language of

not-all-equal relations (with all possible sign patterns) of arity k. We use the

notation γkNAE(`1, . . . , `k) to denote SAT(ΓkNAE) constraints, where each `i is

unnegated or negated. In the same manner we write ΓkSAT for the constraint

language consisting of all k-SAT relations of arity k.

When explicitly defining relations, we often use the standard matrix rep-

resentation where the rows of the matrix are the tuples in the relation. For

example,

RNAE =



0 0 1

0 1 0

1 0 0

0 1 1

1 0 1

1 1 0


.

Note that the relative order of the columns in the matrix representation does

not matter since this only corresponds to a different order of the variables in a

8

constraint.

We will mainly be concerned by the time complexity of SAT(S) when

S is finite and SAT(S) is NP-complete. It is thus convenient to introduce

some simplifying notation: let H denote the set of all finite Boolean constraint

languages S such that SAT(S) is NP-complete, and define the function T : S →

R+ such that

T(S) = inf{c | SAT(S) can be solved in time O(2c·n)}.

Let c = T(S) for some S ∈ H. We see that SAT(S) is not necessarily solvable

in time 2cn but it can be solved in time 2(c+ε)n for every ε > 0. If T(S) = 0

(i.e., when SAT(S) is solvable in time 2c·n for all c > 0), then we say that

SAT(S) is a subexponential problem. The exponential-time hypothesis

(ETH) is the hypothesis that k-SAT is not subexponential when k ≥ 3 [17] or,

equivalently, that T(ΓkSAT) > 0 whenever k ≥ 3. Obtaining lower bounds for T

is obviously difficult: for instance, T(Γ3
SAT) > 0 implies P 6= NP. However, it

may be the case that P 6= NP and T(Γ3
SAT) = 0, in which case SAT(Γ3

SAT) is a

subexponential problem but not a member of P. A large number of upper bounds

on T are known, though. For example we have T(Γ3
SAT) ≤ log2(1.3334) [29]

and T({R1/3}) ≤ log2(1.0984) [42]. With the T function we can also define the

notions of “easier than” and “strictly easier than” from the introduction in a

more precise way.

Definition 2. Let S, S′ ∈ H. If T(S) ≤ T(S′) then we say that SAT(S) is

easier than SAT(S′), and if T(S) < T(S′) then we say that SAT(S) is strictly

easier than SAT(S′).

Note that the second case can only occur if SAT(S′) is not solvable in subexpo-

nential time.

We conclude this section with a few words about bounded degree instances.

Let S be a constraint language and φ an instance of SAT(S). If x occurs in B

constraints in φ, then we say that the degree of x is B. We let SAT(S)-DEG-B

denote the SAT(S) problem where each variable in the input is restricted to have

9

degree at most B. Similarly we let SAT(S)-OCC-B denote the SAT(S) problem

where in each instance each variable can occur at most B times. The difference

between the two notions is that in the latter case the total number of occurences of

variables, also within constraints, are counted, while in the former only the degrees

of variables are considered. For example, if φ = R1/3(x, y, y)∧R1/3(x, z, w), then

x has degree 2 and y, z, w degree 1, but x and y have the same number of

occurences. Obviously if SAT(S)-DEG-B is in P then SAT(S)-OCC-B is

also in P , and if SAT(S)-OCC-B is NP-complete then SAT(S)-DEG-B is NP-

complete. These restrictions have been studied before, and it is known that for

every language S such that SAT(S) is NP-complete, there exists a B such that

SAT(S)-OCC-B is NP-complete.

Theorem 3 (Jonsson et al. [21]). If S ∈ H, then there exists an integer B

such that SAT(S)-OCC-B is NP-complete.

Hence, the same also holds for SAT(S)-DEG-B.

2.2. LV-Reductions

Ordinary polynomial-time many-one reductions from SAT(S) to SAT(S′)

may increase the number of variables substantially—if we start with an in-

stance φ of SAT(S) containing n variables, then the resulting instance φ′ of

SAT(S′) will contain p(n) variables for some polynomial p. This implies that

polynomial-time reductions are not very useful for comparing and analyzing the

precise time complexity of SAT problems. To keep the growth of the number of

variables under control, we introduce linear variable reductions. Such reductions

should be compared to the more complex but versatile class of SERF-reductions

(Impagliazzo et al. [18]).

Definition 4. Let S and S′ be two finite constraint languages. A total func-

tion f from SAT(S) to SAT(S′) is a many-one linear variable reduction with

parameter C ≥ 0 if for all SAT(S) instances φ with n variables:

1. φ is satisfiable if and only if f(φ) is satisfiable,

10

2. there are C · n+O(1) variables in f(φ), and

3. f(φ) can be computed in time O(poly(n)).

We use the term LV-reduction as a shorter name for this kind of reduction

and constant variable reduction (CV-reduction) to denote an LV-reduction with

parameter 1. For simplicity, we choose to measure the time complexity of

the reduction with respect to the number of variables instead of the size of

the instance. This will make combinations of LV-reductions and sparsification

(which will be used extensively in Section 8) easier to analyze, but it is not a

real limitation since we consider finite constraint languages only: if an instance

φ (over S) contains n variables, then the size of φ is polynomially bounded in

n. To see this note that φ contains at most nk · |S| constraints where k is the

maximum arity of any relation in S, since we have defined instances to be sets

of constraints, and hence without repetitions. We have the following obvious

but useful lemma.

Lemma 5. Let S and S′ be two finite constraint languages such that SAT(S)

can be solved in time O(poly(n) · cn), where n denotes the number of variables. If

there exists an LV-reduction from SAT(S′) to SAT(S) with parameter C, then

SAT(S′) can be solved in time O(poly(n) · dn) where d = cC .

In particular, if SAT(S) is subexponential, then SAT(S′) is subexponential,

too. We may alternatively view this lemma in terms of the function T: if

there exists an LV-reduction from SAT(S′) to SAT(S) with parameter C, then

T(S′) ≤ T(S) · C and SAT(S′) can be solved in time O(2(T(S)·C+ε)·n) for every

ε > 0. Similarly, if SAT(S′) is CV-reducible to SAT(S) then SAT(S′) is easier

than SAT(S), i.e., T(S′) ≤ T(S), and if SAT(S′) is LV-reducible to SAT(S)

with parameter 1
c for some c > 1 then SAT(S′) is strictly easier than SAT(S),

i.e., T(S′) < T(S).

11

3. Clones and the Complexity of SAT

We will now show that the time complexity of SAT(S) is determined by the

so-called strong partial clone associated with S. For a more in-depth background

on SAT and algebraic techniques, we refer the reader to Böhler et al. [6] and

Lau [25], respectively. Even though most of the results in this section hold for

arbitrary finite domains, we present everything in the Boolean setting since this

is the focus of the article. This section is divided into two parts where we first

introduce clones of total functions, continued by clones of partial functions.

3.1. Clones and Co-Clones

Any k-ary function f on {0, 1} can be extended in a standard way to function

on tuples over {0, 1} as follows: let R be an l-ary Boolean relation and let

t1, t2, . . . , tk ∈ R. The l-tuple f(t1, t2, . . . , tk) is defined as:

f(t1, t2, . . . , tk) =
(
f(t1[1], t2[1], . . . , tk[1]),

f(t1[2], t2[2], . . . , tk[2]),
...

f(t1[l], t2[l], . . . , tk[l])
)
,

where tj [i] is the i-th element in tuple tj . We are now ready to define the concept

of polymorphisms.

Definition 6. Let S be a Boolean constraint language and R an arbitrary

relation from S. If f is a function such that for all t1, t2, . . . , tk ∈ R it holds that

f(t1, t2, . . . , tk) ∈ R, then R is said to be closed (or invariant) under f . If all

relations in S are closed under f then S is said to be closed under f . A function

f such that S is closed under f is called a polymorphism of S. The set of all

polymorphisms of S is denoted by Pol(S). Given a set of functions F , the set of

all relations that are invariant under all functions in F is denoted by Inv(F).

Example 2. The ternary majority function f over the Boolean domain is the

(unique) function satisfying f(a, a, b) = f(a, b, a) = f(b, a, a) = a for a, b ∈ {0, 1}.

12

Let

R = {(0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1)}.

It is then easy to verify that for every triple of tuples, x,y, z ∈ R, we have

f(x,y, z) ∈ R. For example, if x = (0, 0, 1),y = (0, 1, 1) and z = (1, 0, 1), then

f(x,y, z) =
(
f(x[1],y[1], z[1]), f(x[2],y[2], z[2]), f(x[3],y[3], z[3])

)
=
(
f(0, 0, 1), f(0, 1, 0), f(1, 1, 1)

)
= (0, 0, 1) ∈ R.

We conclude that R is invariant under f or, equivalently, that f is a poly-

morphism of R.

In constrast, if g is the ternary affine function over the Boolean domain,

defined by g(x, y, z) = x+ y + z (mod 2), then

g(x,y, z) =
(
g(x[1],y[1], z[1]), g(x[2],y[2], z[2]), g(x[3],y[3], z[3])

)
=
(
g(0, 0, 1), g(0, 1, 0), g(1, 1, 1)

)
= (1, 1, 1) /∈ R

hence g is not a polymorphism of R.

Sets of functions of the form Pol(S) are referred to as clones. The lattice

(under set inclusion) of all clones over the Boolean domain was completely

determined by Post [31] and it is usually referred to as Post’s lattice. It is

visualized in Figure 1. The following result forms the basis of the algebraic

approach for analyzing the complexity of SAT, and, more generally, of constraint

satisfaction problems. It states that the complexity of SAT(S) is determined,

up to polynomial-time reductions, by the polymorphisms of S.

Theorem 7 (Jeavons [20]). Let S1 and S2 be finite non-empty sets of Boolean

relations. If Pol(S2) ⊆ Pol(S1), then SAT(S1) is polynomial-time many-one

reducible to SAT(S2).

13

R1 R0

BF

R

M

M1 M0

M2

S20

S30

S0

S202

S302

S02

S201

S301

S01

S200

S300

S00

S21

S31

S1

S212

S312

S12

S211

S311

S11

S210

S310

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 1: The lattice of Boolean clones.

14

Schaefer’s classification of SAT(S) [34] follows more or less directly from this

result together with Post’s lattice of clones. It is worth noting that out of the

countably infinite number of Boolean clones, there are just two that correspond

to NP-complete SAT(S) problems. These are the clone I2 consisting of all

projections (i.e., the functions of the form fki (x1, . . . , xk) = xi), and the clone

N2 consisting of all projections together with the unary complement function

neg(0) = 1, neg(1) = 0. One may note that Pol(ΓkNAE) is N2, while Pol(ΓkSAT) is

I2 for all k ≥ 3. If a set of relations S is invariant under the function neg, then

we say that S is closed under complement. It is easy to see that Inv(I2) is the

set of all Boolean relations (i.e., BR) and Inv(N2) (which we denote IN2) is the

set of all Boolean relations that are closed under complement. More generally

we use the notation IC for the co-clone Inv(C) (except for BR).

3.2. Strong Partial Clones

Theorem 7 is not very useful for studying the complexity of SAT problems in

terms of their worst-case complexity as a function of the number of variables. The

reason is that the reductions do not preserve instance sizes and may introduce

large numbers of new variables. It also seems that the lattice of clones is not

fine grained enough for this purpose—constraint languages that apparently have

very different computational properties are assigned the very same clone, e.g.,

both Γ3
SAT and {R1/3} correspond to the clone I2.

One way to get a more refined framework is to consider partial functions

in Definition 6. By an n-ary partial function we here mean a map f from

X ⊆ {0, 1}n to {0, 1}, and we say that f(x1, . . . , xn) is defined if (x1, . . . , xn) ∈ X

and undefined otherwise. We sometimes call the set of values where the partial

function is defined for the domain of the partial function. We then say that a

relation R is closed under a partial function f if f applied componentwise to

the tuples of R always results in a tuple from R or an undefined result (i.e., f is

undefined on at least one of the components). This condition can more formally

be stated as, for each sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R or there

exists an i smaller than or equal to the arity of R such that (t1[i], . . . , tn[i]) is

15

not included in the domain of f . The set of all partial functions preserving the

relations in S, i.e., the partial polymorphisms of S, is denoted by pPol(S) and is

called a strong partial clone. It is known that strong partial clones equivalently

can be defined as sets of partial functions which are closed under functional

composition and closed under taking subfunctions [25]. By a subfunction of a

partial function f , we here mean a partial function g whose domain is included

in the domain of f , and which agrees with f for all values where it is defined.

We remark that if one instead consider sets of partial functions closed under

composition, but which are not necessarily closed under subfunctions, one obtains

a partial clone. In this article we restrict ourself to strong partial clones since

they can be defined via the pPol(·) operator, which is in general not true for

partial clones [37].

Example 3. Consider again the relation R and the affine function g from

Example 2 and let p be the partial function defined as p(x, y, z) = g(x, y, z)

except that it is undefined for (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). Now it can

be verified that p is a partial polymorphism of R.

Unlike the lattice of Boolean clones, the lattice of partial Boolean clones

consists of an uncountably infinite number of partial clones [1], and despite

being a well-studied mathematical object [25], its structure is far from being

well-understood. For strong partial clones the situation does not differ much: the

cardinality of the corresponding lattice is also known to be uncountably infinite.

The proof is implicit in Alekseev and Voronenko [1] since their construction only

utilizes strong partial clones.

Before we show that the lattice of strong partial clones is fine-grained enough

to capture the complexity of SAT(S) problems, we need to present a Galois

connection between sets of relations and sets of (partial) functions.

Definition 8. For any set S ⊆ BR, the set 〈S〉 consists of all relations that can

be expressed (or implemented) using relations from S ∪ {=} (where = denotes

the equality relation on {0, 1}), conjunction, and existential quantification. We

16

call such implementations primitive positive (p.p.) implementations. Similarly,

for any set S ⊆ BR the set 〈S〉@ consists of all relations that can be expressed

using relations from S ∪ {=} and conjunction. We call such implementations

quantifier-free primitive positive (q.f.p.p.) implementations. Finally, for any

set S ⊆ BR the set 〈S〉 6= consists of all relations that can be expressed using

relations from S using conjunction and existential quantification. We call such

implementations equality-free primitive positive (e.f.p.p.) implementations.

Example 4. Let R1 = {(0, 1), (1, 0)} and R2 = {0, 1}3 \ {(0, 0, 0)}. It is

straightforward to verify that Γ3
SAT ⊆ 〈{R1, R2}〉. For instance, the relation

R3 = {0, 1}3 \ {(1, 1, 1)} has the following p.p. (and e.f.p.p.) definition

R3(x, y, z) ≡ ∃x′, y′, z′.R2(x′, y′, z′) ∧R1(x, x′) ∧R1(y, y′) ∧R1(z, z′).

One may also note that the relation R4 = {(1, 1, 0, 0), (0, 0, 1, 1)} is a member of

〈R1〉 6∃. Two possible q.f.p.p. definitions are

R4(x1, x2, x3, x4) ≡ R1(x1, x3) ∧R1(x1, x4) ∧R1(x2, x3) ∧R1(x2, x4)

and

R4(x1, x2, x3, x4) ≡ x1 = x2 ∧ x3 = x4 ∧R1(x2, x3).

The first implementation is additionally an e.f.p.p. implementation while the

second is not.

Sets of relations of the form 〈S〉 and 〈S〉 6∃ are referred to as relational clones

(or co-clones) and partial relational clones, respectively. We note that the term

partial relational clone, or co-clone, has been used in other contexts for different

mathematical structures, cf. Chapter 20.3 in Lau [25]. For a co-clone 〈S〉 we say

that S is a base for 〈S〉. The lattice of Boolean co-clones is visualized in Figure

2. It is easy to see that 〈·〉 and 〈·〉6∃ are closure operators, and there is a Galois

connection between (partial) clones and (partial) relational clones given by the

following result.

17

IR0 IR1

IBF

IR2

IM

IM0 IM1

IM2

IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00ID2

ID

ID1

IL2

IL

IL0 IL1IL3

IE2

IE

IE0 IE1

IV2

IV

IV1IV0

II0 II1

II

BR

IN2

IN

IBF

IR0 IR1

IR2

IM

IM0 IM1

IM2

IS21

IS31

IS1

IS212

IS312

IS12

IS211

IS311

IS11

IS210

IS310

IS10

IS20

IS30

IS0

IS202

IS302

IS02

IS201

IS301

IS01

IS200

IS300

IS00

ID

ID1

ID2

IL

IL0 IL1

IL2

IL3

IE

IE0 IE1

IE2

IV

IV1IV0

IV2

IN2

IN

II

II0 II1

BR

Figure 2: The lattice of Boolean co-clones. The co-clones where the SAT(·) problem is NP-hard

are drawn in thick black.

18

Theorem 9. [4, 5, 13, 32] Let S1 and S2 be constraint languages. Then

S1 ⊆ 〈S2〉 if and only if Pol(S2) ⊆ Pol(S1), and S1 ⊆ 〈S2〉@ if and only if

pPol(S2) ⊆ pPol(S1).

We remark that there also exists a Galois connection between sets of the

form 〈S〉6= and composition-closed sets of hyperfunctions [7]. However, for our

discourse, the above Galois connections are sufficient. We now give an analogous

result to Theorem 7 which effectively shows that the complexity of SAT(S) is

determined by the lattice of strong partial clones.

Theorem 10. Let S1 and S2 be finite non-empty sets of Boolean relations. If

pPol(S2) ⊆ pPol(S1) then SAT(S1) is CV-reducible to SAT(S2).

Proof. Given an instance φ of SAT(S1) on n variables, we transform φ′ (in

O(poly(n)) time) into an equivalent instance φ′ of SAT(S2) containing at most n

variables as follows. Since S1 is fixed and finite, we can assume that the quantifier-

free primitive positive implementation of each relation in S1 by relations in S2

has been precomputed and stored in a table (of fixed constant size). Every

constraint R(x1, . . . , xk) in φ can be represented as

R1(x11, . . . , x1k1) ∧ . . . ∧Rl(xl1, . . . , xlkl)

where R1, . . . , Rl ∈ S2 ∪ {=} and x11, . . . , xlkl ∈ {x1, x2, . . . , xk}. Replace

the constraint R(x1, . . . , xk) with the constraints R1, . . . , Rl. If we repeat the

same reduction for every constraint in φ, it results in an equivalent instance of

SAT(S2∪{=}) having at most n variables. For each equality constraint xi = xj ,

we replace all occurrences of xi with xj and remove the equality constraint.

The resulting instance I ′ is an equivalent instance of SAT(S2) having at most

n variables. Finally, since S1 is finite, there cannot be more than np · |S1|

constraints in I, where p is the highest arity of a relation in S1. It follows that

computing I ′ from I can be done in time O(np), which concludes the proof. �

19

4. The Easiest NP-Complete SAT(S) Problem

In this section we will use the theory and results presented in the previous

section to determine the easiest NP-complete SAT(S) problem. Recall that by

easiest we mean that if any NP-complete SAT(S) problem can be solved in

O(cn) time, then the easiest problem can be solved in O(cn) time, too. A crucial

step of our analysis is the explicit construction by Schnoor and Schnoor [35]

that, for each relational clone IC, gives a relation R such that IC = 〈{R}〉 and R

has a q.f.p.p. implementation in every constraint language S such that 〈S〉 = IC.

Essentially, this construction gives the bottom element of the interval of all

partial relational clones that are contained in IC but in no other relational clone

included in IC. To state Schnoor and Schnoor’s result we need some additional

notation. Given a natural number k the 2k-ary relation COLSk is the relation

which contains all natural numbers from 0 to 2k − 1 as columns in the matrix

representation, i.e., each column

ci =


xi,1
...

xi,k


of COLSk is a binary representation of i such that xi,1 . . . xi,k = i. For any clone

C and relation R we define C(R) to be the relation
⋂
R′∈IC,R⊆R′ R

′, i.e., the

smallest extension of R that is preserved under every function in C. A co-clone

IC is said to have core-size s if there exists relations R, R′ such that 〈R〉 = IC,

|R′| = s and R = C(R′) = pPol(R)(R′).

Theorem 11 ([35]). Let C be a clone and s be a core-size of IC. Then, for any

base S of IC it holds that C(COLSs) ∈ 〈S〉6∃.

Said otherwise, the relation C(COLSs) can be q.f.p.p. implemented by any

base in the given co-clone. Note that C(COLSs) has exponential arity with

respect to s. For practical considerations it is hence crucial that s is kept

as small as possible. Minimal core-sizes for all Boolean co-clones have been

20

identified by Schnoor [36]. Moreover, Lagerkvist [23] gives a comprehensive list

of relations of the form C(COLSs) expressed as Boolean formulas. We will use

these results, but whenever needed we will recapitulate the essential steps so as

to make the proofs more self-contained and easier to follow.

For any k-ary relation R we let Rl 6=, l ≤ k, denote the (k + l)-ary relation

defined as Rl6=(x1, . . . , xk+l) ≡ R(x1, . . . , xk) ∧ (x1 6= xk+1) ∧ . . . ∧ (xl 6= xk+l).

We often omit the numeral and explicitly write the number of inequalities

in the relation. In the following subsections we prove that the easiest NP-

complete SAT problem is SAT({R 6= 6= 6=1/3 }). In other words R 6= 6= 6=1/3 is the relation

{001110,010101,100011}. Here and in the sequel we use b1 · · · bk as a shorthand

for a tuple (b1, . . . , bk) ∈ {0, 1}k. According to the earlier definition this relation

is formed by taking R1/3 and adding the complement to each of the columns, i.e.,

R 6= 6=6=1/3 (x1, x2, x3, x4, x5, x6) can be defined as R1/3(x1, x2, x3)∧ (x1 6= x4)∧ (x2 6=

x5)∧(x3 6= x6). The relations R 6= 6=1/3 and R 6=1/3 are interpreted in the same way. The

latter relations are related to the structure of partial co-clones in the “bottom of

BR”, which we expand upon in Section 6.

We are now in position to show that SAT({R 6= 6= 6=1/3 }) is at least as easy as any

other NP-complete SAT(·) problem. We want to point out that there are other

NP-complete constraint languages that are as easy as {R 6=6= 6=1/3 }. In fact, there exists

an infinite number of such languages in the partial relational clone generated

by {R 6= 6=6=1/3 }, e.g., the language {(R 6= 6=6=1/3)i} for all i, with (R 6=6= 6=1/3)i(x1, . . . , x6i) =

R 6= 6=6=1/3 (x1, . . . , x6)∧R 6=6= 6=1/3 (x7, . . . , x12)∧ · · · ∧R 6=6= 6=1/3 (x5i+1, . . . , x6i), but we prefer

to work with R 6= 6= 6=1/3 since it is easy to describe, has reasonably low arity, and

contains only three tuples.

Recall that SAT(S) is NP-complete if and only if 〈S〉 = BR or 〈S〉 = IN2.

Accordingly, we first show that SAT({R 6= 6=6=1/3 }) is easier than SAT(S) for any S

with 〈S〉 = BR, (Section 4.1), and then do the same for 〈S〉 = IN2 (Section 4.2).

4.1. The Co-Clone BR

Let I2 = Inv(BR). Recall that I2 is the smallest clone consisting of all

projection functions. If R is a relation and fki ∈ I2 is a projection function, it is

21

not hard to see that for all t1, . . . , tk it holds that fki (t1, . . . , tk) = ti, and hence

that I2(R) = R for any relation R.

Lemma 12. Let S be a constraint language such that 〈S〉 = BR. Then SAT({R 6=6= 6=1/3 })

is easier than SAT(S).

Proof. We first construct the relation I2(COLSs) = COLSs, where s is a core-

size of BR, and then prove that SAT({R 6= 6= 6=1/3 }) is easier than SAT({COLSs}).

First we see that COLS1 = {01} and that 〈COLS1〉 = IR2. Since IR2 ⊂ BR

this implies that 1 cannot be a core-size of BR. Similarly we see that 2 is

not a core-size of BR since 〈COLS2〉 = 〈{0011, 0101}〉 = ID1 ⊂ BR. On

the other hand it is easily seen that 3 is the minimal core-size of BR since

BR = 〈R1/3〉, I2(R1/3) = R1/3 and |R1/3| = 3. Now observe that COLS3 =

{00001111, 00110011, 01010101} is nothing else than R 6=6= 6=1/3 with some columns

rearranged and two constant columns adjoined. Hence, there is a reduction

from SAT({R 6= 6= 6=1/3 }) to SAT({COLS3}) where each constraint R 6= 6= 6=1/3 (x1, . . . , x6)

is replaced with

COLS3(F, x1, x2, x6, x3, x5, x4, T)

with F, T being two fresh variables shared between all constraints. Since the

number of variables is augmented only by 2, this indeed shows that SAT({R 6= 6= 6=1/3 })

is easier than SAT({COLS3}), which is easier than SAT(S) by Theorems 10

and 11. �

4.2. The Co-Clone IN2

We are left with the relational clone IN2 and need to make sure that the

bottom partial relational clone in IN2 is not (strictly) easier than R 6= 6=6=1/3 . Let

N2 = Pol(IN2), i.e., the clone generated by the unary complement function

neg. Analogously to the relation R 6= 6= 6=1/3 in BR, we consider the relation R 6= 6= 6= 6=2/4

= {00111100, 01011010, 10010110, 11000011, 10100101, 01101001} in IN2. We

proceed accordingly to the derivation of R 6= 6= 6=1/3 and first determine the minimal

core-size s of IN2, calculate the relation N2(COLSs), prove that SAT({R 6= 6=6= 6=2/4 })

22

is not harder than the SAT(·) problem for this relation, and last prove that

SAT({R 6= 6= 6=1/3 }) is not harder than SAT({R 6= 6=6= 6=2/4 }).

Lemma 13. Let S be a constraint language such that 〈S〉 = IN2. Then the

SAT({R 6= 6= 6= 6=2/4 }) problem is not harder than SAT(S).

Proof. IN2. For s = 1 we see that 〈(N2)COLS1〉 = 〈{01, 10}〉 = ID and also

for s = 2 that 〈(N2)COLS2〉 = 〈{0011, 0101, 1100, 1010}〉 = ID. But s = 3 is

indeed a core-size of IN2 since 〈RNAE〉 = IN2 and RNAE = N2(R1/3). We get the

relation

(N2)COLS3 =



0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0


by first calculating COLS3 and then closing the resulting relation under

unary complement. The relation N2(COLS3) is nothing else than a rearranged

version of R 6= 6= 6=6=2/4 since every constraint R 6= 6= 6=6=2/4 (x1, x2, x3, x4, x5, x6, x7, x8) is

equivalent to N2(COLS3)(x8, x1, x2, x7, x3, x6, x5, x4). Since S can q.f.p.p. im-

plement N2(COLS)3 by Theorem 11 and since N2(COLS3) can in turn q.f.p.p.

implement R 6= 6= 6= 6=2/4 , it follows that S can also q.f.p.p. implement R 6=6= 6= 6=2/4 . �

Both SAT({R 6= 6= 6=1/3 }) and SAT({R 6= 6= 6= 6=2/4 }) can be viewed as candidates for the

easiest NP-complete SAT(S) problem. To prove that the former is not harder

than the latter we have to give a size-preserving reduction from SAT({R 6=6= 6=1/3 })

to SAT({R 6=6= 6= 6=2/4 }). By using clone theory it is not hard to prove that q.f.p.p.

definitions are insufficient for this purpose and that neither R 6= 6= 6=1/3 ∈ 〈R 6= 6=6= 6=2/4 〉6∃
nor R 6= 6=6= 6=2/4 ∈ 〈R 6=6= 6=1/3 〉6∃.

Theorem 14. 〈R 6= 6= 6=1/3 〉@ and 〈R 6= 6= 6= 6=2/4 〉@ are incomparable with respect to set in-

clusion.

23

Proof. We prove that neither of the partial co-clones can be a subset of the

other.

For the first direction, assume towards contradiction that 〈R 6= 6= 6=1/3 〉@ ⊆ 〈R 6= 6= 6= 6=2/4 〉@.

Then R 6= 6=6=1/3 ∈ 〈R 6=6= 6= 6=2/4 〉@, which means that there exists a q.f.p.p. implementa-

tion of R 6= 6= 6=1/3 in IN2. This is however impossible, since this implies BR = IN2,

violating the strict inclusion structure in Post’s lattice.

For the other direction, assume towards contradiction that 〈R 6= 6= 6=6=2/4 〉@ ⊆

〈R 6= 6= 6=1/3 〉@. Then pPol(R 6=6= 6=1/3) ⊆ pPol(R 6= 6= 6= 6=2/4). We show that there exists a

partial function f with f ∈ pPol(R 6=6= 6=1/3) but f 6∈ pPol(R 6=6= 6= 6=2/4), and hence

that the initial premise was false. Let f be the 4-ary function defined only

on tuples containing two 0’s and two 1’s, and always returning 0. This func-

tion does not preserve R 6= 6= 6= 6=2/4 as can be seen when applying it to the tuples

(0, 1, 0, 1, 1, 0, 1, 0), (1, 0, 0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 1, 0, 0, 1) and (1, 0, 1, 0, 0, 1, 0, 1)

from R 6= 6= 6=6=2/4 . But we now show that f preserves R 6= 6= 6=1/3 , by showing that it is

undefined on any sequence of four tuples from R 6= 6=6=1/3 . Indeed,

• taking three times the same tuple in such a sequence yields columns

containing at least three 1’s or three 0’s,

• taking twice a tuple and twice another one always yields an all-0 and an

all-1 column,

• taking two different tuples, and twice the third one yields no balanced

column except for one.

Hence f preserves R 6= 6= 6=1/3 since it is always undefined when applied to any sequence

of tuples from R 6= 6= 6=1/3 . Therefore f is in pPol(R 6=6= 6=1/3) \pPol(R 6= 6= 6=6=2/4), as desired. �

However, by using a relaxed notion of a q.f.p.p. definition in which a constant

number of auxiliary variables are quantified over, we can still give a CV-reduction

from SAT({R 6= 6= 6=1/3 }) to SAT({R 6= 6= 6= 6=2/4 }).

Lemma 15. SAT({R 6= 6= 6=1/3 }) is easier than SAT({R 6= 6=6= 6=2/4 }).

24

Proof. Let φ be an instance of SAT({R 6= 6= 6=1/3 }) and let C = R 6= 6= 6=1/3 (x1, x2, x3,

x4, x5, x6) be an arbitrary constraint in φ. Let Y1 and Y2 be two global variables.

Then the constraint C ′ = R 6=6= 6= 6=2/4 (x1, x2, x3, Y1, x4, x5, x6, Y2) is satisfiable if and

only if C is satisfiable, with Y1 = 1 and Y2 = 0 (we may assume Y1 = 1 since

the complement of a satisfiable assignment is also a satisfiable assignment for

constraint languages in IN2). If we repeat this reduction for every constraint

in φ we get a SAT({R 6= 6= 6= 6=2/4 }) instance which is satisfiable if and only if φ is

satisfiable. Since the reduction only introduces two new variables it follows that

it is indeed a CV-reduction. �

Since SAT(S) is NP-complete if and only if 〈S〉 = BR or 〈S〉 = IN2,

Lemma 12 together with Lemma 15 gives that SAT({R 6= 6=6=1/3 }) is the easiest

NP-complete SAT(S) problem.

Theorem 16. If S ∈ H, then SAT({R 6= 6=6=1/3 }) is easier than SAT(S).

5. Complexity Bounds for SAT({R 6= 6= 6=
1/3 }) and Related Problems

As mentioned earlier, our notion of “easiest problem” does not rule out the

possibility that there exist languages that have the exact same time complexity

as SAT({R 6= 6= 6=1/3 }). Proving that a problem SAT(S) is strictly easier than a

problem SAT(S′), i.e., that T(S′) > T(S), is of course in general much harder

than giving a CV-reduction between the problems. In this section we relate the

complexity between relations of the form Rk 6=, where R is k-ary, and the language

Γext
R obtained by expanding R with all sign patterns. Recall from Section 4

that Rl 6= is the (k + l)-ary relation obtained from R by adding l new arguments

that are the complements of the l first. In this section we mainly consider the

special case Rk 6=, ar(R) = k, which means that we add one argument i′ for each

argument i in the original relation R, such that t[i′] = 1 − t[i] for all tuples

t ∈ Rk 6=.

For such relations we not only prove that T ({Rk 6=}) is strictly smaller than

T(Γext
R), but that T(Γext

R) = 2 T({Rk 6=}). Said otherwise, we prove that under

25

x1

x4

x8

x2

x5 x9

x3

x6

x7

x10

Figure 3: The complement graph G(I) of the instance I in Example 5.

the ETH, SAT({Rk 6=}) is solvable in time 2(c+ε)n for all ε > 0, if and only if

SAT({Γext
R }) is solvable in time 2(2c+ε)n for all ε > 0. This gives tight bounds

on the complexity of relations containing a sufficient number of complementary

arguments and languages containing all sign patterns.

We will in fact give a slightly more general proof. For this we need a

few additional definitions. Let R be a k-ary Boolean relation, l ≤ k, and

let Rl 6=(x1, . . . , xk+l) be a SAT({Rl 6=}) constraint. Say that xi and xk+i, i ∈

{1, . . . , l}, are complementary variables. Now given an instance I = (V,C) of

SAT({Rl 6=}), we define the complement graph of I to be the undirected graph

G(I) = (V,E), with E = {{x, y} | x, y are complementary for some Ci ∈ C}. In

other words, the vertices of G(I) are the variables of I, and two variables have

an edge between them if and only if they are complementary in some constraint

in C.

Example 5. Let I = (V,C) be an instance of SAT({R 6= 6= 6=1/3 }) where C =

{R 6= 6= 6=1/3 (x1, x2, x3, x4, x5, x6), R 6= 6=6=1/3 (x4, x2, x7, x8, x9, x10)). Then G(I) = (V,E)

where E = {{x1, x4}, {x4, x8}, {x2, x5}, {x3, x6}, {x2, x9}, {x7, x10}}. This

graph is visualized in Figure 5. Note that G(I) has four connected components.

Lemma 17. Let Rl 6= be a (k+l)-ary Boolean relation, and let Γext
R = {R(s1,...,sk) |

s1, . . . , sk ∈ {−,+}}. If there is a constant c such that for all instances I = (V,C)

of SAT({Rl 6=}, the number of connected components of G(I) is at most |V |c = n
c ,

then SAT({Rl 6=}) LV-reduces to SAT(Γext
R) with parameter c

2 .

Proof. Let I = (V,C) be an instance of SAT({Rl 6=}) and let G(I) = (V,E)

26

be the corresponding complement graph. We reduce (V,C) to an equivalent

instance (V ′, C ′) of SAT({Γext
R }) with n

c variables as follows. First, we choose

one variable of V per connected component in G(I) and define V ′ to be the

set of these. For each variable x ∈ V we write [x] for the representative of the

connected component of G(I) that contains x.

Observe that if there is an even-length (respectively odd-length) path between

x and [x] in G(I), then x and [x] must have the same value (respectively the

opposite value) in all satisfying assignments of I. Moreover, if there is both

an even-length and an odd-length path between x and [x], then I must be

unsatisfiable. Since this can be detected in time linear in the size of I, we

henceforth assume that this is not the case.

Now let Rl 6=(xi1 , . . . , xik , xik+1 , . . . , xik+l) be a constraint in C. We first

replace each variable xij with [xij] (respectively [xij]) if there is an even-length

(respectively odd-length) path between xij and [xij]. We obtain an expression of

the form Rl6=(`i1 , . . . `ik , `ik+1 , . . . , `ik+l), and by construction, `ij and `ik+j are

opposite literals for all j = 1, . . . , l. Finally, from this expression we define the

constraint Rs1,...,sk(x′i1 , . . . , x
′
ik

), with for all j, sj = + and x′ij = x if `ij is a

positive literal x, and sj = − and x′ij = x if `ij is a negative literal x̄. We define

C ′ to be the set of all such constraints.

Clearly, the resulting formula (V ′, C ′) is an instance of SAT({Γext
R }), which

contains at most |V |c variables by assumption, and which by construction is

satisfiable if and only if so is (V,C). Hence this construction is an LV-reduction

from SAT({Rl 6=}) to SAT(Γext) with parameter 1
c . �

For relations of the form Rk 6=, where ar(R) = k, we get the following.

Lemma 18. Let R be a k-ary Boolean relation. Then for all instances I = (V,C)

of SAT({Rk 6=}, either I is trivially unsatisfiable, or the number of connected

components of G(I) is at most |V |2 = n
2 .

Proof. Let I = (V,C) be an instance of SAT({Rk 6=}). Since R has arity k,

every x ∈ V has at least one complementary variable y. If x = y then x is

27

complementary to itself, which means that I is trivially unsatisfiable. Otherwise

we get that for each variable x ∈ V there is at least one y ∈ V , x 6= y, such

that y occurs in the same connected component of G(I). Hence each connected

component of G(I) contains at least 2 variables, and the result follows. �

We are now in position to give the main result of this section.

Theorem 19. Let Rk 6= be a 2k-ary Boolean relation and let Γext
R = {R(s1,...,sk) |

s1, . . . , sk ∈ {−,+}}. Then T(Γext
R) = 2 T({Rk 6=}).

Proof. We prove T({Rk 6=}) ≤ T(Γext
R)
2 and T(Γext

R) ≤ 2 T({Rk 6=}. The former

inequality follows from Lemma 17 and 18. For the latter inequality we give an

LV-reduction from SAT(Γext
R) to SAT({Rk 6=}) with parameter 2.

Let I = (V,C) be an instance of SAT(Γext
R). For every xi ∈ V introduce

a fresh variable x′i and let V ′ be the resulting set of variables. Then, for

every constraint R(s1,...,sk)(xi1 , . . . , xik) create a new constraint Rk 6=(yi1 , . . . , yi2k)

where

• for ij ≤ k, yij = xij if sjl = +, and yij = x′ij if sjl = −, and

• for ij > k, yij = xij−k if sij−k = −, and xjl = x′ij−k if sij−k = +.

Let C ′ be the set of constraints resulting from this transformation. Then (V ′, C ′)

is satisfiable if and only if (V,C) is satisfiable, and since |V ′| = 2|V |, the reduction

is an LV-reduction with parameter 2, which concludes the proof. �

Let Γext
R1/3

= {R(s1,s2,s3)
1/3 | s1, s2, s3 ∈ {−,+}} be the language corresponding

to 1-in-3-SAT with all possible sign patterns. As is easily verified Lemmas 17

and 18 give an LV-reduction from SAT({R 6= 6= 6=1/3 }) to SAT(Γext
R1/3

) with parameter
1
2 . This in turn implies not only that SAT({R 6= 6=6=1/3 }) is strictly easier than

SAT(Γext
R1/3

) (Lemma 5) but gives a precise bound on the difference in complexity

between these two problems.

Corollary 20. T(Γext
R1/3

) = 2 T({R 6=6= 6=1/3 }).

28

We can give similar bounds for SAT({R 6= 6= 6= 6=2/4 }) and SAT(Γext
2/4), where Γext

2/4 =

{R(s1,s2,s3,s4)
2/4 | s1, s2, s3, s4 ∈ {−,+}}}, i.e., R 6= 6=6= 6=2/4 expanded with all sign

patterns.

Corollary 21. T(Γext
2/4) = 2 T({R 6=6= 6= 6=2/4 }).

Assuming the ETH is true it is proven in [17] that there for every k ≥ 3 exist

a k′ > k such that k-SAT is strictly easier than k′-SAT. However, this result

leaves quite a lot of gaps since it is difficult to estimate exactly how large these

gaps in complexity are, and if this holds for any other languages besides k-SAT.

Our results are much more precise in the sense that we for every Boolean relation

of the form R
k 6= can find a natural constraint language S such that SAT({Rk 6=})

is strictly easier than SAT(S).

6. Partial Co-Clones Covering BR

Having determined the least element COLS3 in the partial co-clone lattice

covering BR it is natural to investigate other structural properties of this lattice.

More formally, given a co-clone IC, this question can be rephrased as determining

the sublattice induced by the set of partial co-clones I(IC) = {IC′ | IC′ =

〈IC′〉6∃, 〈IC′〉 = IC}. In the case of BR the partial co-clone 〈COLS3〉6∃ is the

smallest element in this sublattice while the largest element is simply the set

of all Boolean relations. Unfortunately we cannot hope to fully describe this

sublattice since it is of uncountably infinite cardinality [38]. A more manageable

strategy is to instead only consider partial co-clones that are finitely generated,

i.e., all IC such that there exists a finite S such that IC = 〈S〉 6∃. Instead of the

set I(IC) we then consider the set Ifin(IC) = {IC′ | IC′ = 〈IC′〉6∃, 〈IC′〉 = IC and

IC′ is of finite order}. We note that finite constraint languages are not expressive

enough to fully characterize BR or IN2.

Theorem 22. There is no finite S such that 〈S〉6∃ = BR or 〈S〉6∃ = IN2.

Proof. We only sketch the proof for the case of BR. Assume there exists a finite

S such that 〈S〉 6∃ = BR. Then pPol(S) = pPol(BR) = {f | f is a subfunction

29

of a projection function} = I2. In particular, we get that pPol(S) can be

generated from any projection function. However, this contradicts Lagerkvist &

Wahlström [24, Theorem 8], where it is proven that pPol(S) cannot be generated

from a finite set of partial functions whenever S is a finite constraint language

such that 〈S〉 = BR. �

Despite this we believe that even partial classifications of I(BR) or Ifin(BR)

could be of interest when comparing worst-case running times of NP-hard

SAT(·) problems. In the rest of this section we therefore provide such a partial

classification, and in particular concentrate on languages corresponding to k-SAT,

monotone 1-in-k-SAT, and finite languages between monotone 1/3-SAT and

COLS3. To accomplish this we need to introduce some additional relations.

Recall that ΓkSAT is the language consisting of all relations corresponding to

k-SAT clauses.

• R1/k = {(x1, . . . , xk) ∈ {0, 1}k | Σki=1xi = 1},

• Γ1/k = {R1/1, . . . , R1/k},

• ΓXSAT =
⋃∞
i=1 Γ1/i,

• ΓSAT =
⋃∞
i=1 ΓiSAT,

• R0 = {(x1, . . . , xk, 0) | (x1, . . . , xk) ∈ R},

• R1 = {(x1, . . . , xk, 1) | (x1, . . . , xk) ∈ R},

where R in the last two cases denotes an arbitrary k-ary Boolean relation.

The results are summarized in Figure 6. That the inclusions are correct is proven

in Section 6.1 and 6.2. We stress that this is indeed a partial classification. For

example, for any relation R such that 〈R 6= 6= 6=01
1/3 〉 6∃ ⊂ 〈R〉 6∃ ⊂ 〈Γ1/3〉6∃, it holds that

〈R〉 6∃ ⊂ 〈{R,R1/2}〉6∃ ⊂ 〈Γ1/3〉 6∃ (since it is easy to prove that R1/2 /∈ 〈R〉6∃ and

R1/1 /∈ 〈{R,R1/2}〉 6∃). It is also not difficult to find languages between 〈ΓkSAT〉 6∃ and

〈Γk+1
SAT〉6∃ since for any R ∈ Γk+1

SAT it holds that 〈ΓkSAT〉6∃ ⊂ 〈ΓkSAT ∪ {R}〉6∃ ⊂ 〈Γk+1
SAT〉6∃.

We discuss this in more detail in Section 9.

30

The inclusions in Figure 6 are of particular importance when determining

upper bounds on the complexities of SAT(·) problems, since T(S) ≤ T(S′) if

〈S〉6∃ ⊆ 〈S′〉 6∃. With the help of the results from Section 5 we can in fact get

tight bounds on the complexity for all languages below Γ1/3.

Corollary 23. Let S be a constraint language such that 〈S〉 = BR and 〈S〉6∃ ⊆

〈Γ1/3〉6∃. Then T({R 6= 6= 6=1/3 }) ≤ T(S) ≤ 2 T({R 6=6= 6=1/3 }).

Proof. The lower bound T({R 6= 6= 6=1/3 }) ≤ T(S) follows directly from Theorem 16.

For the upper bound we note that for Γext
R1/3

= {R(s1,s2,s3)
1/3 | s1, s2, s3 ∈ {−,+}}

it holds that 〈Γext
R1/3
〉 6∃ ⊇ 〈Γ1/3〉6∃ and hence that 〈S〉6∃ ⊆ 〈Γext

R1/3
〉 6∃. By applying

Lemma 19 it then follows that T(S) ≤ T(Γext
R1/3

) = 2 T({R 6=6= 6=1/3 }). �

Hence, even if we do not currently know whether the cardinality of the set

{〈S〉 6∃ | 〈S〉 = BR, 〈S〉 6∃ ⊆ 〈Γ1/3〉 6∃} is finite or infinite, we still obtain tight

complexity bounds for all these languages with respect to T({R 6= 6= 6=1/3 }).

6.1. Partial Co-Clones Below 〈Γ1/3〉 6∃

We begin by explicating the structure of partial co-clones 〈S〉6∃ such that

〈S〉6∃ ⊆ 〈Γ1/3〉 6∃. For this we introduce the relations R 6= 6= 6=01
1/3 , R 6= 6=01

1/3 , R 6=01
1/3 and

R01
1/3. According to the definitions in the preceding section the relations are

simply R 6=6= 6=1/3 , R 6=6=1/3, R 6=1/3 and R1/3 with two additional constant columns adjoined.

Moreover, as is easily verified, R 6= 6=6=01
1/3 is simply COLS3 with permuted arguments,

hence 〈R 6= 6= 6=01
1/3 〉6∃ is equal to 〈COLS3〉 6∃, which is the smallest element in I(BR).

Lemma 24. The following inclusions hold.

1. 〈R 6= 6=6=01
1/3 〉6∃ ⊂ 〈R 6=6=01

1/3 〉6∃ ⊂ 〈R 6=01
1/3 〉 6∃ ⊂ 〈R01

1/3〉 6∃ ⊂ 〈R1/3〉6∃ ⊂ 〈Γ1/3〉6∃,

2. 〈R01
1/3〉6∃ ⊂ 〈R1

1/3〉6∃ ⊂ 〈Γ1/3〉6∃,

3. 〈R 6= 6= 6=1/3 〉 6∃ ⊂ 〈R 6= 6=1/3〉6∃ ⊂ 〈R 6=1/3〉6∃ ⊂ 〈Γ1/3〉 6∃,

4. 〈R 6= 6= 6=01
1/3 〉6∃ ⊂ 〈R 6= 6=6=1/3 〉 6∃, 〈R 6= 6=01

1/3 〉 6∃ ⊂ 〈R 6= 6=1/3〉6∃, 〈R 6=01
1/3 〉6∃ ⊂ 〈R 6=1/3〉 6∃,

5. 〈R 6= 6= 6=1
1/3 〉6∃ ⊂ 〈R 6= 6=1

1/3 〉 6∃ ⊂ 〈R 6=1
1/3〉6∃ ⊂ 〈Γ1/3〉6∃,

31

R 6= 6=6=1/3

R 6= 6=1/3

R 6=1/3

R1/3R1
1/3

R 6= 6= 6=01
1/3

R 6= 6=01
1/3

R 6=01
1/3

R01
1/3

Γ1/3

Γ1/(k−1)

Γ1/k

Γ1/(k+1)

ΓXSAT

R 6= 6=6=1
1/3

R 6=6=1
1/3

R 6=1
1/3

Γ3
SAT

Γk−1
SAT

ΓkSAT

Γk+1
SAT

ΓSAT

Figure 4: The structure of some partial co-clones in I(BR). A directed arrow from S to S′

means 〈S〉6∃ ⊂ 〈S′〉6∃ and hence also T(S) ≤ T(S′). Some trivial inclusions, for example that

every node Γ satisfies 〈R 6= 6= 6=01
1/3 〉 6∃ ⊂ 〈Γ〉6∃, have been omitted in the figure.

32

6. 〈R 6= 6=6=01
1/3 〉6∃ ⊂ 〈R 6=6= 6=1

1/3 〉6∃, 〈R 6= 6=01
1/3 〉6∃ ⊂ 〈R 6= 6=1

1/3 〉 6∃, 〈R 6=01
1/3 〉6∃ ⊂ 〈R 6=1

1/3〉6∃.

Proof. We only show that the inclusions hold for the languages in (1) since

the cases (2), (3), (4), (5) and (6) follow a very similar structure.

For each inclusion 〈R1〉@ ⊆ 〈R2〉@ we prove that R1 ∈ 〈R2〉@, and hence also

that 〈R1〉6∃ ⊆ 〈R2〉6∃, by giving a q.f.p.p. definition of R1 in {R2}. First note

that 〈R1/3〉 6∃ ⊆ 〈Γ1/3〉 6∃ since R1/3 ∈ Γ1/3. We can then implement R01
1/3 with

R1/3 by enforcing the constant variables c0 and c1 by an additional constraint,

i.e., R01
1/3(x1, x2, x3, c0, c1) ≡ R1/3(x1, x2, x3) ∧ R1/3(c0, c0, c1). To implement

R 6=01
1/3 with R01

1/3 the procedure is similar but we also need to ensure that x′1 is

assigned the opposite value of x1, which can be done by the implementation

R 6=01
1/3 (x1, x2, x3, x

′
1, c0, c1) ≡ R01

1/3(x1, x2, x3, c0, c1) ∧ R01
1/3(x1, x

′
1, c0, c0, c1). The

proofs for R 6= 6=01
1/3 and R 6= 6= 6=01

1/3 are entirely analogous.

To show a proper inclusion 〈R〉@ ⊂ 〈R′〉@ between every pair of relations R

and R′ we provide a partial function f which is a polymorphism of R but not of

R′. Define the ternary minority function f such that it maps any 3-tuple to the

value that occurs least in it, or, in the case where all three arguments are equal, to

the repeating value. For example f(0, 0, 1) = 1 but f(0, 0, 0) = 0. Observe that

whenever f is applied to three tuples with one or two repetitions it always yields

one of these tuples. Hence, with the relations R1/3, R
01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , R 6= 6= 6=01

1/3 , we

only need to consider the case when f is applied to the three distinct tuples in

each relation.

〈R1/3〉6∃ ⊂ 〈Γ1/3〉6∃: Let f(1) = 0 and undefined otherwise. Then f /∈

pPol(Γ1/3) since f does not preserve R1/1 = {(1)}. On the other hand f does

preserve R1/3 since it will be undefined for any t ∈ R1/3.

〈R01
1/3〉@ ⊂ 〈R1/3〉@: Let f1 be the partial ternary minority function which is

undefined for the tuple (0, 0, 0). Then f1 does not preserve R1/3 since the tuple

(f1(0, 0, 1), f1(0, 1, 0), f1(1, 0, 0)) = (1, 1, 1) 6∈ R1/3. However, f1 is a partial poly-

morphism of R01
1/3 since in whatever order the tree tuples (0, 0, 1, 0, 1),(0, 1, 0, 0, 1)

and (1, 0, 0, 0, 1) from R01
1/3 are taken f1 will always be undefined for (0, 0, 0).

〈R 6=01
1/3 〉@ ⊂ 〈R01

1/3〉@: The reasoning is similar as in the previous case except

33

that we define a minority function f2 which is undefined for the tuples (1, 1, 0),

(1, 0, 1) and (0, 1, 1). As can be verified f2 does not preserve R01
1/3 since the tuple

(f1(0, 0, 1),f1(0, 1, 0),f1(1, 0, 0), f1(0, 0, 0), f1(1, 1, 1)) = (1, 1, 1, 0, 1) 6∈ R01
1/3. It is

however a partial polymorphism of R 6=01
1/3 since, regardless of the order in which

the tuples are taken in, it will be undefined for the fourth column which will

always be one of (1, 1, 0), (1, 0, 1) or (0, 1, 1).

〈R 6= 6=01
1/3 〉@ ⊂ 〈R 6=01

1/3 〉@: Define f3 to be the ternary minority function ex-

cept that it is undefined for (1, 0, 1) and (0, 1, 1). Then f3 does not preserve

R 6=01
1/3 since (f3(0, 0, 1), f3(0, 1, 0), f3(1, 0, 0), f3(1, 1, 0), f3(0, 0, 0), f3(1, 1, 1)) =

(1, 1, 1, 0, 0, 1) 6∈ R 6=01
1/3 . It will however always be undefined for the fourth or fifth

column of R 6= 6=01
1/3 since one of these will be either (1, 0, 1) or (0, 1, 1).

〈R 6= 6= 6=01
1/3 〉@ ⊂ 〈R 6= 6=01

1/3 〉@: The reasoning is the same as in the previous case but

with a minority function f4 undefined for (0, 1, 1). �

Observe that in the second part of the proof we exploit the Galois connection

between strong partial clones and partial co-clones. This results in much more

concise proofs since proving a strict inclusion 〈R1〉6∃ ⊂ 〈R2〉6∃ with relational

tools is tantamount to the proof that it is impossible to find a q.f.p.p. definition

of R2 in 〈R1〉 6∃.

The inclusions in Lemma 24 do not rule out the possibility that some of

the partial co-clones in Figure 6 collapse to a single partial co-clone. To rule

out this we also need to prove that every pair of partial co-clones 〈S〉6∃ and

〈S′〉6∃ that are not connected in Figure 6 are in fact incomparable with respect

to set inclusion. Here we only sketch the proof that 〈R 6=1/3〉6∃ and 〈R1/3〉6∃ are

incomparable since the other cases are similar. First, define the ternary function

f such that f(0, 0, 1) = 0, f(0, 1, 0) = 1, f(1, 0, 0) = 0, f(0, 1, 1) = 0, and let it

be undefined otherwise. Then f ∈ pPol(R1/3) (since f applied to tuples from

R1/3 always yields (0, 0, 1), (0, 1, 0), (1, 0, 0) ∈ R1/3), but f 6∈ pPol(R 6=1/3) since

(f(0, 0, 1), f(0, 1, 0), f(1, 0, 0), (0, 1, 1)) = (0, 1, 0, 0) 6∈ R 6=1/3. For the other direc-

tion define the ternary function g such that g(0, 0, 1) = g(0, 1, 0) = g(1, 0, 0) = 1

but is undefined otherwise. A quick check shows that g ∈ pPol(R 6=1/3) (since g is

34

always undefined for these tuples) but g 6∈ pPol(R1/3).

6.2. Partial Co-Clones Above 〈Γ1/3〉6∃

In this section we focus on 1-in-k-SAT and k-SAT and prove that both these

languages form infinitely ascending chains of partial relational clones. We stress

that these results hold independently of any complexity theoretical assumptions

— the k-SAT result was, e.g., previously only known to hold if the ETH is true.

This may be seen as further evidence that the ETH is plausible. However, note

that this does not contradict the possibility that the ETH is false, since the fact

that 〈ΓkSAT〉6∃ ⊂ 〈Γk+1
SAT〉6∃ does not necessarily imply that the running times of

k-SAT and (k + 1)-SAT differs.

In the following proofs we let 1k and 0k denote k-ary tuples of ones and

zeroes, respectively, i.e.,

1k = (1, . . . , 1︸ ︷︷ ︸
k

), and 0k = (0, . . . , 0︸ ︷︷ ︸
k

).

Theorem 25. 〈ΓkSAT〉6∃ ⊂ 〈Γk+1
SAT〉 6∃ for each k ≥ 1.

Proof. For k = 1 and k = 2 the result follows immediately from Post’s lattice.

Assume k ≥ 3. By definition the language ΓkSAT contain all relations representable

by the formulas (x1 ∨ . . . ∨ xk), (¬x1 ∨ . . . ∨ xk), . . ., (¬x1 ∨ . . . ∨ ¬xk), for all

possible sign patterns. For simplicity we denote relations by their defining

formulas and simply write (l1∨ . . .∨ lk), where li is a literal, for a relation in ΓkSAT.

For example (x1 ∨ . . . ∨ xk) is the relation {0, 1}k \ {0k}, and (¬x1 ∨ . . . ∨ ¬xk)

is the relation {0, 1}k \ {1k}.

Without loss of generality we also assume that 〈ΓkSAT〉 6∃ is generated by the

k + 1 relations (x1 ∨ . . . ∨ xk), (¬x1 ∨ . . . ∨ xk), . . ., (¬x1 ∨ . . . ∨ ¬xk), since any

other sign pattern can be represented as a permutation of these.

It is easy to prove that 〈ΓkSAT〉6∃ ⊆ 〈Γk+1
SAT〉6∃ by giving explicit q.f.p.p. definitions

of ΓkSAT in 〈Γk+1
SAT〉6∃, e.g., (x1 ∨ . . . ∨ xk) ≡ (x1 ∨ . . . xk−1 ∨ xk ∨ xk).

For the strict inclusion we give a function f such that f ∈ pPol(ΓkSAT) but

f 6∈ pPol(Γk+1
SAT), thus proving that pPol(Γk+1

SAT) ⊂ pPol(ΓkSAT) and therefore that

35

〈ΓkSAT〉6∃ ⊂ 〈Γk+1
SAT〉6∃. For each k ≥ 3 let the k-ary function fk be defined as

fk(x1, . . . , xk) = 0 if Σk
i=1xi = 1, and undefined otherwise. We prove that

for every k ≥ 3 it holds that fk+1 ∈ pPol(ΓkSAT) but fk+1 /∈ pPol(Γk+1
SAT). By

definition fk preserves the negative clause (¬x1 ∨ . . . ∨ ¬xk) since it is either

undefined or returns 0. Now let Rk ∈ ΓkSAT be the relation corresponding to the

clause (¬x1 ∨ . . .∨¬xi ∨ xi+1 ∨ . . .∨ xk), i ≥ 1. If fk+1 does not preserve Rk it,

when applied componentwise to the tuples of Rk, must be able to return a tuple

not included in Rk. However, since Rk contains all k-tuples except for

(1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
k - i

),

fk+1 must preserve Rk since fk+1 never returns the value 1. Now let R′k be

the relation corresponding to the clause (x1 ∨ . . . ∨ xk). If fk+1 is applied

componentwise to k + 1 tuples the only case in which it can return a tuple not

included in R′k is if returns the all-zero tuple 0k. Since fk+1 is only defined

when exactly one argument is equal to 1, the only possibility for obtaining this

is if the first k tuples t1, . . . , tk are of the form



0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


.

But if the (k + 1)-th tuple is anything else than 0k, which is not included in R′k,

there will be at least one column that contains two ones. Hence fk+1 will be

undefined for this sequence of arguments and therefore trivially preserves R′k.

Last, let Rk+1 be the relation corresponding to the positive clause (x1 ∨ . . .∨

xk+1). This relation is included in Γk+1
SAT but not in ΓkSAT. Let t1, . . . tk+1 be the

tuples

36



0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


.

Then we see that for each i ≤ k+1 it holds that fk+1(t1[i], t2[i], . . . , tk[i], tk+1[i]) =

0. Hence fk+1(t1, . . . tk+1) = 0k+1 6∈ Rk+1 from which it follows that fk+1 does

not preserve Γk+1
SAT. �

Next we prove that a similar separation result can be obtained for the

sequence of Γ1/k languages.

Theorem 26. 〈Γ1/k〉 6∃ ⊂ 〈Γ1/(k+1)〉6∃ for each k ≥ 1.

Proof. Clearly 〈Γ1/k〉6∃ ⊆ 〈Γ1/(k+1)〉 6∃ since Γ1/k ⊆ Γ1/(k+1). For the proper

inclusion let the k-ary partial function gk be defined as gk(x1, . . . , xk) = 0 if

Σk
i=1xi = 1 and gk(x1, . . . , xk) = 1 if (x1, . . . , xk) = 0k. The proof consists of

two parts: first, we prove that gk+1 ∈ pPol(Γ1/k) for every k ≥ 1; second, we

prove that gk /∈ pPol(Γ1/k) for every k ≥ 1.

Let R1/k′ ∈ Γ1/k, k′ ≤ k. Note that |R1/k′ | = k′ < k+1. For every application

gk+1(t1, . . . , tk+1) where t1, . . . , tk+1 ∈ R1/k′ it therefore follows that at least

two tuples are repeated, and hence that there exists an 1 ≤ i ≤ k′ such that

t1[i] + . . . + tk+1[i] > 1. By definition gk+1 is not defined for this sequence of

arguments from which it follows that gk+1(t1, . . . , tk+1) is undefined, and hence

that gk+1 preserves R1/k′ . Since R1/k′ was chosen arbitrarily it then follows that

gk+1 preserves Γ1/k.

Next let k ≥ 1. We prove that gk /∈ pPol(Γ1/k). To see this simply note that

f(t1, . . . , tk), where t1, . . . , tk ∈ R1/k and ti 6= tj for all i, j ∈ [1, k], is defined and

returns the all zero tuple, which is not included in R1/k. Hence gk /∈ pPol(Γ1/k).

Combining these two facts yields that gk+1 ∈ pPol(Γ1/k) but gk+1 /∈ pPol(Γ1/(k+1)).

Hence pPol(Γ1/k) ⊃ pPol(Γ1/(k+1)), which implies that 〈Γ1/k〉 6∃ ⊂ 〈Γ1/(k+1)〉6∃. �

37

It is easy to see that 〈Γ1/k〉6∃ ⊂ 〈ΓkSAT〉6∃. To rule out the possibility that

〈Γ1/(k+1)〉6∃ ⊆ 〈ΓkSAT〉6∃ or 〈ΓkSAT〉6∃ ⊆ 〈Γ1/k〉 6∃ we prove that these are in fact

incomparable.

Theorem 27. 〈Γ1/(k+1)〉6∃ and 〈ΓkSAT〉6∃ are incomparable for each k ≥ 3.

Proof. We must prove that there exists partial functions f, g such that f ∈

pPol(ΓkSAT), f /∈ pPol(Γ1/(k+1)) and g ∈ pPol(Γ1/(k+1)) but g /∈ pPol(ΓkSAT). For

this let fk and gk be defined as in the proofs of Theorems 25 and 26 and recall

that fk+1 ∈ pPol(ΓkSAT) and gk+1 ∈ pPol(Γ1/k).

Let k ≥ 3. It is easy to see that gk+2 /∈ pPol(ΓkSAT) since gk+2 does not

preserve the negative clause (¬x1 ∨ . . . ∨ ¬xk) when applied to k + 2 tuples

t1 = . . . = . . . = tk+2 = 0k. Similarly fk+1 does not preserve R1/k+1 ∈ Γ1/(k+1)

since f(t1, . . . , tk+1) = 0k+1 /∈ R1/k+1 when all t1, . . . , tk+1 ∈ R1/k+1 are distinct.

�

It is also not hard to prove that 〈ΓXSAT〉6∃ and 〈ΓkSAT〉 6∃ are incomparable

for each k ≥ 3. The direction 〈ΓkSAT〉6∃ 6⊆ 〈ΓXSAT〉6∃ follows from Theorem 27.

For the direction 〈ΓXSAT〉6∃ 6⊆ 〈ΓkSAT〉6∃ one can, e.g., use the partial function

f(0, 1) = f(1, 0) = 0, and which is undefined otherwise, since f ∈ pPol(ΓXSAT)

but f /∈ pPol(ΓkSAT).

7. LV-Reductions and Bounded-Degree Instances

In this section we explicate a relationship between LV-reductions and degree-

bounded SAT(S)-DEG-B problems. In particular, as will be made clear in

Section 8 when we relate SAT({R 6=6= 6=1/3 }) to the ETH, this relationship is very

useful when proving that two problems are equally hard with respect to subex-

ponential complexity. We also tackle the problem of determining the smallest B

such that SAT(S)-DEG-B is NP-complete and provide these bounds for R 6= 6= 6=1/3 ,

R 6= 6=1/3, R 6=1/3 and R1/3.

Recall that a relation R can be e.f.p.p. implemented from a set of relations S

if it can be expressed by only using the relations in S, conjunction, and existential

quantification.

38

Lemma 28. Let S and S′ be two finite constraint languages. If S′ ⊆ 〈S〉 and

the equality relation Eq can be e.f.p.p. defined in S, then SAT(S′)-DEG-B is

LV-reducible to SAT(S)-DEG-C where C only depends on S, S′, and B. The

parameter of the LV-reduction depends only on S, S′, and B.

Proof. Let φ be a SAT(S′)-DEG-B-instance with n variables. Since each

variable can occur in at most B constraints, there cannot be more than n · B

constraints in total. Each such constraint is of the form R(x1, . . . , xk) where

R ∈ S′. Since S′ ⊆ 〈S〉, the relation R can then be expressed as a con-

junction of constraints over S ∪ {=} with a set of existentially quantified

variables: ∃y1, . . . , yl.
∧m
i=1 ψi(yi1 , . . . , yiar(ψi)), where each ψi ∈ S ∪ {=} and

{yi1 , . . . , yiar(ψi)} ⊆ {x1, . . . , xk} ∪ {y1, . . . , yl}. Furthermore, each =-relation

can be e.f.p.p. defined in S so we may without loss of generality assume that =

is not used in the definition.

Hence the number of extra variables for each constraint depends only on the

relations in S′. Let t denote the largest amount of variables that is required for

implementing a constraint. In the worst case the total amount of new variables

in the reduction is then (n ·B)t, which is linear with respect to n since B and t

are fixed values.

Since the reduction only increases the amount of variables with a constant

factor it is indeed an LV-reduction, which concludes the lemma. �

The condition that the equality relation Eq must be e.f.p.p. definable in S

can be replaced by other conditions such as S′ ⊆ 〈S〉 6=. We have made this

particular choice since, due to the next lemma, it is very convenient when working

with members of H (recall that H denotes the set of finite constraint languages

resulting in NP-complete SAT(·) problems).

Lemma 29. If S ∈ H, then Eq is e.f.p.p. implementable in S.

Proof. Let Neq denote the disequality relation {(0, 1), (1, 0)}. Since Neq is

closed under complement, it follows that Neq can always be p.p. defined in S

(since 〈S〉 = BR or 〈S〉 = IN2). Let Neq(x, y) ≡ ∃z1, . . . , zn.τ(x, y, z1, . . . , zn)

39

denote the p.p. implementation with the least number of occurrences of “=”.

Assume there exists an equality v = w in τ . Clearly, this cannot be of the type

x = y since we are implementing Neq(x, y). We can thus identify the variable

v with w and still have an p.p. implementation of Neq — this violates the

minimality condition. It follows that the implementation contains no occurrences

of “=”, i.e., it is an e.f.p.p. implementation. We can now e.f.p.p. implement Eq

as follows since we are working over a two-element domain:

Eq(x, y) ≡ ∃u.Neq(x, u) ∧Neq(u, y)

or equivalently the implementation

Eq(x, y) ≡ ∃u, z1, . . . , zn, w1, . . . , wn.τ(x, u, z1, . . . , zn) ∧ τ(u, y, w1, . . . , wn),

which is clearly an e.f.p.p. implementation. �

We get the following result by combining Lemmas 28 and 29.

Corollary 30. Let S, S′ ∈ H such that S′ ⊆ 〈S〉 and let B be an integer. Then,

there exists an LV-reduction from SAT(S′)-DEG-B to SAT(S)-DEG-C where

C only depends on S, S′ and B.

In contrast to Lemma 35, Corollary 30 shows that there exists an LV-reduction

from SAT(S)-DEG-B to SAT({R 6= 6= 6=1/3 }) for every S ∈ H and arbitrary B. This

apparently simple observation will be important in the next section where we

study connections between SAT(·) problems and the exponential-time hypothesis.

Corollary 30 also suggests that for languages S ∈ H it is useful to know the

largest B such that SAT(S)-DEG-B is in P and the smallest C such that

SAT(S)-DEG-C is NP-complete. For SAT({R1/3})-OCC-B this value is already

known since for B = 2 it can be reduced to the problem of finding a perfect

matching in a graph [19], but for B = 3 it is NP-complete even for planar

instances [28]. Unsurprisingly the same also holds for SAT({R1/3})-DEG-2 as

made clear in the following theorem.

Theorem 31. SAT({R1/3})-DEG-2 is solvable in polynomial time.

40

Proof. We show that SAT({R1/3})-DEG-2 is polynomial-time reducible to

SAT({R1/3})-OCC-2. Let I = (V,C) be an instance of SAT({R1/3})-DEG-2.

We transform I into an instance I ′ of SAT({R1/3})-OCC-2 which is satisfiable

if and only if I is satisfiable.

For this we consider each variable that occurs at least twice in some constraint

and at least one more time in another. Because I is an instance of SAT({R1/3})-

DEG-2, such a variable cannot occur in a third constraint; moreover, if a variable

occurs only once in two different constraints, then it already has at most two

occurrences. Observe that if a variable occurs three times in a constraint then

the instance is trivially unsatisfiable, and since this can be detected in time

linear in the size of I, we assume that this is not the case.

So let Ci ∈ C be a constraint of the form R1/3(xi, xi, yi), let Cj ∈ C be a

constraint where xi occurs in, and let Ck be a constraint where yi occurs in.

Since R1/3 is a symmetric relation in the sense that R1/3(x, y, z) = R1/3(x, z, y) =

R1/3(y, x, z) = R1/3(y, z, x) = R1/3(z, x, y) = R1/3(z, y, x) we may without loss

of generality assume that xi occurs in the first position of Cj and that yi occurs

in the first position of Ck. We perform a case study depending on Cj and Ck (if

it exists).

First observe that for any assignment f satisfying I it holds f(xi) = 0 and

f(yi) = 1. Up to permutation of arguments there are a now a few different cases

to consider:

1. Cj = R1/3(xi, xj , yi) (and hence, Ck does not exist),

2. Cj = R1/3(xi, xi, xj), Ck = R1/3(yi, xk, xk),

3. Cj = R1/3(xi, xi, xj), Ck = R1/3(yi, xk, x′k),

4. Cj = R1/3(xi, xj , x′j), Ck = R1/3(yi, xj , xj),

5. Cj = R1/3(xi, xj , x′j), Ck = R1/3(yi, xj , xk),

6. Cj = R1/3(xi, xj , x′j), Ck = R1/3(yi, xk, xk),

7. Cj = R1/3(xi, xj , x′j), Ck = R1/3(yi, xk, x′k),

41

where xj , x′j , xk, x′k denote variables all distinct from each other and from xi

and yi. We have not included the cases that (1) trivially result in unsatisfiable

instances or (2) is simply a permutation of case (1) – (7). For example Cj =

R1/3(xi, yi, yi) is unsatisfiable since f(yi) = 1 in any satisfying assignment f ,

and if Cj = R1/3(yi, xi, xi) then this is simply a permutation of R1/3(xi, xi, yi)

and can safely be removed.

In each case it is easy to show how the constraints can be replaced by valid

SAT({R1/3})-OCC-2 constraints. In case (1) we introduce a fresh variable x′j
and replace R1/3(xi, xj , yi) with R1/3(x′j , xj , yi). This ensures that xi and yi both

occur only two times. In case (2) we introduce two fresh variables x′j and x′k and

replace Cj = R1/3(xi, xi, xj) and Ck = R1/3(yi, xk, xk) with R1/3(x′j , x′j , xj) and

R1/3(yi, x′k, xk). Case (3) is very similar to case (2) and in case (4) we introduce

a fresh variable x′′j and replace Ck = R1/3(yi, xj , xj) with R1/3(yi, x′′j , xj). For

case (5) first note that f(xi) = f(xj) = f(xk) = 0 and that f(yi) = f(x′j) = 1

in any satisfying assignment f . To ensure that xi only occurs two times we

introduce four fresh variables zi, z′i, z′′i , z′′′i , and replace Cj = R1/3(xi, xj , x′j)

and Ck = R1/3(yi, xj , xk) with R1/3(zi, z′i, z′i), R1/3(yi, xj , xk), R1/3(zi, z′′i , z′′′i)

and R1/3(z′′i , z′′′i , x′j). For any satisfying assignment f it then holds that f(xi) =

f(xj) = f(xk) = f(z′i) = f(z′′i) = f(z′′′i) = 0, and f(yi) = f(x′j) = f(zi) = 1.

In case (6) we replace R1/3(xi, xj , x′j) and R1/3(yi, xk, x′k) with the constraints

R1/3(x′i, xj , x′j), R1/3(yi, x′i, x′′i), R1/3(y′i, x′′i , x′′′i), R1/3(y′i, xk, x′k), where x′i, x′′i ,

x′′′i and y′i are fresh variables. For any satisfying assignment f it then holds that

f(xi) = f(x′i) = f(x′′i) = f(x′′′i) = 1− f(yi) = 1− f(y′i), and f(xj) = 1− f(x′j).

Last, the remaining case (7) is similar to case (6) with the exception that xk
and x′k only occurs one time in Ck.

Repeating this procedure for every constraint then results in a satisfiability

equivalent instance of SAT({R1/3})-OCC-2. Moreover the reduction runs in

polynomial time with respect to n since the total number of constraints is

bounded by O(n3), which concludes the proof. �

It might be expected that the same holds for SAT({R 6=6= 6=1/3 }), SAT({R 6= 6=1/3})

42

and SAT({R 6=1/3}) since they are all as easy as SAT({R1/3}). Contrary to

intuition this is however not the case: SAT({R 6= 6= 6=1/3 })-DEG-B is NP-complete

even for B = 2. This also holds for the relations R 6= 6=1/3 and R 6=1/3. To prove this

we first note that R 6= 6= 6=1/3 , R 6=6=1/3, and R 6=1/3 are not ∆-matroid relations.

Definition 32. (∆-matroid relation) Let R be a Boolean relation and x, y, x′

be Boolean tuples of the same arity. Let d(x, y) be the Hamming distance

between x and y. Then x′ is a step from x to y if d(x, x′) = 1 and d(x, y) =

d(x, x′) + d(x′, y). R is a ∆-matroid relation if it satisfies the following axiom:

∀x, y ∈ R ∀x′.(x′ is a step from x to y) → (x′ ∈ R ∨ ∃x′′ ∈ R that is a step from

x′ to y).

Lemma 33. R 6=1/3, R
6=6=
1/3 and R 6= 6= 6=1/3 are not ∆-matroid relations.

Proof. We begin with R 6=6= 6=1/3 . Let x = 001110 and y = 010101. These are

both elements in R 6=6= 6=1/3 . Let x′ = 000110. Then d(x, x′) = 1 and d(x, y) =

d(x, x′) + d(x′, y) = 1 + 3 = 4, so x′ is a step from x to y. For R 6=6= 6=1/3 to be a

∆-matroid relation we must have the following: either x′ ∈ R 6= 6=6=1/3 , or there exists

a x′′ that is a step from x′ to y. Since neither of the disjuncts are true, it follows

that R 6= 6=6=1/3 is not a ∆-matroid relation. For R 6= 6=1/3 and R 6=1/3 the proofs are similar

but using the tuples 00111, 01010 and 0011, 1000 as starting points instead. �

The hardness results then follow from Theorem 3 in Dalmau and Ford [10],

which states that SAT(S)-OCC-2 is NP-complete if S contains a relation that

is not a ∆-matroid, and from the fact that SAT(S)-OCC-2 is a special case of

SAT(S)-DEG-2.

Theorem 34.

• SAT({R 6=1/3})-DEG-2 is NP-complete.

• SAT({R 6= 6=1/3})-DEG-2 is NP-complete.

• SAT({R 6= 6= 6=1/3 })-DEG-2 is NP-complete.

43

8. The Exponential-Time Hypothesis

Even though SAT({R 6= 6= 6=1/3 }) is the easiest NP-complete SAT(·) problem,

we do not hope to prove or disprove that the problems SAT({R 6= 6=6=1/3 }) or

SAT({R 6= 6=6=1/3 })-DEG-2 are solvable in polynomial time, since this would set-

tle the P = NP question. A more assailable question is whether the problem can

be solved in subexponential time. If yes, then we are none the wiser about P ?=

NP; but if no, then P 6= NP. As a tool for studying subexponential problems,

Impagliazzo et al. [18] proved a sparsification lemma for k-SAT. Intuitively, the

process of sparsification means that a SAT(S) instance with a large number of

constraints can be expressed as a disjunction of instances with a comparably

small number of constraints. We prove that sparsification is possible not only for

k-SAT, but between all finite constraint languages S and S′ for which SAT(S)

and SAT(S′) are NP-complete, and use this to prove that SAT({R 6= 6= 6=1/3 })-DEG-2

is subexponential if and only if the exponential-time hypothesis is false. Due to

sparsification we can also prove that all such SAT(S) problems are subexponen-

tial if and only if one of them is subexponential (and that this holds also in the

degree-bounded case), which is a significant refinement of Impagliazzo et al.’s

result when restricted to finite Boolean constraint languages.

We first observe that LV-reductions are insufficient for these purposes since,

under the assumption that coNP 6⊆ P/poly, SAT(ΓkSAT) for k ≥ 4 is not LV-

reducible to SAT({R 6=6= 6=1/3 }).

Lemma 35. There is no LV-reduction from SAT(ΓkSAT), k ≥ 4, to SAT({R 6= 6=6=1/3 })

unless coNP ⊆ P/poly (and the polynomial hierarchy collapses).

Proof. We assume that k = 4 since the other cases are entirely similar. Assume

(with the aim of reaching a contradiction) that there is an LV-reduction from

SAT(Γ4
SAT) to SAT({R 6= 6= 6=1/3 }). We know that there is an LV-reduction (with

parameter 1) from SAT({R 6= 6=6=1/3 }) to SAT(Γ3
SAT) by Theorem 10. Taken together,

this would imply the existence of an LV-reduction from SAT(Γ4
SAT) to SAT(Γ3

SAT).

Dell & van Melkebeek [12, Corollary 1] show that, under the hypothesis that

44

coNP 6⊆ P/poly, polynomial-time many-one reductions cannot reduce the density

of n-variable SAT(ΓdSAT) instances to O(nc) clauses for any constant c < d.

Assume there is an LV-reduction (which is a restricted kind of polynomial-time

many-one reduction) with parameter C from SAT(Γ4
SAT) to SAT(Γ3

SAT). Let φ

be an arbitrary instance (with n variables) of SAT(Γ4
SAT) and φ′ the resulting

SAT(Γ3
SAT) instance. The instance φ′ contains at most C · n+O(1) variables so

it contains at most O(8(C · n)3) = O(n3) distinct constraints. This contradicts

Dell & van Melkebeek’s result. �

However, as we show in the forthcoming sections, this restriction can be

overcome with the help of sparsification.

8.1. Two Notions of Sparsification

Sparsification in its original formulation by Impagliazzo et al. [18] is only

defined for k-SAT formulas. We generalize the definition to arbitrary constraint

languages, which leads to our first version of sparsification.

Definition 36 (Sparsification1). Let S and S′ be two finite constraint lan-

guages. We say that S is sparsifiable1 into S′ if, for all ε > 0 and for all SAT(S)

instances φ (with n variables), there exists a set {φ1, . . . , φt} of SAT(S′) in-

stances such that

1. φ is satisfiable if and only if at least one φi is satisfiable,

2. φi contains at most C · n constraints, where C only depends on ε, S and

S′,

3. t ≤ 2εn, and

4. {φ1, . . . , φt} can be computed in O(poly(n) · 2εn) time.

Note that nothing in the definition says that S and S′ cannot be the same

constraint language. If so, we simply say that S is sparsifiable1. Impagliazzo et

al. [18] prove the following result for k-SAT.

45

Lemma 37 (sparsification1 lemma for k-SAT). ΓkSAT is sparsifiable1 for k ≥

3.

We will often use a slightly different formulation of sparsification which we

denote sparsification2. In the second version, we focus on the degree of variables

rather than the number of constraints.

Definition 38 (Sparsification2). Let S and S′ be two finite constraint lan-

guages. We say that S is sparsifiable2 into S′ if, for all ε > 0 and for all SAT(S)

instances φ (with n variables), there exists a set {φ1, . . . , φt} of SAT(S′) in-

stances such that

1. φ is satisfiable if and only if at least one φi is satisfiable,

2. φi is a SAT(S′)-DEG-B instance, where B only depends on ε, S and S′,

3. φi contains at most D · n variables, where D only depends on ε, S and S′,

4. t ≤ 2εn, and

5. {φ1, . . . , φt} can be computed in O(poly(n) · 2εn) time.

It should come as no surprise that sparsification1 and sparsification2 are

tightly related concepts. It is easy to see that sparsification2 implies sparsification1:

assume that every variable in φi has degree ≤ B and φi contains at most D · n

variables. Then, variable x can appear in at most B distinct constraints and

hence there can be at most (B ·D) · n distinct constraints in φi.

It is also the case that sparsification1 implies sparsification2 under a mild

additional assumption.

Lemma 39. Assume S is sparsifiable1 into S′. Then, S is sparsifiable2 into S′

if the equality relation is e.f.p.p. definable in S′.

Proof. Assume Eq(x, y) ≡ ∃z1, . . . , zk.τ(x, y, z1, . . . , zk) is an e.f.p.p. imple-

mentation of Eq. Let p denote the maximum degree of any variable in this

implementation and let q = k + 2 denote the total number of variables. Let

46

φ be a SAT(S) instance and let {φ1, . . . , φt} be a sparsification1 into S′ (for

some ε > 0). Let k be the maximum arity of the relations in S′. Let us consider

φi and assume V is the set of variables occurring in φi. Arbitrarily choose a

variable x ∈ V and assume that x appears m times in φi. Introduce m fresh

variables x1, . . . , xm and constraints

Eq(x1, x2),Eq(x2, x3), . . . ,Eq(xm−1, xm).

Finally, replace the i-th occurrence of x in φi with the variable xi. Do this for

all variables x ∈ V and let φ′i denote the resulting formula. Note the following:

1. The formula φi contains at most C · n constraints so it contains at most

C · n · k variable occurrences. This implies that φ′i contains at most

(C · k) · n+ (C · k · q) · n variables where (C · k · q) · n is an upper bound on

the number of variables used for implementing the Eq constraints.

2. Each variable occurring in φ′i has degree at most 1 + 2p: it appears in at

most one position in the “original constraints” and in 2p positions in the

constraints that e.f.p.p. implements Eq.

It follows that {φ′1, . . . , φ′t} is a sparsification2 of φ. �

Whenever we study constraint languages in H, we may actually view the

two definitions as equivalent due to Lemma 29. Since ΓkSAT ∈ H for k ≥ 3 we

immediately get the following.

Lemma 40. ΓkSAT is sparsifiable2.

We also get the following simple connection between sparsification and

subexponential complexity.

Lemma 41. Arbitrarily choose S, S′ ∈ H and assume that S is sparsifiable2

into S′. If SAT(S′)-DEG-B is subexponential for all B, then SAT(S) is subex-

ponential.

47

Proof. Assume that we want to solve SAT(S) in time O(poly(n) ·2nε) for some

ε > 0. For every α > 0 and B, there exists a time O(poly(n) · 2nα) algorithm

Aα,B for SAT(S′)-DEG-B. Arbitrarily choose an instance φ of SAT(S) with n

variables. Sparsify φ with parameter ε/2 into SAT(S′) and let {φ1, . . . , φt} be

the resulting set of SAT(S′)-DEG-B instances (where B is only dependent on

S, S′, and ε). This takes O(poly(n) · 2(ε/2)n) time, t ≤ 2(ε/2)n holds, and each

φi contains C · n variables for some constant C that only depends on ε. Let

α = ε/2C and apply Aα,B to the instances φ1, . . . , φt. If there is a satisfiable

φi, then φ is satisfiable, and otherwise it is not. The total time for this is

O(poly(C · n) · t · 2(ε/2C)·Cn)) = O(poly(n) · 2(ε/2)n · 2(ε/2)n) = O(poly(n) · 2εn).

�

8.2. Sparsification Within H

In order to prove the general sparsification result (i.e., that all constraint

languages S, S′ ∈ H can be sparsified2 into each other), we first prove that ΓkNAE

is sparsifiable2.

Lemma 42 (sparsification2 lemma for NAE-k-SAT). ΓkNAE is sparsifiable2.

Proof. Arbitrarily choose ε > 0 and let φ be a SAT(ΓkNAE) instance with n

variables. The proof proceeds in five steps.

1. φ is LV-reduced into a ΓkSAT instance ψ,

2. ψ is sparsified2 which yields t ΓkSAT instances ψ1, . . . , ψt,

3. each ψi is LV-reduced into a Γk+1
NAE instance ψ′i,

4. each ψ′i is LV-reduced into a Γk+1
NAE instance ψ′′i in which all variables have

a bounded degree,

5. each ψ′′i is LV-reduced into a ΓkNAE instance φi.

Steps 1 and 2. Note that γkNAE(x1, . . . , xk) has the following q.f.p.p. implementa-

tion in terms of γkSAT:

γkNAE(x1, . . . , xk) ≡ γkSAT(x1, . . . , xk) ∧ γkSAT(¬x1, . . . ,¬xk).

48

In other words, if γkNAE(x1, . . . , xk) is a constraint from φ, then it is satisfiable if

and only if γkSAT(x1, . . . , xk)∧ γkSAT(¬x1, . . . ,¬xk) is satisfiable. We can therefore

form an equivalent SAT(ΓkSAT) instance ψ by adding the complement of every

γkNAE-constraint. By the sparsification2 lemma for k-SAT (Lemma 40), it follows

that ψ can be sparsified2 into {ψ1, . . . , ψt}.

Step 3. Arbitrarily choose ψi, 1 ≤ i ≤ t, and let V denote the set of variables

appearing in it. We begin by introducing one fresh variable X. For each

constraint γkSAT(x1, . . . , xk) ∈ ψi, we let γk+1
NAE(x1, . . . , xk, X) be the corresponding

γk+1
NAE-constraint, and we let ψ′i be the resulting SAT(Γk+1

NAE) instance. Then, ψi
is satisfiable if and only if ψ′i is satisfiable: if ψi is satisfied by the assignment f ,

then ψ′i is satisfied by the assignment f ′ defined such that f ′(x) = f(x) if x ∈ V

and f ′(X) = 0. For the other direction, assume ψ′i is satisfied by the assignment

f ′. If f ′(X) = 0, then each constraint has at least one literal that is not assigned

0 by f , by what it follows that ψi must be satisfiable. If f ′(X) = 1, then we

note that the complement f ′′ of f ′ defined as f ′′(x) = 1− f ′(x) is a satisfying

assignment, too, and we can apply the same reasoning as above.

Since ψ was sparsified2, the degree of the variables in ψi is bounded by some

constant B. It follows that the number of constraints in ψi is at most B · |V |

and, consequently, that variable X has at most degree B · |V | in ψ′i.

Step 4. Now, consider ψ′i and let W denote the degree of X. We continue by

proving that the degree of X can be reduced to a constant value. To do this, we

e.f.p.p. implement the equality relation in Γk+1
NAE:

Eq(x, y) ≡ ∃z.γk+1
NAE(x, z, . . . , z) ∧ γk+1

NAE(z, . . . , z, y).

We see that the highest degree of any variable in this definition is 2k.

To decrease the degree of X, we introduce W fresh variables X1, . . . , XW

and the following chain of equality constraints:

Eq(X1, X2) ∧ Eq(X2, X3) ∧ . . . ∧ Eq(XW−1, XW).

Thereafter, we replace the occurrence of variable X in ψ′i with variable Xi. Let

the resulting instance be ψ′′i and note that ψ′i is satisfiable if and only if ψ′′i

49

is satisfiable. Also note that the maximum degree B′′ of any variable in ψ′′i is

bounded by max{B, 2k, 3} (where B is the degree of variables in V , 2k is the

degree of variables in the construction of Eq, and 3 is the degree of the variables

X1, . . . , XW). Furthermore, we introduce no more than 2W new variables—the

variables X1, . . . , XW and one auxiliary variable per Eq constraint. Hence,

• ψ′′ contains at most |V |+ 2W ≤ |V |+ 2 ·B · |V | = (2B + 1)|V | variables,

and

• every variable in ψ′′ has degree at most B′′ where B′′ depends only on B

and k.

Step 5. We know that Eq is e.f.p.p. definable in ΓkNAE (by the construction

in Step 4.) and we know that no variable occurs more than B′′ times in ψ′′.

Consequently, we can apply Lemma 28 and LV-reduce ψ′′i to an equivalent

SAT(ΓkNAE)-DEG-C instance φi for some C that only depends on B′′ and k.

We now verify that the formula {φ1, . . . , φt} is indeed a sparsification of φ.

1. φ is satisfiable if and only if at least one φi is satisfiable. This is clear from

the transformations above.

2. φi is a SAT(ΓkNAE)-DEG-C instance, where C only depends on ε and k.

Tracing the proof backwards, we see that

(a) C depends only on B′′ and k,

(b) B′′ depends only on B and k, and

(c) B depends only on ε and k.

3. φi contains at most D′′ · n variables where D′′ only depends on ε and k.

The instance ψ′′i contains at most (2B+ 1) · |V | variables where |V | ≤ D ·n

for some D that only depends on ε and k, and B depends on ε and k only.

This implies that there exists a D′ (that only depends on ε and k) such

that the number of variables in φi is ≤ D′ ·D · n by Lemma 28.

50

4. t ≤ 2εn. The transformation from φ to ψ in step 1 does not introduce any

new variables. Hence, the value t is determined by the initial sparsification

only and the bound follows from Lemma 40.

5. {φ1, . . . , φt} can be computed in O(poly(n) · 2εn) time. We begin with a

SAT(ΓkNAE) instance φ (with n variables) and construct the SAT(ΓkSAT)

instance ψ. This can clearly be done in linear time and the size of φ is

linearly related to the size of ψ. In particular, φ contains as many variables

as ψ. Thus, the sparsification2 process takes O(poly(n) · 2εn) time and

each instance ψ′i is only linearly larger than ψ. From this point, we only

apply a series of LV-reductions to each ψ′i. Since they can be computed in

time O(poly(n)), the time bound follows.

By combining step 1 to step 5 we then get the required sparsification of ΓkNAE. �

The following auxiliary lemma establishes that for any finite constraint

language S such that S ⊂ BR (resp. S ⊂ IN2) it holds that SAT(S) is LV-

reducible to k-SAT (resp. NAE-k-SAT) for some k.

Lemma 43. Let S be a finite constraint language such that S ⊂ IN2 (respectively

S ⊂ BR). Let K denote the maximum arity of the relations in S. Then SAT(S)

is LV-reducible (with parameter 1) to SAT(ΓKNAE) (respectively SAT(ΓKSAT)).

Proof. We give the proof for S ⊂ IN2; the case S ⊂ BR is analogous.

Let φ be an instance of SAT(S) with n variables and let R ∈ S be a relation

with arity k. By definition, R = {0, 1}k \ E, where E is a set of k-ary tuples

over {0, 1} that describes the excluded tuples in the relation. Since all relations

in S are closed under complement, we can partition E into E1 and E2 where

each tuple in E2 is the complement of a tuple in E1.

Let |E1| = |E2| = N and e1, . . . , eN be an enumeration of the elements in E1

and assume that ei = (bi,1, . . . , bi,k), bi,j ∈ {0, 1}. If R(x1, . . . , xk) is a constraint

in φ, then it can be expressed by the SAT(ΓkNAE) formula ψ1 ∧ . . . ∧ ψN , where

each ψi = γkNAE(y1, . . . , yk), and yj = xj if bi,j is 0, and yj = ¬xj if bi,j is 1.

51

Each such constraint represents one of the excluded tuples in E1 and one of the

excluded tuples in E2, and as such the formula as a whole is satisfiable if and

only if R(x1, . . . , xk) is satisfiable. The same procedure can be repeated for all

the other relations in S. Moreover, since no extra variables are introduced and

the number of new constraints is linear in the size of φ (because S is fixed and

finite), the reduction is an LV-reduction from SAT(S) to to SAT(ΓKNAE). �

We can now prove that sparsification is possible between all S, S′ in H.

Theorem 44. (general sparsification) Arbitrarily choose S, S′ ∈ H. Then,

S is sparsifiable2 into S′.

Proof. Throughout the proof, let k denote the highest arity of any relation in

S. There are a few different cases depending on which co-clones are generated

by S and S′:

1. 〈S〉 = 〈S′〉 = IN2,

2. 〈S〉 = 〈S′〉 = BR,

3. 〈S〉 = IN2, 〈S′〉 = BR

4. 〈S〉 = BR, 〈S′〉 = IN2.

Case 1. Arbitrarily choose ε > 0. Every SAT(S) instance φ with n variables

can be reduced to a SAT(ΓkNAE) instance φ′ with the same number of variables

by Lemma 43. We sparsify2 this instance according to Lemma 42 and obtain

the set {φ′1, . . . , φ′t}. Each φ′i is an instance of SAT(ΓkNAE)-DEG-B for some B

that only depends on S, k, and ε. By Lemma 29, the relation Eq is e.f.p.p.

implementable in ΓkNAE. We can thus apply Lemma 28 (since 〈S′〉 = IN2 implies

that ΓkNAE ⊆ IN2 = 〈S′〉) and LV-reduce this instance to an instance φ′′i of

SAT(S′)-DEG-C for some C that only depends on S, S′, and B. One can now

easily verify that {φ′′1 , . . . , φ′′t } is a sparsification of φ.

Case 2. Analogous to Case 1 by using ΓkSAT instead of ΓkNAE.

52

Case 3. By Lemma 43 it follows that SAT(S) can be LV-reduced (with

parameter 1) to SAT(ΓkSAT). Thereafter we can proceed as in Case 2.

Case 4. Arbitrarily choose ε > 0. If φ is a SAT(S) instance with n

variables, it can be LV-reduced (with parameter 1) to a SAT(ΓkSAT) instance

φ′ by Lemma 43. Sparsify2 this instance (with parameter ε) into {φ′1, . . . , φ′t}

according to Lemma 42. By recapitulating steps 3 and 4 from the proof of

Lemma 42, we can then LV-reduce each φ′i to a SAT(Γk+1
NAE)-DEG-B instance φ′′i .

We can now apply Lemma 28 (since 〈S′〉 = IN2 implies that Γk+1
NAE ⊆ IN2 = 〈S′〉)

and LV-reduce this instance to an instance φ′′′i of SAT(S′)-DEG-C for some

C that only depends on S, S′, and B. It is now straightforward to verify that

φ′′′1 , . . . , φ
′′′
t is a sparsification2 of φ. �

Santhanam and Srinivasan [33] have shown that the unrestricted SAT prob-

lem (which corresponds to an infinite constraint language) does not admit

sparsification to arbitrary finite constraint languages such that SAT(·) is NP-

complete. Consequently, it is a necessary condition that the constraint languages

in Theorem 44 are indeed finite. Related questions are discussed by Dell & van

Melkebeek [12].

8.3. SAT and the Exponential-Time Hypothesis

A related question to the exponential-time hypothesis is which problems can

be proved to be subexponential if and only if k-SAT is subexponential with

the help of a size-preserving reduction. Impagliazzo et al. [18] prove that many

NP-complete problems such as k-colorability, clique and vertex cover are as

hard as k-SAT with respect to subexponential complexity. In this section, we

prove that both SAT({R 6= 6= 6=1/3 }) and SAT({R 6= 6=6=1/3 })-DEG-2 are subexponential

if and only if k-SAT is subexponential, and, as a consequence, that this is true

for all finite constraint languages S for which SAT(S) is NP-complete — even

for degree-bounded instances. The following lemma together with the general

sparsification result from the previous section are the crucial ingredients in the

proof of the main result (Theorem 46).

53

Lemma 45. If SAT({R 6= 6= 6=1/3 })-DEG-2 is subexponential, then SAT({R 6= 6= 6=1/3 }) is

subexponential.

Proof. Let Neq denote the disequality relation {(0, 1), (1, 0)} and Eqk the k-ary

equality relation {(0, . . . , 0), (1, . . . , 1)}.

Claim 1. R 6= 6= 6=1/3 can e.f.p.p. implement Neq(x, y) such that every variable in

the implementation has degree 1. Merely observe that Neq(x, y) has the e.f.p.p.

implementation ∃z, w, z′, w′.R 6= 6=6=1/3 (x, z, w, y, z′, w′).

Claim 2. R 6= 6= 6=1/3 can e.f.p.p. implement Eq3(x1, x2, x3) such that variables

x1, . . . , x3 have degree 1 and all other variables have degree at most 2. Consider

the following implementation:

Eq3(x1, x2, x3) ≡∃x′1, z, w, z′, w′, h1, . . . , h4, h5.

Neq(x1, x
′
1) ∧R 6=6= 6=1/3 (z, w, h1, x

′
1, x2, h2) ∧Neq(z, z′) ∧

Neq(w,w′) ∧R 6= 6= 6=1/3 (z′, w′, h3, x3, h4, h5).

It is straightforward to verify that it satisfies the degree bounds stated above.

To see that it actually implements Eq3, first note that it is possible to assign

the variables z, w, z′, w′, h1, . . . , h5 values that satisfy the formula for every

assignment σ such that σ(x1) = σ(x2) = σ(x3). Next, we show that every

satisfying assignment forces x1, x2, x3 to take the same value. We first verify that

an arbitrary satisfying assignment σ satisfies σ(z) 6= σ(w), i.e., σ(z) = 1− σ(w).

Assume σ(z) = 0. Then, σ(z′) = 1⇒ σ(w′) = 0⇒ σ(w) = 1. One can similarly

show that if σ(z) = 1, then σ(w) = 0. Now let σ be an arbitrary satisfying

assignment. We see that

• σ(x1) = 1− σ(x′1) = σ(z) = 1− σ(w) = σ(x2) and

• σ(x3) = 1− σ(z′) = σ(z) = 1− σ(x′1) = σ(x1).

This implies that σ(x1) = σ(x2) = σ(x3) and that we have an implementation

of Eq3.

Claim 3. R 6= 6= 6=1/3 can e.f.p.p. implement Eqk(x1, . . . , xk) such that x1, . . . , xk

have degree 1 and all other variables have degree at most 2. The case when

54

k ≤ 3 follows from Claim 2. If we have an implementation of Eqk satisfying the

degree bounds, then

Eqk+1(x1, . . . , xk+1) ≡ ∃x′.Eqk(x1, . . . , xk−1, x
′) ∧ Eq3(x′, xk, xk+1)

is a valid implementation that satisfies the degree bounds, too.

Arbitrarily choose ε > 0 and let ψ be an arbitrary instance of SAT({R 6= 6= 6=1/3 })

with n variables. Sparsify2 ψ (with parameter ε) into {R 6= 6= 6=1/3 } according to

Theorem 44 and let {ψ1, . . . , ψt} be the result. Each ψi is an instance of

SAT({R 6= 6=6=1/3 })-DEG-B where B only depends on ε. Let V be the set of variables

in ψi. Assume that x is a variable in V that has degree 2 < B′ ≤ B. Replace

the j-th occurrence of x with the fresh variable xj . Finally, use the construction

in Claim 3 and add the constraint EqB′(x1, . . . , xB′). Do this for all variables

occurring in V and let ψ′i denote the resulting instance. It is not hard to see

that ψ′i is indeed an instance of SAT({R 6=6= 6=1/3 })-DEG-2. We need to calculate

the number of variables in ψ′i. The variables in ψi have at most degree B so ψ′

contains at most B · |V | variables if we do not count the variables introduced

by the Eqk constraints. For simplicity, we assume that we have added |V | EqB
constraints. Let D be the number of variables in the implementation of Eq3

in Claim 2. An EqB constraint is constructed by “chaining together” B Eq3

constraints—this is done by introducing B − 3 new variables. Hence, one EqB
constraint contains B + (B − 3) + B ·D variables. All in all, the instance ψi
contains at most |V | · (B + (B − 3) + B ·D) + |V | · B = |V | · (B(D + 3) − 3)

variables. We see that B(D + 3)− 3 depends on ε only since D is a universal

constant.

Assume now that we want to solve SAT({R 6=6= 6=1/3 }) in time O(poly(n) ·2nε) for

some ε > 0. For every α > 0, there exists a time O(poly(n) · 2nα) algorithm Aα

for SAT({R 6= 6= 6=1/3 })-DEG-2. Arbitrarily choose an instance ψ of SAT({R 6= 6= 6=1/3 })

with n variables. Apply the transformation described above with parameter

ε/2 and let {ψ1, . . . , ψt} be the resulting set of SAT({R 6= 6= 6=1/3 })-DEG-2 instances.

This takes O(poly(n) · 2(ε/2)n) time, t ≤ 2(ε/2)n, and each ψi contains C · n

variables for some constant C that only depends on ε. Let α = ε/2C and apply

55

Aα to the instances ψ1, . . . , ψt. If there is a satisfiable ψi, then ψ is satisfiable

and, otherwise, not. This process takes time O(poly(C · n) · t · 2(ε/2C)·Cn)) =

O(poly(n) · 2(ε/2)n · 2(ε/2)n) = O(poly(n) · 2εn). �

This lemma can be viewed as yet another proof of NP-hardness for SAT({R 6=6= 6=1/3 })-

DEG-2. The transformation from ψi to ψ′i is a polynomial-time reduction

from SAT({R 6= 6= 6=1/3 })-DEG-B to SAT({R 6= 6= 6=1/3 })-DEG-2 (for any fixed B), and

SAT({R 6= 6= 6=1/3 })-DEG-B is NP-hard for some B by Theorem 3.

Theorem 46. The following statements are equivalent:

1. The exponential-time hypothesis is false.

2. SAT({R 6=1/3})-DEG-2 is subexponential.

3. SAT({R 6= 6=1/3})-DEG-2 is subexponential.

4. SAT({R 6= 6= 6=1/3 })-DEG-2 is subexponential.

5. SAT({R 6= 6= 6=1/3 }) is subexponential.

6. For every S ∈ H, SAT(S) is subexponential.

7. For every S ∈ H, SAT(S)-DEG-B is subexponential for every B.

8. There exists an S ∈ H such that SAT(S) is subexponential.

9. There exists an S ∈ H such that SAT(S)-DEG-B is subexponential for all

B.

Proof. 1 =⇒ 2: If the exponential-time hypothesis is false then 3-SAT is

subexponential. But then R 6=1/3 must also be subexponential since it is as easy as

3-SAT, which immediately implies that SAT({R 6=1/3})-DEG-2 is subexponential.

2 =⇒ 3: Assume that SAT({R 6=1/3})-DEG-2 is subexponential. We

give a size-preserving reduction from SAT({R 6= 6=1/3})-DEG-2 to SAT({R 6=1/3})-

DEG-2. Let φ be an instance of SAT({R 6= 6=1/3})-DEG-2 with n variables and

2n constraints. Then we replace every constraint R 6= 6=1/3(x1, x2, x3, x
′
1, x
′
2) with

56

R 6=1/3(x1, x
′′
2 , x3, x

′
1)∧R 6=1/3(x2, a, b, x

′
2)∧R 6=1/3(x′′2 , a, b, x′′′2), where x′2, x′′2 , x′′′2 , a and

b are fresh variables. As can be verified σ(x′′2) = σ(x2) = 1−σ(x′2) for all models

σ, and, furthermore, the degree of any newly introduced variables is at most

two. If we repeat the procedure for every constraint in φ we get an equivalent

instance φ′ of SAT({R 6=1/3})-DEG-2 where the number of variables is bounded

by 10n.

3 =⇒ 4: Same reduction as in the previous case.

4 =⇒ 5: By Lemma 45.

5 =⇒ 6: Assume that SAT({R 6= 6=6=1/3 }) is subexponential. Clearly, SAT({R 6= 6=6=1/3 })-

DEG-B is subexponential for all B, too. According to the general sparsification

result (Theorem 44), (S) can be sparsified into ({R 6=6= 6=1/3 }). Hence, SAT(S) is

subexponential by Lemma 41.

6 =⇒ 7, 6 =⇒ 8, 7 =⇒ 9, 8 =⇒ 9: Trivial.

9 =⇒ 1: Assume that SAT(S)-DEG-B is subexponential for all B. By

Theorem 44, SAT(Γ3
SAT) can be sparsified into SAT(S) so the implication follows

from Lemma 41.

When proving 5 =⇒ 6 we do not require that the instances have bounded

degree. Hence, there may be a more direct way of proving the implication

without using sparsification: one may for instance think of LV-reductions from

SAT(S) to SAT({R 6= 6= 6=1/3 }). We remind the reader that the existence of such

reductions (for all S ∈ H) are unlikely since they imply coNP ⊆ P/poly by

Lemma 35.

9. Research Directions and Open Questions

In this article we have provided a general framework to study the complexity

of NP-hard problems and applied this to the parameterized Boolean satisfiability

problem. In particular this has allowed us to get a more nuanced view of the

complexity of SAT(·) than possible with the algebraic approach in Jeavons [20].

In other words studying the complexity of a problem with our approach provides

57

much more information than merely stating that it is polynomial-time solvable

or NP-complete. Througout the article we have also seen that clone theoretical

results in fact can yield highly practical applications. For example the proof

that SAT({R 6=6= 6=1/3 }) is the easiest NP-complete SAT(·) problem is based on

determining the largest element in an interval of strong partial clones — a result

that might otherwise be believed to be of purely theoretical interest. With this

result we could also obtain a full understanding of the complexity of SAT(S)

with respect to subexponential complexity for all finite languages S. We therefore

deem it likely that further investigations in partial clone theory, and in particular

improving the classification in Section 6, can lead to a better understanding of

the complexity differences between SAT(·) problems.

We will now discuss some research directions and pose some open questions.

The complexity of SAT({R 6= 6=6=1/3 })

After proving that SAT({R 6=6= 6=1/3 }) is the easiest NP-complete SAT(S) prob-

lem, it is tempting to try to determine bounds on its time complexity. Lemma 17

and 18 gives an LV-reduction to 1-in-3-SAT with parameter 1
2 . It would be

interesting to determine whether it is possible to construct better algorithms

for SAT({R 6= 6= 6=1/3 }) and SAT({R 6= 6= 6=1/3 })-DEG-2 that are better than reductions to

1-in-3-SAT.

The relative complexity between SAT({R 6= 6= 6=1/3 }), SAT({R 6= 6=1/3}) and SAT({R 6=1/3})

Since our definition of ‘easier’ means ‘not harder than’ we have not excluded

the possibility that there exists other constraint languages that are as easy as

R 6= 6=6=1/3 . Ultimately one would like to prove that SAT({R 6=6= 6=1/3 }) is strictly easier

than SAT({R 6=6=1/3}), SAT({R 6=1/3}), and SAT({R1/3}). The techniques used in

Lemma 17 however appear to fall short from the goal since they require that

the language contains all possible sign patterns, which is of course not true for

{R 6= 6=1/3}, {R 6=1/3}, and {R1/3}. At the same time adding additional sign patterns to

a language does in general not decrease the performance of branch-and-reduce

algorithms but only introduces more cases. Hence a possible starting point

58

might be to find examples of languages S and S′, where S′ is obtained from S

by closing it under sign patterns, but where SAT(S′) is still CV-reducible to

SAT(S).

Partial co-clones covering BR

Another line of research is to continue the investigation of the partial co-clone

lattice in the bottom of BR. The inclusions proved for 〈R 6= 6= 6=01
1/3 〉6∃, 〈R 6= 6=01

1/3 〉 6∃,

〈R 6=01
1/3 〉6∃ and 〈R01

1/3〉6∃ are incomplete in the sense that we have not excluded

the existence of other partial co-clones in these intervals. A priori there could

exist any – finite, infinite or uncountably infinite – number of partial co-clones

besides the ones given and our belief in the conjecture is mainly based on

the seemingly impossibility to construct a language resulting in a partial co-

clone that lies inbetween. Another related task is to consider the relation

R2/3 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} instead of R1/3 and determine the partial

co-clones between 〈R2/3〉6∃ and 〈R 6= 6= 6=01
2/3 〉 6∃ = 〈R 6= 6= 6=01

1/3 〉 6∃.

Frozen partial co-clones

As we have already mentioned, a drawback of Theorem 10 is that the structure

of the Boolean strong partial clone lattice is far from well-understood (and even

less well-understood when generalized to larger domains). Hence, it would be

interesting to look for lattices that have a granularity somewhere in between

the clone lattice and the strong partial clone lattice. One plausible candidate is

the lattice of frozen partial clones introduced by Nordh and Zanuttini [30]. A

frozen implementation is a primitive positive implementation where we are only

allowed to existentially quantify over variables that are frozen to a constant (i.e.,

variables that are constant over all solutions). For more details about frozen

partial clones (e.g., the Galois connection between frozen partial clones and

frozen partial relational clones), we refer the reader to Nordh and Zanuttini [30].

We remark that the complexity of SAT(S) is determined by the frozen partial

clones and that the lattice of frozen partial clones is indeed coarser than the

lattice of partial clones. For example the partial co-clones below 〈Γ1/3〉6∃ in

59

Figure 6 collapse to the four frozen partial co-clones generated by R 6= 6= 6=1/3 , R 6= 6=1/3

R1/3 and R1/3. There are also examples of infinite chains of partial clones that

collapse to a single frozen partial clone [15, 30]. This suggests that in many

cases, frozen partial co-clones result in considerable simplifications in comparison

to partial co-clones.

SAT(S)-DEG-B and the ETH

We have proved that SAT(S) is subexponential if and only if SAT(S)-DEG-

B is subexponential for all B. This result is inconclusive since it does not rule

out the possibility that a SAT(S)-DEG-B problem is subexponential and NP-

complete for some B, but that the subexponential property is lost for larger values.

Hence, it would be interesting to (dis)prove that SAT(S) is subexponential if

and only if there exists some B such that SAT(S)-DEG-B is NP-complete and

subexponential. This holds for SAT({R 6= 6=6=1/3 }) so it does not seem impossible that

the result holds for all constraint languages. We also remark that bounding the

degree of variables is not the only possible structural restriction: many attempts

at establishing structurally based complexity results are based on the tree-width

(or other width parameters) of some graph representation of the constraints,

cf. [11, 14]. A particularly interesting example is Marx’s [27] result that connects

ETH with structural restrictions: if ETH holds, then solving the CSP problem

for instances whose primal graph has treewidth k requires nΩ(k/ log k) time.

Constraint satisfaction problems

A natural continuation of this research is to generalize the methods in Section

3 to other problems. Generalizing them to constraint satisfaction problems over

finite domains appears to be effortless, and such a generalization would give

us a tool for studying problems such as k-colorability and its many variations.

Lifting the results to infinite-domain constraints appears to be more difficult,

but it may be worthwhile: Bodirsky and Grohe [3] have shown that every

computational decision problem is polynomial-time equivalent to such a constraint

problem. Hence, this may lead to general methods for studying the time

60

complexity of computational problems. Another interesting generalization is to

study problems that are not satisfiability problems, e.g., enumeration problems,

counting problems, and nonmonotonic reasoning problems such as abduction

and inference under circumscription.

Acknowledgments

We thank Magnus Wahlström for helpful discussions on the topic of this

article, and in particular for suggesting the proof strategy in Lemma 17.

Bruno Zanuttini is supported by grant ANR-10-BLAN-0210 (TUPLES) from

the French National Research Agency (ANR). Peter Jonsson is partially sup-

ported by the Swedish Research Council (VR) under grants 2009-4431 and

2012-3239. Victor Lagerkvist is partially supported by the National Graduate

School in Computer Science (CUGS), Sweden, the Swedish Research Council

(VR) under grant 2008-4675, and the DFG-funded project “Homogene Struk-

turen, Bedingungserfüllungsprobleme, und topologische Klone” (Project number

622397).

References

[1] V. B. Alekseev and A. A. Voronenko, On some closed classes in

partial two-valued logic, Discrete Mathematics and Applications, 4 (1994),

pp. 401–419.

[2] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and

H. Vollmer, The complexity of satisfiability problems: Refining Schae-

fer’s theorem, in Mathematical Foundations of Computer Science 2005,

J. Je.drzejowicz and A. Szepietowski, eds., vol. 3618 of Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2005, pp. 71–82.

[3] M. Bodirsky and M. Grohe, Non-dichotomies in constraint satisfaction

complexity, in Proceedings of the 35th international colloquium on Automata,

61

Languages and Programming, Part II, ICALP 2008, Berlin, Heidelberg,

2008, Springer-Verlag, pp. 184–196.

[4] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Ro-

mov, Galois theory for Post algebras. I, Cybernetics and Systems Analysis,

5 (1969), pp. 243–252.

[5] , Galois theory for Post algebras. II, Cybernetics and Systems Analysis,

5 (1969), pp. 531–539.

[6] E. Böhler, N. Creignou, S. Reith, and H. Vollmer, Playing with

Boolean blocks, part I: Post’s lattice with applications to complexity theory,

ACM SIGACT-Newsletter, 34 (2003).

[7] F. Börner, Basics of Galois connections, in Complexity of Constraints,

N. Creignou, P. G. Kolaitis, and H. Vollmer, eds., vol. 5250 of Lecture Notes

in Computer Science, Springer Berlin Heidelberg, 2008, pp. 38–67.

[8] A. A. Bulatov, P. Jeavons, and A. A. Krokhin, Classifying the

complexity of constraints using finite algebras, SIAM Journal on Computing,

34 (2005), pp. 720–742.

[9] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,

Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström, On

problems as hard as CNF-SAT, in Proceedings of the 2012 IEEE Conference

on Computational Complexity, CCC 2012, Washington, DC, USA, 2012,

IEEE Computer Society, pp. 74–84.

[10] V. Dalmau and D. Ford, Generalized satisfiability with limited occur-

rences per variable: A study through delta-matroid parity, in Mathematical

Foundations of Computer Science 2003, Branislav Rovan and Peter Vojtáš,

eds., vol. 2747 of Lecture Notes in Computer Science, Springer Berlin /

Heidelberg, 2003, pp. 358–367.

[11] V. Dalmau, Ph. G.. Kolaitis, and M. Y.. Vardi, Constraint sat-

isfaction, bounded treewidth, and finite-variable logics, in Principles and

62

Practice of Constraint Programming - CP 2002, Pascal Van Hentenryck, ed.,

vol. 2470 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,

2002, pp. 310–326.

[12] H. Dell and D. van Melkebeek, Satisfiability allows no nontrivial

sparsification unless the polynomial-time hierarchy collapses, in Proceedings

of the 42nd ACM symposium on Theory of computing, STOC 2010, New

York, NY, USA, 2010, ACM, pp. 251–260.

[13] D. Geiger, Closed systems of functions and predicates, Pacific Journal of

Mathematics, 27 (1968), pp. 95–100.

[14] M. Grohe, The complexity of homomorphism and constraint satisfaction

problems seen from the other side, Journal of the ACM, 54 (2007), pp. 1–24.

[15] L. Haddad, Infinite chains of partial clones containing all selfdual mono-

tonic partial functions, Multiple-Valued Logic and Soft Computing, 18

(2012), pp. 139–152.

[16] T. Hertli, 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold

in general, SIAM Journal on Computing, 43 (2014), pp. 718–729.

[17] R. Impagliazzo and R. Paturi, On the complexity of k-SAT, Journal of

Computer and System Sciences, 62 (2001), pp. 367 – 375.

[18] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly

exponential complexity?, Journal of Computer and System Sciences, 63

(2001), pp. 512–530.

[19] G. I. Istrate, Looking for a version of Schaefer’s dichotomy theorem when

each variable occurs at most twice, tech. report, Rochester, NY, USA, 1997.

[20] P. Jeavons, On the algebraic structure of combinatorial problems, Theoret-

ical Computer Science, 200 (1998), pp. 185–204.

63

[21] P. Jonsson, A. Krokhin, and F. Kuivinen, Hard constraint satisfaction

problems have hard gaps at location 1, Theoretical Computer Science, 410

(2009), pp. 3856–3874.

[22] R. E. Ladner, On the structure of polynomial time reducibility, Journal of

the ACM, 22 (1975), pp. 155–171.

[23] V. Lagerkvist, Weak bases of Boolean co-clones, Information Processing

Letters, 114 (2014), pp. 462–468.

[24] V. Lagerkvist and M. Wahlström, Polynomially closed co-clones, in

Proceedings of the 2014 IEEE 44th International Symposium on Multiple-

Valued Logic, ISMVL 2014, Washington, DC, USA, 2014, IEEE Computer

Society, pp. 85–90.

[25] D. Lau, Function Algebras on Finite Sets, Springer, Berlin, 2006.

[26] D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the

exponential time hypothesis, Bulletin of the EATCS, 105 (2011), pp. 41–72.

[27] D. Marx, Can you beat treewidth?, Theory of Computing, 6 (2010), pp. 85–

112.

[28] C. Moore and J. M. Robson, Hard tiling problems with simple tiles,

Discrete & Computational Geometry, 26 (2001), pp. 573–590.

[29] R. A. Moser and D. Scheder, A full derandomization of Schoening’s k-

SAT algorithm, in Proceedings of the Forty-third Annual ACM Symposium

on Theory of Computing, STOC 2011, New York, NY, USA, 2011, ACM,

pp. 245–252.

[30] G. Nordh and B. Zanuttini, Frozen Boolean partial co-clones, in Pro-

ceedings of the 39th International Symposium on Multiple-Valued Logic,

ISMVL 2009, May 2009, pp. 120 –125.

[31] E. Post, The two-valued iterative systems of mathematical logic, Annals of

Mathematical Studies, 5 (1941), pp. 1–122.

64

[32] B. A. Romov, The algebras of partial functions and their invariants,

Cybernetics and Systems Analysis, 17 (1981), pp. 157–167.

[33] R. Santhanam and S. Srinivasan, On the limits of sparsification, in

Automata, Languages, and Programming, A. Czumaj, K. Mehlhorn, A. Pitts,

and R. Wattenhofer, eds., vol. 7391 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2012, pp. 774–785.

[34] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings

of the tenth annual ACM symposium on Theory of computing, STOC 1978,

New York, NY, USA, 1978, ACM, pp. 216–226.

[35] H. Schnoor and I. Schnoor, New algebraic tools for constraint satis-

faction, in Complexity of Constraints, Nadia Creignou, Phokion Kolaitis,

and Heribert Vollmer, eds., no. 06401 in Dagstuhl Seminar Proceedings,

Dagstuhl, Germany, 2006, Internationales Begegnungs- und Forschungszen-

trum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[36] I. Schnoor, The weak base method for constraint satisfaction, PhD thesis,

Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 2008.

[37] K. Schölzel, Galois theory for partial clones and some relational clones, in

Proceedings of the 41st IEEE International Symposium on Multiple-Valued

Logic, ISMVL 2011, 2011, pp. 187–192.

[38] K. Schölzel, Dichotomy on intervals of strong partial Boolean clones, To

appear in Algebra Universalis, (2014).

[39] U. Schöning, A low and a high hierarchy within NP, Journal of Computer

and System Sciences, 27 (1983), pp. 14 – 28.

[40] Á. Szendrei, Clones in Universal Algebra, vol. 99 of Seminaires de Mathé-

matiques Supérieures, University of Montreal, 1986.

[41] J. van Rooij, M. van Kooten Niekerk, and H. Bodlaender, Par-

tition into triangles on bounded degree graphs, in SOFSEM 2011: Theory

65

and Practice of Computer Science, Ivana Cerná, Tibor Gyimóthy, Juraj

Hromkovic, Keith Jefferey, Rastislav Královic, Marko Vukolic, and Stefan

Wolf, eds., vol. 6543 of Lecture Notes in Computer Science, Springer Berlin

/ Heidelberg, 2011, pp. 558–569.

[42] M. Wahlström, Algorithms, measures and upper bounds for satisfiabil-

ity and related problems, PhD thesis, Linköping University, TCSLAB -

Theoretical Computer Science Laboratory, The Institute of Technology,

2007.

[43] G. J. Woeginger, Exact algorithms for NP-hard problems: A survey, in

Combinatorial Optimization - Eureka, You Shrink!, vol. 2570 of Lecture

Notes in Computer Science, 2003, pp. 185–208.

66

	Introduction
	The Complexity of the Parameterized SAT() Problem
	``Easy'' problems and CV-reductions
	Subexponential complexity and LV-reductions

	Preliminaries
	The Boolean SAT Problem
	LV-Reductions

	Clones and the Complexity of SAT
	Clones and Co-Clones
	Strong Partial Clones

	The Easiest NP-Complete SAT(S) Problem
	The Co-Clone BR
	The Co-Clone IN2

	Complexity Bounds for SAT({R===1/3}) and Related Problems
	Partial Co-Clones Covering BR
	Partial Co-Clones Below "426830A 1/3 "526930B
	Partial Co-Clones Above "426830A 1/3 "526930B

	LV-Reductions and Bounded-Degree Instances
	The Exponential-Time Hypothesis
	Two Notions of Sparsification
	Sparsification Within H
	SAT and the Exponential-Time Hypothesis

	Research Directions and Open Questions

