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Multiscale Modeling of Imperfect Interfaces
and Applications

S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni and H. Welemane

Abstract Modeling interfaces between solids is of great importance in the fields of
mechanical and civil engineering. Solid/solid interface behavior at the microscale
has a strong influence on the strength of structures at the macroscale, such as gluing,
optical systems, aircraft tires, pavement layers and masonry, for instance. In this
lecture, a deductive approach is used to derive interface models, i.e. the thickness of
the interface is considered as a small parameter and asymptotic techniques are intro-
duced. A family of imperfect interfacemodels is presented taking into account cracks
at microscale. The proposed models combine homogenization techniques for micro-
cracked media both in three-dimensional and two-dimensional cases, which leads to
a cracked orthotropic material, and matched asymptotic method. In particular, it is
shown that the Kachanov type theory leads to soft interfacemodels and, alternatively,
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that Goidescu et al. theory leads to stiff interface models. A fully nonlinear variant
of the model is also proposed, derived from the St. Venant-Kirchhoff constitutive
equations. Some applications to elementary masonry structures are presented.

1 Introduction

The study of interfaces between deformable solids significantly developed thanks to
the rising interest of scientists and industries in mechanics of composite materials.
Those first studies, in particular, focused on the presence of matrix-fiber interfaces
in composite media and their effect on the determination of the effective thermoelas-
tic properties of this kind of materials. Within the framework of these theories
on mechanical behavior of composites, a commonly adopted assumption was the
requirement of the continuity in terms of stresses and displacements at the interfaces
among the principal constituents. The stress-based interface condition origins from
the local equilibrium and the displacement-based interface condition derives from
the hypothesis of perfect bonding. Such an interface condition was defined as per-
fect interface. Nevertheless, the assumption of perfect interfaces is established to
be inappropriate in many mechanical problems. Indeed, the interface between two
bodies or two parts of a body, defined as adherents, is a favorable zone to com-
plex physico-chemical reactions and vulnerable to mechanical damage. Goland and
Reissner [22], in the forties, were surely the first to model a thin adhesive as a weak
interface, i.e. they were the first to assume that the adherents were linked by a con-
tinuous distribution of springs. Such an interface, is defined as spring type. Goland
and Reissner have noted that the thinness suggests to consider constant stresses in
the adhesive, and some years later, Gilibert and Rigolot [19] found a rational justifi-
cation of this fact by means of the asymptotic expansion method, assuming that the
thickness and the elastic properties of the adhesive had the same order of smallness ε.
During the eighties and nineties, the relaxation of the perfect interface approximation
was largely investigated, aiming principally to applicate these theories to compos-
ite materials with coated fibers or particles [3, 26], or in the case of decohesion
and nucleation problems in cohesive zones [44, 45]. One of the first definition of
imperfect interface was certainly due to Hashin and Benveniste [3, 26]. Particu-
larly, Hashin concentrates his research in the case of composite material with thin
layer or coating enveloping its reinforcing constituents (fibers). Such an interfacial
layer is generally referred to as interphase, and its presence can be due to chemical
interaction between the constituents or it may be introduced by design aiming to
improve the mechanical properties of the composite. Several investigations in liter-
ature, before and after the work of Hashin, modeled this kind of problem with the
so-called three-phase-material theory. Such a description requires, obviously, the
knowledge of the interphase properties. These constitutive informations are rarely
available, primarily, because the interphase material properties are in situ proper-
ties which are not necessarily equal to those of the bulk material, and additionally,
the interphase may vary within a transition zone from one constituent to another.
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Accordingly, in most cases, the interphase properties are unmeasurable. The Imper-
fect interface theory was formulated by Hashin [26–29] in order to overcome these
challenges. This alternative model was based to the main idea that if the interphase
has significant effects on the overall response, then its properties must be signifi-
cantly different from those of the constituents, in general, much more flexible. To
this aim, the attempts for explicit modeling of the three-dimensional interphase are
highly reduced by replacing it with a two-dimensional imperfect interface. In par-
ticular, within the Hashin imperfect interface model [26] the discontinuity in terms
of displacements is allowed, instead, the continuity in terms of stresses, according
local equilibrium, is preserved. Hashin [26], as Goland [22] before him, made the
simplest assumption that the displacement discontinuity is linearly proportional to
the traction vector:

σ (Ω1)n = σ (Ω2)n = D [u] [u] = u(Ω1) − u(Ω2)

where σ (Ω1),(Ω2)n is the interfacial stress vector relative to the solids Ω1 and Ω2 in
contact; [u] and u(Ω1),(Ω2) are the displacement jump vector and displacement vector,
respectively; D is a matrix which contains the spring constant type material parame-
ters, in normal and tangential directions; these latter have dimension of stress divided
by length. In the following, these parameters are referred as interface stiffnesses. It is
worth to point out that infinite values of the interface stiffnesses imply vanishing of
displacement jumps and therefore perfect interface conditions. At the other asymp-
totic limit, zero values of the stiffnesses imply vanishing of interface tractions and
therefore, debonding conditions. Any finite positive values of the interface stiffnesses
define an imperfect interface.

Hashin, with his pioneering work, determined the effective elastic properties and
thermal expansions coefficients both for unidirectional fiber composites with imper-
fect interfaces conditions [26] and for composites with spherical inclusions and parti-
cles [27, 28]. Moreover, he demonstrated that the three-phase-material approach was
a special case of the imperfect interface theory. It is worth remarking that Hashin, as
first, showed that the interface stiffnesses (he referred them as interface parameters)
can be simply related to the interphase properties and geometry [26].

Hashin and Benveniste, independently, generalized the classical extremum prin-
ciples of the theory of elasticity for composite bodies to the case of an imperfect
interface described by linear relations between interface displacement jumps and
tractions [3, 29].

In the work of Bövik [9], the idea to use a simple tool that is the Taylor expan-
sion of the relevant physical fields in a thin interphase, combined with the use of
surface differential operators on a curved surface, has been applied to achieve the
representation of a thin interphase by an imperfect interface. The idea of a Taylor
expansion was also adopted by Hashin to derive the spring-type interface model for
soft elastic interfaces [28] and for interphases of arbitrary conductivity and elastic
moduli [30]. More recently, Gu [23, 24] derived an imperfect interface model for
coupled multifield phenomena (thermal conductivity, elasticity and piezoelectricity)
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by applying Taylor expansion to an arbitrarily curved thin interphase between two
adjoining phases; he also introduced some new coordinate-free interfacial operators.

All the above cited imperfect interface models are derived by assuming an
isotropic interphase.

In a quite recent work Benveniste [4], provided a generalization of the Bövik
model to an arbitrarily curved three-dimensional thin anisotropic layer between two
anisotropic media. Benveniste model is carried out in the setting of unsteady heat
conduction and dynamic elasticity. The derived interface model consists of expres-
sions for the jumps in the physical fields, i.e. temperature and normal heat flux in
conduction, and displacements and tractions in elasticity, across the interface.

Additionally, derivations of spring-type interface models by using asymptotic
methods, for different geometrical configurations, have been given, among other by
Klarbring [36, 37] and Geymonat [18].

A much less studied imperfect interface condition is the one obtained starting
from a stiff and thin interphase, the so called stiff interface (or equivalently hard
interface). Differently from the soft case, the hard interface is characterized by a
jump of the traction vector across the interface and by continuity of displacements.
Benveniste and Miloh [5], generalizing the study made by Caillerie [10] for curved
interfaces, demonstrate that depending on its degree of stiffness with respect to the
bodies in contact, a stiff thin interphase translates itself into a much richer class of
imperfect interfaces than a soft interphase does. Within their study, a thin curved
isotropic layer of constant thickness between two elastic isotropic media in a two-
dimensional plane strain setting, is considered. The properties of the curved layer are
allowed to vary in the tangential direction. It is shown that depending on the softness
or stiffness of the interphase with respect to the neighboring media, as determined
by the magnitude of the non-dimensional Lamé parameters λ̄c and μ̄c, there exists
seven distinct regimes of interface conditions according the following expressions:

λ̄i = λ̃i

εN
μ̄i = μ̃i

εN

where λ̃c and μ̃c are non-dimensional constant Lamé parameters of the mater-
ial interphase, ε in the non-dimensional interphase thickness and N is a negative
or positive integer or zero. Accordingly with the above definition these regimes
may be distinguished in: (a) vacuous contact type interface for N � −2, (b) spring
type interface for N = −1, (c) ideal contact type interface for N = 0, (d) mem-
brane type interface for N = 1, (e) inextensible membrane type interface for N = 2,
(f) inextensible shell type interface for N = 3, (g) rigid contact type interface for
N � 4. The first two conditions are characteristic of a soft interphase whereas the
last four are characteristic of a stiff interphase. The cases (a), (c) and (g) are the
classical ones: in case (a) the tractions vanish (debonding), in case (c) the displace-
ments and tractions are continuous (perfect interface condition), and in case (g) the
displacements vanish. Benveniste and Miloh [5], for the first time, derived the inter-
face conditions for the hard cases (d), (e) and (f), by applying a formal asymptotic
expansion for the displacements and stresses fields in the thin layer interphase.
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In the present chapter, two kind of imperfect interface conditions are essentially
referred to: the soft interphase case which brings to a spring-type, both linear and
nonlinear, interface, and the hard interphase case which brings to a more general
interface model that includes, as will be shown in the next section, the perfect inter-
face conditions. In order to make an analogy with the Benveniste’s classifications,
the cases with N = −1 and N = 0 will be analyzed. It is worth remarking some
differences between the hard interface case considered in this work and that defined
by Benveniste and Miloh for N = 0. In fact in the work, the case N = 0, according
formers papers [14, 38, 39, 52, 53] will be studied within the framework of higher
order theory. This choice, extensively detailed in the following, leads to the evidence
that the case N = 0 is an effective imperfect interface condition, i.e. stress vector
and displacement jump vector in the one-order formulation have been found to be
non-null. As a result, the perfect interface has been established to be a particular case
of the hard interface condition at the zero-order [53], in what follows this evidence
will be analytically derived within the asymptotic framework.

The imperfect interface models, object of the present chapter, are consistently
derived by coupling a homogenization approach for microcracked media under
the non-interacting approximation (NIA) [21, 34, 35, 57, 60], and arguments of
asymptotic analysis [38, 39, 52, 53]. Such a method, is defined imperfect interface
approach.

The text is organized as follows: Sects. 2 and 3 are devoted to detail the frame-
work of the imperfect interface approach and to enforce it in order to derive several
interface models, particularly, in Sect. 3 a nonlinear imperfect interface model is pre-
sented; Sect. 4 is consecrated to a simple numerical application useful to validate
these interface models; finally, in Sect. 5 some conclusions are outlined.

2 Imperfect Interface Approach

In this section, it is shown how matched asymptotic expansion method coupled
together an homogenization technique for microcracked media, give birth to both
soft and hard imperfect interface laws.

2.1 Matched Asymptotic Expansion Method

It is worth pointing out that the application of the asymptotic methods to obtain
governing equations of imperfect interface starting from thin layer problems in the
elasticity framework, has a consistent mathematical background [10–13, 26–28, 30,
55, 56]. Ould Khaoua among other, in his doctoral thesis [46], studied the elastic
equilibrium problem Pε under the hypothesis of small perturbations. The author
demonstrates that the solution of the reference problem (i.e. with an elastic thin layer
of thickness ε)Pε, that is expressed in terms of both stress and displacement fields
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(σ ε, uε), for ε → 0 admits a limit (σ , u) and that this limit solution is also the solution
of the limit problemP (Pε → P for ε → 0). Additionally, Ould Khaoua [46] has
found, as Hashin [26] before, that the mechanical and geometrical characteristics
of the layer (interphase) are retained in the interface stiffnesses of the soft interface
governing equations.

Thematched asymptotic expansionmethod [38–40, 52, 53], adopted in this work,
is detailed in the following paragraphs.

2.1.1 General Notations

With reference to [53], let the problem general notations be detailed. A thin layerBε

with cross-sectionS and uniform small thickness ε � 1 is considered,S being an
open bounded set in R

2 with a smooth boundary. In the following Bε and S will
be called interphase and interface, respectively. The interphase lies between two
bodies, named as adherents, occupying the reference configurations Ωε± ⊂ R

3. In
such a way, the interphase represents the adhesive joining the two bodies Ωε+ and
Ωε−. LetS ε± be taken to denote the plane interfaces between the interphase and the
adherents and letΩε = Ωε± ∪ S ε± ∪ Bε denote the composite system comprising
the interphase and the adherents.

It is assumed that the adhesive and the adherents are perfectly bonded and thus,
the continuity of the displacement and stress vector fields acrossS ε± is ensured.

An orthonormal Cartesian basis (O, i1, i2, i3) is introduced and let (x1, x2, x3) be
taken to denote the three coordinates of a particle. The origin lies at the center of the
interphase midplane and the x3−axis runs perpendicular to the open bounded setS ,
as illustrated in Fig. 1.

The materials of the composite system are assumed to be homogeneous and
initially linearly elastic and let A±,Bε be the fourth-rank elasticity tensors of the

(a) (b) (c)

Fig. 1 Asymptotic procedure—Synoptic sketch of three steps performed in the matched asymp-
totic expansion approach: a the reference configuration with the ε-thick interphase; b the rescaled
configuration; c the final configuration with the zero-thick interface
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adherents and of the interphase, respectively. The tensors A±,Bε are assumed to be
symmetric,with theminor andmajor symmetries, andpositive definite. The adherents
are subjected to a body force density f± : Ωε± �→ R

3 and to a surface force density
g± : Γ ε

g �→ R
3 on Γ ε

g ⊂ (∂Ωε+\S ε+) ∪ (∂Ωε−\S ε−). Body forces are neglected in
the adhesive.

On Γ ε
u = (∂Ωε+\S ε+) ∪ (∂Ωε−\S ε−)\Γ ε

g , homogeneous boundary conditions
are prescribed:

uε = 0 on Γ ε
u , (1)

where uε : Ωε �→ R
3 is the displacement field defined onΩε. Γ ε

g , Γ ε
u are assumed to

be located far from the interphase, in particular, the external boundaries of the inter-
phase Bε (∂S × (− ε

2 ,
ε
2 )) are assumed to be stress-free. The fields of the external

forces are endowed with sufficient regularity to ensure the existence of equilibrium
configuration.

2.1.2 Rescaling Process

The rescaling phase in the asymptotic process represents a mathematical construct
[12], not a physically-based configuration of the studied composed system. This
standard step is used in the asymptotic expansion method, in order to eliminate the
dependency on the small parameter ε of the integration domains. This rescaling
procedure can be seen as a change of spatial variables p̂ : (x1, x2, x3) → (z1, z2, z3)
in the interphase [12]:

z1 = x1, z2 = x2, z3 = x3
ε

(2)

resulting
∂

∂z1
= ∂

∂x1
,

∂

∂z2
= ∂

∂x2
,

∂

∂z3
= ε

∂

∂x3
. (3)

Moreover, in the adherents the following change of variables p̄ : (x1, x2, x3) →
(z1, z2, z3) is also introduced:

z1 = x1, z2 = x2, z3 = x3 ± 1

2
(1 − ε) (4)

where the plus (minus) sign applies whenever x ∈ Ωε+ (x ∈ Ωε−), with

∂

∂z1
= ∂

∂x1
,

∂

∂z2
= ∂

∂x2
,

∂

∂z3
= ∂

∂x3
(5)

After the change of variables (2), the interphase occupies the domain

B = {(z1, z2, z3) ∈ R
3 : (z1, z2) ∈ S , |z3| <

1

2
} (6)
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and the adherents occupy the domains Ω± = Ωε± ± 1
2 (1 − ε)i3, as shown in Fig. 1.

The sets S± = {(z1, z2, z3) ∈ R
3 : (z1, z2) ∈ S , z3 = ± 1

2 } are taken to denote the
interfaces between B and Ω± and Ω = Ω+ ∪ Ω− ∪ B ∪ S+ ∪ S− is the rescaled
configuration of the composite body. Lastly, Γu and Γg indicates the images of Γ ε

u
and Γ ε

g under the change of variables, and f̄± := f± ◦ p̄−1 and ḡ± := g± ◦ p̄−1 the
rescaled external forces.

2.1.3 Concerning Kinematics

Following the approach proposed by [38, 53], let focus on the kinematics of the elastic
problem. After taking ûε = uε ◦ p̂−1 and ūε = uε ◦ p̄−1 to denote the displacement
fields from the rescaled adhesive and adherents, respectively, the asymptotic expan-
sions of the displacement fields with respect to the small parameter ε take the form:

uε(x1, x2, x3) = u0 + εu1 + ε2u2 + o(ε2) (7a)

ûε(z1, z2, z3) = û0 + εû1 + ε2û2 + o(ε2) (7b)

ūε(z1, z2, z3) = ū0 + εū1 + ε2ū2 + o(ε2) (7c)

Interphase:

The displacement gradient tensor of the field ûε in the rescaled interphase is computed
as:

Ĥ = ε−1

[
0 û0

α,3
0 û0

3,3

]
+
[

û0
α,β û1

α,3

û0
3,β û1

3,3

]
+ ε

[
û1

α,β û2
α,3

û1
3,β û2

3,3

]
+ O(ε2) (8)

where α = 1, 2, so that the strain tensor can be obtained as:

e(ûε) = ε−1ê−1 + ê0 + εê1 + O(ε2) (9)

with:

ê−1 =
⎡
⎢⎣ 0

1

2
û0

α,3

1

2
û0

α,3 û0
3,3

⎤
⎥⎦ = Sym(û0

,3 ⊗ i3) (10)

êk =
⎡
⎢⎣ Sym(ûk

α,β)
1

2
(ûk

3,α + ûk+1
α,3 )

1

2
(ûk

3,α + ûk+1
α,3 ) ûk+1

3,3

⎤
⎥⎦ = Sym(ûk

,1 ⊗ i1 + ûk
,2 ⊗ i2 + ûk+1

,3 ⊗ i3)

(11)
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where Sym(·) gives the symmetric part of the enclosed tensor and k = 0, 1, and
⊗ is the dyadic product between vectors such as: (a ⊗ b)i j = ai b j . Moreover, the
following notation for derivatives is adopted: f, j denoting the partial derivative of f
with respect to z j .

Adherents:

The displacement gradient tensor of the field ūε in the adherents is computed as:

H̄ =
[

ū0
α,β ū0

α,3

ū0
3,β ū0

3,3

]
+ ε

[
ū1

α,β ū1
α,3

ū1
3,β ū1

3,3

]
+ O(ε2) (12)

so that the strain tensor can be obtained as:

e(ūε) = ε−1ē−1 + ē0 + εē1 + O(ε2) (13)

with:
ē−1 = 0 (14)

ēk =
⎡
⎢⎣ Sym(ūk

α,β)
1

2
(ūk

3,α + ūk
α,3)

1

2
(ūk

3,α + ūk
α,3) ūk

3,3

⎤
⎥⎦ = Sym(ūk

,1 ⊗ i1 + ūk
,2 ⊗ i2 + ūk

,3 ⊗ i3)

(15)
with k = 0, 1.

2.1.4 Concerning Equilibrium

With reference to the work by [38, 53], the stress fields in the rescaled adhesive
and adherents, σ̂ ε = σ ◦ p̂−1 and σ̄ ε = σ ◦ p̄−1 respectively, can be represented as
asymptotic expansions:

σ ε = σ 0 + εσ 1 + O(ε2) (16a)

σ̂
ε = σ̂

0 + εσ̂
1 + O(ε2) (16b)

σ̄ ε = σ̄ 0 + εσ̄ 1 + O(ε2) (16c)

Equilibrium Equations in the Interphase:

As body forces are neglected in the adhesive, the equilibrium equation is:

divσ̂
ε = 0. (17)
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Substituting the representation from (16b) into the equilibrium equation (17) and
using (3), it becomes:

0 = σ̂ ε
iα,α + ε−1σ̂ ε

i3,3

= ε−1σ̂ 0
i3,3 + σ̂ 0

iα,α + σ̂ 1
i3,3 + εσ̂ 1

iα,α + O(ε) (18)

where α = 1, 2. Equation (18) has to be satisfied for any value of ε, leading to:

σ̂ 0
i3,3 = 0 (19)

σ̂ 0
i1,1 + σ̂ 0

i2,2 + σ̂ 1
i3,3 = 0 (20)

where i = 1, 2, 3.
Equation (19) shows that σ̂ 0

i3 is not dependent on z3 in the adhesive, and thus it
can be written: [

σ̂ 0
i3

] = 0 (21)

where [•] denotes the jump between z3 = 1
2 and z3 = − 1

2 .
In view of (21), Eq. (20), for i = 3, can be rewritten in the integrated form

[σ̂ 1
33] = −σ̂ 0

13,1 − σ̂ 0
23,2 (22)

Equilibrium Equations in the Adherents:

The equilibrium equation in the adherents is:

divσ̄ ε + f̄ = 0 (23)

Substituting the representation form (16c) into the equilibriumEq. (23) and taking
into account that it has to be satisfied for any value of ε, it leads to:

divσ̄ 0 + f̄ = 0 (24)

divσ̄ 1 = 0 (25)

2.1.5 Matching External and Internal Expansions

Due to the perfect bonded assumption betweenBε andΩε±, the continuity conditions
at S ε± for the fields uε and σ ε lead to matching relationships between external and
internal expansions [38, 53]. In particular, in terms of displacements the following
relationship have to be satisfied:

uε(xα,±ε

2
) = ûε(zα,±1

2
) = ūε(zα,±1

2
) (26)
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where xα := (x1, x2), zα := (z1, z2) ∈ S . Expanding the displacement in the adher-
ent, uε, in Taylor series along the x3-direction and taking into account the asymptotic
expansion (7a), it results:

uε(xα,±ε

2
) = uε(xα, 0±) ± ε

2
uε

,3(xα, 0±) + · · ·
= u0(xα, 0±) + εu1(xα, 0±) ± ε

2
u0

,3(xα, 0±) + · · · (27)

Substituting Eqs. (7b) and (7c) together with formula (27) into continuity condition
(26), it holds true:

u0(xα, 0±) + εu1(xα, 0±) ± ε

2
u0

,3(xα, 0±) + · · · = û0(zα,±1

2
) + εû1(zα,±1

2
) + · · ·

= ū0(zα,±1

2
) + εū1(zα,±1

2
) + · · ·

(28)

After identifying the terms in the same powers of ε, Eq. (28) gives:

u0(xα, 0±) = û0(zα,±1

2
) = ū0(zα,±1

2
) (29)

u1(xα, 0±) ± 1

2
u0

,3(xα, 0±) = û1(zα,±1

2
) = ū1(zα,±1

2
) (30)

Following a similar analysis for the stress vector, analogous results are obtained
[38, 53]:

σ 0
i3(xα, 0±) = σ̂ 0

i3(zα,±1

2
) = σ̄ 0

i3(zα,±1

2
) (31)

σ 1
i3(xα, 0±) ± 1

2
σ 0

i3,3(xα, 0±) = σ̂ 1
i3(zα,±1

2
) = σ̄ 1

i3(zα,±1

2
) (32)

for i = 1, 2, 3.
Using the above results, it is possible to rewrite Eqs. (21) and (22) in the following

form:

[[σ 0
i3]] = 0, i = 1, 2, 3

[[σ 1
33]] = −σ 0

13,1 − σ 0
23,2 − 〈〈σ 0

33,3〉〉 (33)

where [[ f ]] := f (xα, 0+) − f (xα, 0−) is taken to denote the jump across the surface
S of a generic function f defined on the limit configuration obtained as ε → 0, as
schematically outlined in Fig. 1, while it is set 〈〈 f 〉〉 := 1

2 ( f (xα, 0+) + f (xα, 0−)).
It is worth to point out that all the equations written so far are independent of the

constitutive behavior of the material.
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2.1.6 Concerning Constitutive Equations

The specific constitutive behavior of the materials is now introduced [38, 53]. In
particular, the linearly elastic constitutive laws for the adherents and the interphase,
relating the stress with the strain, are given by the equations:

σ̄ ε = A±(e(ūε)) (34a)

σ̂
ε = B

ε(e(ûε)) (34b)

where A±
i jkl, Bε

i jkl are the elasticity tensor of the adherents and of the interphase,
respectively.

It is worth pointing out that in order to achieve the interface law via this asymptotic
approach, the only assumption on the constitutive behavior of constituents, to do
necessarily, is that of linear elastic materials. Thereby, no assumption is herein made
on the anisotropy of both constituents and on their soundness.

In what follows, within the framework of the imperfect interface approach it has
been shown that it is possible to account for different interphase anisotropy conditions
and for damage phenomena in the interphase.

In the following section, reference is made to the analysis of interphase behavior,
detailing both the soft and hard interphase cases.

2.1.7 Internal/Interphase Analysis

Recalling the seven-regimes distinguish made by Benveniste and Miloh [5] (see
Sect. 1), basically two of these typologies of interphase are considered in the present
work. The first interphase type, called soft interphase, is defined as an interphase
material whose elastic properties are linearly rescaled with respect to the interphase
thickness ε. The second type, referred as hard interphase, is characterized by elastic
moduli, which, on the contrary, do not depend on the thickness ε. It is worth pointing
out that these hypothesis are referred to the stiffness or the softness of the interphase
with respect to the neighboring media (adherents) and it does not depend on the
constitutive assumptions (in terms of anisotropy) made on the interphase material.
Moreover, the soft interphase behavior is, generally, the simplest constitutive hypoth-
esis made to describe an adhesive layer (e.g. glue). Nevertheless, such an assumption
can be an useful strategy in order to take into account for contact zone or thin zones
between solids in which interacting phenomena occur.

The soft interface definition, as above explained, concerns the capacity to have
a non-negligible displacement jump [[u]] through a surface between two bodies in
contact [5, 26, 41], this kind of interface has been also referred as spring-type model.
The hard interface definition, instead, concerns the capacity to have non-negligible
displacement jump [[u]] and stress jump [[σ ]] through a surface between two bodies
in contact.

The matched asymptotic expansion method applied to soft and hard interphases
gives rise to soft and hard interface laws, respectively.
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These two cases are relevant for the development of the interface laws classically
used in technical problems. Moreover, models of perfect and imperfect interfaces,
which are currently used in finite element codes, are known to arise from the hard
and the soft interface conditions expanded at the first (zero) order [4, 5, 10, 36, 38].
The interface laws at the higher order, both in the soft and in the hard cases, are
object of recent studies [53] which are recalled in the following.

Soft Interphase Analysis:

Assuming that the interphase is soft, let the interphase elasticity tensor Bε be defined
as [53]:

B
ε = εB (35)

where tensorB does not depend on ε.Referring toVoigt notation rule, its components
can be expressed as:

K jl
ki := Bi jkl (36)

Taking into account relations (9), (16b) and (35), the stress-strain law (34b) takes
the following form:

σ̂
0 + εσ̂

1 = B(ê−1 + εê0) + o(ε) (37)

As Eq. (37) is true for any value of ε, the following expressions are derived:

σ̂
0 = B(ê−1) (38a)

σ̂
1 = B(ê0) (38b)

Substituting Eq. (36) into Eq. (38a) it results:

σ̂ 0
i j = Bi jkl ê

−1
kl = K jl

ki ê−1
kl (39)

and using Eq. (10), it follows that:

σ̂
0i j = K3 j û0

,3 (40)

for j = 1, 2, 3. Integrating Eq. (40) written for j = 3, with respect to z3, it results:

σ̂
0i3 = K33

[
û0
]

(41)

which represents the classical law for a soft interface at the zero-order.
Recalling a recent study by Rizzoni et al. [53], it is possible to formulate the soft

interface law at the one-order. Accordingly, by substituting the expression (36) into
(38b) and by using formula (11) written for k = 0, one has:
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σ̂
1i j = K1 j û0

,1 + K2 j û0
,2 + K3 j û1

,3 (42)

for j = 1, 2, 3. Moreover, by taking into account formula (40), written for j = 1, 2,
the equilibrium Eq. (20) explicitly becomes:

(K31û0
,3),1 + (K32û0

,3),2 + (σ̂
1i3),3 = 0 (43)

and thus, integrating with respect to z3 between − 1
2 and 1

2 , it gives:

[
σ̂
1i3
]

= −K31
[
û0
]
,1 − K32

[
û0
]
,2 (44)

It is worth remarking that the stress components σ̂ 0
i3 (with i = 1, 2, 3) are inde-

pendent of z3, because of the Eq. (19). Consequently, taking into account Eq. (40)
written for j = 3, the derivatives û0

i,3 are also independent of z3; thus, the displace-
ment components û0

i are a linear functions of z3. Therefore, Eq. (44) reveals that the
stress components σ̂ 1

i3, with i = 1, 2, 3, are linear functions in z3, allowing to write
the following representation form for the stress components:

σ̂
1i3 =

[
σ̂
1i3
]

z3 + 〈σ̂ 1i3〉 (45)

where 〈 f 〉(zα) := 1
2

(
f (zα, 1

2 ) + f (zα,− 1
2 )
)
. Substituting Eq. (42) written for j = 3

into expression (45) and integrating with respect to z3 it yields:

〈σ̂ 1i3〉 = Kα3〈û0〉,α + K33
[
û1
]

(46)

where the sum over α = 1, 2 is implied. Combining Eqs. (44)–(46), it results:

σ̂
1
(zα,±1

2
)i3 = K33[û1](zα) + 1

2
(Kα3 ∓ K3α)û0

,α(zα,
1

2
)

+ 1

2
(Kα3 ± K3α)û0

,α(zα,−1

2
)

(47)

The soft interface laws at zero-order and at one-order, expressed by Eqs. (41) and
(47) respectively, have to be formulated in their final form in terms of the stresses
and displacements fields in the final configuration (see Fig. 1c). To this aim, using
the matching relations (29)–(32), the final formulations of the soft interface laws at
zero-order and at one-order, respectively, are the following [53]:

σ 0(·, 0)i3 = K33[[u0]], (48)

σ 1(·, 0±)i3 = K33([[u1]] + 〈〈u0
,3〉〉) + 1

2
(Kα3 ∓ K3α)u0

,α(·, 0+)

+1

2
(Kα3 ± K3α)u0

,α(·, 0−) ∓ 1

2
σ 0

,3(·, 0±)i3 (49)
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where the symbol (·) represents the coordinates (x1, x2) in a generic point of the
system Ω+ ∪ Ω− in the final configuration. In detail, Eq. (48) represents the clas-
sical spring-type interface law, derived from an interphase characterized by a finite
stiffness. Moreover, Eq. (49) allows to evaluate the stress vector at the higher (one)
order, highlighting that the stress vector σ 1(·, 0±)i3 depends not only on displace-
ment jump at one-order but also on the displacement and stress fields evaluated at
the zero-order and their derivatives.

In order to have a complete expression of the effective stress field in the reference
configuration (see Fig. 1a), Eqs. (16b) and (7c) must be substituted in Eqs. (48) and
(49). Finally, it results:

σ ε(·, 0±)i3 ≈ K33[[uε]] + ε
(

K33〈〈uε
,3〉〉

+1

2
(Kα3 ∓ K3α)uε

,α(·, 0+)

+1

2
(Kα3 ± K3α)uε

,α(·, 0−) ∓ 1

2
σ ε

,3(·, 0±)i3
)

(50)

It is worth remarking that Eq. (50) improves the classic interface law at zero-order
by linearly linking the stress vector and the relative displacement via a higher order
term, involving the in-plane first derivatives of the displacement. Moreover, (50)
allows to clearly quantify the error committed in the interface constitutive equation
by modeling a ε-thick layer with a soft interface law at the zero-order (first right-side
term in Eq. (50)). In particular, if the in-plane gradient of displacement and/or the
out-of-plane gradient of stress are relevant, they can be neglected in the interface
constitutive law.

Hard Interphase Analysis:

For a hard interphase, the elasticity tensor Bε takes the following form [14, 38, 53]:

B
ε = B (51)

where the tensor B does not depend on ε, and K jl is still taken to denote the matrices
such that K jl

ki := Bi jkl (Voigt notation).
Taking into account relations (9) and (16b), the stress-strain Eq. (34b) takes the

following form:
σ̂
0 + εσ̂

1 = B(ε−1ê−1 + ê0 + εê1) + o(ε) (52)
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As Eq. (52) is true for any value of ε, the following conditions are derived:

0 = B(ê−1) (53a)

σ̂
0 = B(ê0) (53b)

Taking into account Eq. (10) and the positive definiteness of the tensor B, relation
(53a) gives:

û0
,3 = 0 ⇒ [û0] = 0 (54)

which corresponds to the kinematics of the perfect interface.
Substituting Eq. (11) written for k = 0 into (53b) one has:

σ̂
0i j = K1 j û0

,1 + K2 j û0
,2 + K3 j û1

,3 (55)

for j = 1, 2, 3. Integrating Eq. (55) written for j = 3, with respect to z3, it results:

[û1] = (K33)−1
(
σ̂
0i3 − Kα3û0

,α

)
(56)

Recalling the Eq. (55) (written for j = 1, 2), equilibrium equation Eq. (20) explic-
itly becomes:

(K11û0
,1 + K21û0

,2 + K31û1
,3),1 + (K12û0

,1 + K22û0
,2 + K32û1

,3),2 + (σ̂
1i3),3 = 0

(57)
and thus, integrating with respect to z3 between −1/2 and 1/2 and using (56), it
gives:

[
σ̂
1i3
]

=
(

− Kαβ û0
,β − K3α[û1]

)
,α

=
(

− Kαβ û0
,β − K3α(K33)−1

(
σ̂
0i3 − Kβ3û0

,β

))
,α

(58)

with the Greek indexes (α, β = 1, 2) are related, as usual, to the in-plane (x1, x2)
quantities.

It is worth noting that in Eq. (58) higher order effects occur and they are related to
the appearance of in-plane derivatives, which are usually neglected in the classical
first (zero) order theories of interfaces [14, 38, 53]. These new terms are related
to second-order derivatives and as a consequence, indirectly, to the curvature of the
deformed interface. By non-neglecting these terms it is possible tomodel amembrane
effect in the adhesive [53].

In the hard case also, it is possible to derive a final form of the interface laws
in terms of the stresses and displacements fields in the final configuration (Fig. 1c).
Using matching relations (29)–(32) the interface laws, calculated both at zero-order
and at one-order, can be rewritten as follows [14, 53]:



Multiscale Modeling of Imperfect Interfaces and Applications 97

[[u0]] = 0 (59)

[[u1]] = −(K33)−1
(
σ 0i3 − Kα3u0

,α

)
− 〈〈u0

,3〉〉 (60)

[[σ 0 i3]] = 0 (61)

[[σ 1 i3]] =
(

− Kαβu0
,β + K3α(K33)−1

(
σ 0i3 − Kβ3u0

,β

))
,α

− 〈〈σ 0
,3 i3〉〉 (62)

Equations (59) and (61) represent the classical perfect interface law character-
ized by the continuity of the displacement and stress vector fields [5]. Additionally,
Eqs. (60) and (62) are imperfect interface conditions, allowing jumps in the displace-
ment and in the stress vector fields at the higher (one) order across the interface S
[53]. Moreover, Eqs. (60) and (62) highlight that these jumps depend on the dis-
placement and the stress fields at the zero-order and on their first and second order
derivatives [14].

As done in the soft case, the constitutive law for the hard interface written in terms
of displacement jumps and stresses in the reference configuration (Fig. 1a) can be
derived (with reference to [14, 53]). By considering the expansions (16a) and (7a)
combined with Eqs. (59)–(62). The obtained imperfect interface laws reads as:

[[uε]] ≈ −ε
(
(K33)−1

(
σ εi3 + Kα3uε

,α

)
− 〈〈uε

,3〉〉
)

(63)

[[σ ε i3]] ≈ ε
((− Kαβuε

,β + K3α(K33)−1
(
σ εi3 − Kβ3uε

,β

))
,α

−〈〈σ ε
,3 i3〉〉

)
(64)

2.2 Homogenization in Non-interacting Approximation
(NIA) for Microcracked Media

The class of inhomogeneities considered in the paper is that of planar micro-
cracks, both in the two-dimensional framework (rectilinear cracks) and in the three-
dimensional framework (penny-shaped cracks). The considered imperfect interphase
Bε, defined as the thin layer having S as the middle section and ε as the uniform
small thickness, is weakened by non-interacting penny-shaped microcracks of radius
b. Cracks are assumed to be characterized by a periodic transversally isotropic dis-
tribution with symmetry axis i3. Moreover, the non-interacting approximation (NIA)
is enforced [57], accordingly, each crack does not experience mechanical interaction
by surrounding cracks. Within the NIA framework, one recalls that the microcracks
contribution to the material effective properties is obtained as a summation over the
contribution of a single crack (or a family of cracks with characteristic length and
orientation [34]). As a result, a ε-thick representative elementary volume (REV) of
the interphase comprising a single crack can be conveniently introduced as sketched
in Fig. 2. Note that in the case of a family of parallel cracks (with same orientation),
it is possible to identify this family by an equivalent crack with average radius.
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Fig. 2 REV with
a crack—sketch of the
ε-thick representative
elementary volume (REV)
taken into account in the 3-d
homogenization process

The non-interacting approximation is particularly useful for cracked materials,
basically, for two reasons:

• it appears to be relatively accurate to high crack density, where local interaction
effects become substantial, this evidence can be due to the fact that presence of
cracks does not change the average stress in the matrix;

• substantial progress has been made in analyzing shape factors for cracks of com-
plex shapes.

It is worth remarking that, in the following text, for the sake of briefness, the word
crack is often used instead of microcracks; however the whole formulation that will
be discussed belongs to a micromechanics framework.

Mathematically, a crack is characterized by a surface of discontinuity experienced
by displacements (or temperature) when external fields are applied. Property con-
tribution tensors have rather specific structure for cracks. A complicating factor is
that cracks often have irregular shapes (including non-planar and intersected con-
figurations). Nevertheless, this shortcoming is not taken into account in the present
paper.

NIA formulation have two dual forms, which in the following will be referred
as stress-based approach and strain-based approach. They correspond to obtain the
property contribution tensor via a summation of compliance or stiffness contributions
of individual inhomogeneities, respectively. In the following sections, the general
formulation of these homogenization approaches for microcracked media in the NIA
framework is outlined.

2.2.1 Stress-Based Approach

Generally, the additional strain tensor (averaged over the domain Ω of volume V )
due to the presence of a pore is given by the following integral over the pore boundary
∂Ωp:

Δε = − 1

V

∫
∂Ωp

(u ⊗s n) dS (65)
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where ⊗s is the symmetric tensorial product, u is the displacement vector, n is a unit
normal to ∂Ωp directed inward the pore.

Let υ+ and υ− be the displacements at the crack boundariesΓ + andΓ − withΓ =
Γ + ∪ Γ −. Denote also as ucod = 〈υ+ − υ−〉 = [∫

Γ
(υ+ − υ−)dΓ ]/|Γ | the average

measure of the displacement jump across the crack, in the following referred to as
crack opening displacement (COD) vector. Where |Γ | is the measure of the crack
surface. In this case, Eq. (65) takes the form:

Δε = 1

V

∫
Γ +

([υ] ⊗s n) dS (66)

where n is the normal unit vector of the crack surface and [υ] = (υ+ − υ−) is the
displacement discontinuity vector along Γ . Calculation of the integral in terms of
remotely applied stress σ 0 ≡ σ would yield the H-tensor of the crack, defined as:

Δε = V p

V

(
H : σ 0

)
(67)

For a flat (planar) crack (n is constant along Γ ), the additional strain Δε becomes:

Δε = 1

V
(ucod ⊗s n) Γ (68)

Equations (66) and (68) are an immediate consequence of a footnote remark in
the famous work by Hill [31].

Let recall that under the approximation of non-interacting cracks, each crack is
embedded into the σ -field and it does not experience any influence of other cracks.
As a result, for a flat crack of any shape, a second-rank crack compliance tensor B
can be introduced that relates vector ucod to the vector of uniform tractionTn = σ · n
induced at the crack site by the far-field σ [34, 35, 43, 60]:

ucod = TT
n · B (69)

Therefore, according to the hypothesis of linear elasticity of materials and absence
of friction along crack faces, the average COD vector for each crack is expressed in
terms of the vector of uniform traction Tn .

Since B is a symmetric tensor (as follows from application of the Betti reciprocity
theorem to the normal and shear tractions on a crack), three orthogonal principal
directions of the crack compliance exist: application of a uniform traction in one of
them does not generate components of vector ucod in the other two directions. If the
matrix is isotropic, n is one of them and the other two, t and s, lie in the crack plane,
as follows:

B = Bnn(n ⊗ n) + Btt (t ⊗ t) + Bss(s ⊗ s) (70)
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As a definition, let introduce the average, over in-plane directions τ , shear crack
compliance that is of importance for the effective elastic properties of a solid with
multiple cracks [57]:

BT = (Btt + Bss)

2
(71)

It is worth to remark that the B tensor has to be specialized with respect to the bulk
material properties.

Within the NIA framework, the problem of quantitative characterization of
microstructures is reduced to find the proper microstructural parameter of inho-
mogeneities in whose terms the effective property of interest, compliance tensor has
to be expressed [35]. Generally, the concentration parameters of inhomogeneities
in the context of the elastic properties are better identified via the structure of the
additional elastic potential Δ f .

For flat cracks, recalling Eshelby’s theory [16], the elastic potential f (σ ) of
the effective microcracked material, written in terms of microstructural quantities
defined on the crack surfaces Γ i , is [34, 57, 59]:

f (σ ) = f0(σ ) + Δ f = 1

2
σ : S0 : σ + 1

2V

∑
i

(TT
n · ucod)

i Γ i (72)

where f0(σ ) is, as usually, the potential of the bulk matrix (interphase) and the
perturbation term Δ f is obtained as a sum of the contributions of individual cracks,
i.e.
∑

i is a summation over the families of microcracks of length 2 li and normal
vector ni . Recall that the tensor S0 appearing in Eq. (72) is the compliance tensor of
the virgin interphase.

In the important case of randomly oriented circular cracks (penny-shaped) of radii
bi , their concentration is characterized by the crack density parameter introduced by
Bristow [7]:

ρ = 1

V

∑
i

b(i)3 (73)

that in the two-dimensional case of randomly oriented rectilinear cracks of mean-
length li becomes:

ρ = 1

A

∑
i

l(i)2 (74)

This parameter was generalized by Budiansky and O’Connell [8] to the elliptical
in-plane shapes, of areas S(i) and perimeters P (i) (provided aspect ratios of ellipses
are identical) as:

ρ = 2

π

1

V

∑
i

(
S2

P

)i

(75)

For non-random crack orientations, the crack density tensor was introduced by
Kachanov [34]:
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α = 1

V

∑
i

(b3n ⊗ n)i

(
α = 1

A

∑
i

(l2n ⊗ n)i in 2-D case

)
(76)

with ρ = Tr α. Kachanov introduced also a fourth-rank density tensor in three-
dimensional case

1

V

∑
i

(b3n ⊗ n ⊗ n ⊗ n)i (77)

which in general causes a small deviation from orthotropy.
As an example, in the three-dimensional case of an isotropic material weakened

by open penny-shaped cracks the elastic potential f is [35]:

f = f0 + 8(1 − ν20 )

3
(
1 − ν0

2

)
E0

⎡
⎣(σ ∗ σ ) : α − ν0

2

⎛
⎝σ : 1

V

∑
i

(b3n ⊗ n ⊗ n ⊗ n)i : σ

⎞
⎠
⎤
⎦
(78)

2.2.2 Strain-Based Approach

Goidescu-type formulation is developed within the framework of 2-D homoge-
nization problems [20, 21]. It extends the micromechanical approach proposed
by Andrieux et al. [2] and leads to a closed-form expression of the macroscopic
free energy of a 2D orthotropic elastic medium weakened by arbitrarily oriented
microcracks in the dilute limit assumption. It exists a large amount of literature
about the homogenization of microcracked media following a strain-based approach
[25, 31–33, 47]. It is worth to recall that within the framework of this approach
the stiffness contribution tensor ΔC are derived starting from a free energy W .
As done above for the stress-based approach, let the general background be out-
lined. Particularly, reference is herein made to the two-dimensional formulation
by [20, 21].

Let consider a RVE of total area A , the bulk matrix is assumed to be weakened
by an array of N families of flat microcracks with arbitrary orientation relative to
orthotropic axes andmean length 2li , which occupy the domainω. As a general recall
[33], the macroscopic stress Σ and strain E tensors and the macroscopic free energy
W on a cell A are respectively defined as average values of microscopic stress σ

and strain ε fields and local free energy. Let denote by ¯A = A − ω the area of the
matrix phase, v(x) the outward unit normal to ω and T(x, v(x)) the traction along
the crack faces for any point x ∈ ω. Decomposition of local fields over the RVE and
application of the divergence theorem allow to relate macroscopic and microscopic
quantities [31]. For the macroscopic stress Σ , one has:

Σ = 〈σ 〉A = 〈σ 〉 ¯A + N

2

∫
ω

(
T(x, v(x)) ⊗s x

)
dx = 〈σ 〉 ¯A (79)
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For the macroscopic strain E one has, recalling Eq. (66):

E = 〈ε〉A = 〈ε〉 ¯A + N

2

∫
ω+

(
[υ(x)] ⊗s n

)
dx (80)

with the surface integral operator 〈•〉M = 1
|M |

∫
M (•)dS, and v(x) = n for x ∈ ω

the unit vector normal to the cracks, supposed to be constant along ω for flat and
regular cracks. It is worth recalling that both Eqs. (66) and (80) are generalization of
the Hill lemma for continuous media and they are directly derived from a footnote
remark in his work [31]. From Eq. (80) is pointed out that the average strain field
on the solid part 〈ε〉 ¯A is therefore not sufficient to describe E, the contribution of
displacements jump [υ] on the cracks must be taken into account in its expression.

Themacroscopic free energy of thematerial is a finite quantity exclusively defined
on the matrix part of the material, that is:

W = 1

2
〈ε : C0 : ε〉 ¯A (81)

For microcracked media it has been established, among other by Telega [58], that
the following equation holds:

W = 1

2

∫
∂ ¯A

υ(x) · σ (x) · v(x) dx = 1

2
Σ : E − N

2

∫
ω+

[υ(x)] · σ (x) · n dx (82)

with ∂ ¯A = ∂A ∪ ω the boundary of the solid matrix.
Let consider an uniform boundary condition applied on the boundary ∂A of the

RVE, given in terms of stresses as follows:

σ (x) · v(x) = Σ · v(x) ∀x ∈ ∂A (83)

Within the framework of the strain-type approach, in order to derive the local
fields involved and to determine the effective microcracks contribution, the elastic
problem P is decomposed into two sub-problemsP (1) and P (2) [2]:

• in the sub-problem P (1), the displacement field u(1) corresponds to that of the
homogeneous virgin material subjected to uniform stress conditions; accordingly
the related local stress σ (1) and strain ε(1) fields are uniform and must comply with
the average stress rule Σ = 〈σ (1)〉A and E(1) = 〈ε(1)〉A = [C0]

−1 : Σ

• for the sub-problem P (2), the displacement field u(2) is induced by the displace-
ment jump [υ] between the crack faces; the related local stress σ (2) is in this case
self-equilibrated, i.e. 〈σ (2)〉 ¯A = 0 from (79); besides, since 〈ε(2)〉 ¯A = [C0]

−1 :
〈σ (2)〉 ¯A = 0; the macroscopic strain reads from (80):

E(2) = N

2

∫
ω+

([υ(x)] ⊗ n + n ⊗ [υ(x)])dx (84)
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Introducing two scalar variables β and γ related to the normal [uN (x)] = [υ(x)] · n
and tangential [uT (x)] = [υ(x)] · t average displacement jump components on the
cracks faces:

β = N

∫
ω+

[uN (x)] dx γ = N

∫
ω+

[uT (x)] dx (85)

the macroscopic strain inP (2) reads as:

E(2) = β n ⊗ n + γ

2
(n ⊗ t + t ⊗ n) (86)

where (n, t) define an integral orthonormal basis for the crack.
According with the decomposition, the overall macroscopic strain is:

E = E(1) + E(2) (87)

Moreover, the overall free energy per unit surface W defined by Eq. (81) with ε =
ε(u(1) + u(2)) can be expressed as the sum of two terms [2]:

W = 1

2
〈(ε(1) + ε(2)) : C0 : (ε(1) + ε(2))〉 ¯A = W (1) + W (2) (88)

for which have been taken into account the uniformity of ε(1) and the property
〈ε(2)〉 ¯A = 0.

W (1) is the free energy of the virgin material related to the problem P (1):

W (1) = 1

2
〈ε(1) : C0 : ε(1)〉A = 1

2
E(1) : C0 : E(1) (89)

and the termsW (2) is related to the contribution of the jump displacement in problem
P (2). It follows from Eq. (82) that:

W (2) = 1

2
〈ε(2) : C0 : ε(2)〉 ¯A = −N

2

∫
ω+

[υ(x)] · σ (2)(x) · n dx

= −N

2

∫
ω+

([uN (x)] n · σ (2)(x) · n + [uT (x)] n · σ (2)(x) · t) dx

= −1

2
(βn · σ (2) · n + γ n · σ (2) · t) (90)

for which: σ (2)(x) = σ (2) = const, ∀x ∈ ω for a dilute concentration of cracks.
Final expression of the free energy W of the microcracked material with open

cracks parallel to i1 direction (for further details refer to [20, 21]) is:

W = W0 − d
[
Hnn (N : E)2 + Htt (T : E)2

]
(91)



104 S. Dumont et al.

with

W0 = 1

2
E : C0 : E (92)

be the overall free energy of the virgin initially-orthotropic material and d = N l2

be the microcracks density, where N is the number of cracks per unit surface area,
and as usual, l is the half-length of a crack. Parameters Hnn = C(1 + D) and Htt =
C(1 − D) are identical to Bnn and Btt respectively, of the stress-based approach
of Kachanov type. Constants C and D can be expressed in terms of engineering
mechanical parameters, or equivalently, in terms of the components of tensor C0

[21]. Moreover, second-order tensors N = C0 : (i3 ⊗ i3) and T = C0 : (i1 ⊗s i3) are
used.

Finally, fromEq. (91) the effective stiffness tensorC of themicrocrackedmaterial,
is obtained.

It is worth noting that all the obtained coefficients K jl
ki are of the form f (C0) −

d [g(C0)] with f, g generic functions. It is well highlighted a shortcoming of this
kind of formulation in dilute limit assumption, that is severely limit values of the
microcracks density d. Nevertheless, a great advantage of such a homogenization
can be leading to coefficients which do not depend on the REV geometry.

From a computational point of view, the implementation of a hard interfacemodel,
also for a quite simple geometry, is not an easy issue due to the discontinuities both
in terms of stresses and displacements at the interface. This aspect is not considered
in the present work, nevertheless some numerical results are given in [14].

3 A St. Venant-Kirchhoff Imperfect Interface Model

In this section, a nonlinear-imperfect interface model is proposed. Within the frame-
work of the detailed micromechanical approach, the model is formulated following
the same procedure detailed in Sect. 2, in order to derive both soft and hard imperfect
interface laws. In detail, the matched asymptotic expansion method [1, 4, 38–41, 52,
53] is extended to the finite strain theory [14, 15, 49]. Moreover, the homogeniza-
tion method for microcracked media under the NIA [34, 35, 43, 57, 60] is applied
to a damaged interphase comprising of a hyperelastic St. Venant-Kirchhoff initially
orthotropic material [49].

3.1 Matched Asymptotic Expansion
Method in Finite Strains

Let an orthonormal Cartesian basis (O, i1, i2, i3) be introduced, with x1, x2 and x3
be the corresponding coordinates of a particle belonging to the system Ωε. Refer to
Sect. 2 for the notation and three-dimensional problem statement (see Fig. 1).
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The equations governing the equilibrium problem of such a composite system are
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(sε
i j + sε

k j u
ε
i,k), j + fi = 0 in Ωε±

(sε
i j + sε

k j u
ε
i,k)n j = pi on Γ1

(sε
i j + sε

k j u
ε
i,k), j = 0 inBε

[[sε
i3 + sε

k3u
ε
i,k]] = 0 on S ε±

[[uε
i ]] = 0 on S ε±

uε
i = 0 on Γ0

sε
i j = A±

i jhk Ehk(uε) in Ωε±
sε

i j = Aε
i jhk Ehk(uε) inBε

(93)

where sε is the second Piola-Kirchhoff stress tensor, E(uε) is the Green-Lagrange
strain tensor (Ei j (uε) = 1

2 (ui, j + u j,i + uk,i uk, j )with i, j = 1, 2, 3) andA±,Aε are
the elasticity tensors of the deformable adherents and of the adhesive, respectively. It
is worth remarking that for the elastic tensorAε holds the following identityAε ≡ B

ε.
Additionally, by the homogenization for microcracked media, detailed in the next
section, the interphase elastic tensor is found to be consistent with the soft interphase
assumption. Such a finding, allows to express its components through the following
relationship:

Aε
i jkl = ε Âi jkl (94)

Since the interphase is assumed to behave as a thin layer of thickness ε, it is
natural to seek the solution of the equilibrium problem, expressed by Eq. (93), by
using asymptotic expansions with respect to the small parameter ε [42]. In particular,
the following asymptotic series with fractional powers are exploited [54]:

{
uε(x1, x2, x3) = u0 + ε1/3u1 + ε2/3u2 + ε u3 + ε4/3u4 + ε5/3u5 + ε2u6 + o(ε2)

sε(x1, x2, x3) = s0 + ε1/3s1 + ε2/3s2 + ε s3 + ε4/3s4 + ε5/3s5 + ε2s6 + o(ε2)

(95)
It is worth remarking that such a choice of a fractional expansion is due to energy-
based evidences [54]. In particular, from a quite simple mono-dimensional example,
proposed in [54], it has been put in evidence that the solution in terms of displacement
jump is proportional to ε

2
3 .

In agreement with [12] and equivalently to what performed in the others models
(see Sect. 2), also in this case, let the change of variable ĝ : (x1, x2, x3) → (z1, z2, z3)
be introduced inBε, with z1 = x1, z2 = x2, z3 = x3/ε. Moreover, let the change of
variable ḡ : (x1, x2, x3) → (z1, z2, z3) be introduced in Ωε±, with z1 = x1, z2 = x2,
z3 = x3 ± (1 − ε)/2. As a result, the interphaseBε and the adherentsΩε± are scaled
in domains of unitary thickness B and Ω±, respectively. In what follows, sym-
bols ·̄ and ·̂ refer to rescaled quantities forB and Ω±, respectively. More precisely,
ûε = uε ◦ ĝ−1 and ŝε = sε ◦ ĝ−1 denote displacement and stress fields for B, and
ūε = uε ◦ ḡ−1 and s̄ε = sε ◦ ḡ−1 are displacement vector and stress tensor for Ω±,
uε and sε being the corresponding fields on the system Ωε. The internal and external
forces, f and p, respectively, are assumed to be independent of ε. As a consequence, it
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is set f̄(z1, z2, z3) = f(x1, x2, x3) and p̄(z1, z2, z3) = p(x1, x2, x3). Moreover, under
the change of variables, the domains Γ0 and Γ1 are transformed into the domains
denoted by Γ̄0 and Γ̄1, respectively. As a result, the governing equations of the
equilibrium problem, in the rescaled composite system, are expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s̄i j + s̄k j ūi,k), j + f̄i = 0 in Ω±
(s̄i j + s̄k j ūi,k)n j = p̄i on Γ̄1

(ŝiα + ŝkα ûi,k),α + 1
ε
(ŝi3 + ŝk3ûi,k),3 = 0 inB

s̄i3 + s̄k3ūi,k = ŝi3 + ŝα3ûi,α + 1
ε
ŝ33ûi,3 on S±

ūi = ûi on S±
ūi = 0 on Γ̄0

s̄i j = A±
i jhk Ēhk(ū) in Ω±

ŝi j = Aε
i jhk Êhk(û) inB

(96)

where Ē, Ê denote the rescaled Green-Lagrange strain tensors in the adherents and
in the adhesive.

In view of Eq. (95) the relevant fields, in the rescaled adhesive and adherents, can
be expressed as asymptotic expansions in the following way:

⎧⎪⎪⎨
⎪⎪⎩

ŝε(z1, z2, z3) = ŝ0 + ε1/3ŝ1 + ε2/3ŝ2 + εŝ3 + ε4/3ŝ4 + ε5/3ŝ5 + ε2ŝ6 + o(ε2)

s̄ε(z1, z2, z3) = s̄0 + ε1/3s̄1 + ε2/3s̄2 + εs̄3 + ε4/3s̄4 + ε5/3s̄5 + ε2s̄6 + o(ε2)

ûε(z1, z2, z3) = û0 + ε1/3û1 + ε2/3û2 + εû3 + ε4/3û4 + ε5/3û5 + ε2û6 + o(ε2)

ūε(z1, z2, z3) = ū0 + ε1/3ū1 + ε2/3ū2 + εū3 + ε4/3ū4 + ε5/3ū5 + ε2ū6 + o(ε2)

(97)
In the following, the conditions holding in the rescaled interphaseB are detailed.

These latter are obtained by substituting the first of Eq. (97) into the equilibrium
equation holding in the interphase (i.e., third equation of the system (96)) and by
identifying, in a standard way, similar terms with respect to the power of the para-
meter ε:

• Power of ε : −2
(û0

i,3ŝ033),3 = 0, (98)

• Power of ε : −5/3
(û0

i,3ŝ133 + û1
i,3ŝ033),3 = 0, (99)

• Power of ε : −4/3
(û0

i,3ŝ233 + û1
i,3ŝ133 + û2

i,3ŝ033),3 = 0, (100)

• Power of ε : −1

(û0
i,3ŝ03α),α + (ŝ0i3 + û0

i,α ŝ03α),3

+ (û0
i,3ŝ333 + û1

i,3ŝ233 + û2
i,3ŝ133 + û3

i,3ŝ033),3 = 0, (101)
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• Power of ε : −2/3

(û0
i,3ŝ13α + û1

i,3ŝ03α),α + (ŝ1i3 + û0
i,α ŝ13α + û1

i,α ŝ03α),3

+ (û0
i,3ŝ433 + û1

i,3ŝ333 + û2
i,3ŝ233 + û3

i,3ŝ133 + û4
i,3ŝ033),3 = 0, (102)

• Power of ε : −1/3

(û0
i,3ŝ23α + û1

i,3ŝ13α + û2
i,3ŝ03α),α

+ (ŝ2i3 + û0
i,α ŝ23α + û1

i,α ŝ13α + û2
i,α ŝ03α),3

+ (û0
i,3ŝ533 + û1

i,3ŝ433 + û2
i,3ŝ333 + û3

i,3ŝ233 + û4
i,3ŝ133 + û5

i,3ŝ033),3 = 0, (103)

• Power of ε : 0

(û0
i,3ŝ33α + û1

i,3ŝ23α + û2
i,3ŝ13α + û3

i,3ŝ03α),α + (ŝ0iα + ŝ0αβ û0
i,β)α

+ (ŝ3i3 + û0
i,α ŝ33α + û1

i,α ŝ23α + û2
i,α ŝ13α + û3

i,α ŝ03α),3

+ (û0
i,3ŝ633 + û1

i,3ŝ533 + û2
i,3ŝ433 + û3

i,3ŝ333 + û4
i,3ŝ233 + û5

i,3ŝ133 + û6
i,3ŝ033),3 = 0,

(104)

• . . .

By substituting the first two equations of (97) into the continuity condition of the
traction vector holding through the rescaled interfaces S± (i.e., fourth equation
of system (96)), and by applying the usual identification procedure, the following
relationships are obtained:

• Power of ε : −1
0 = (û0

i,3ŝ033) (105)

• Power of ε : −2/3
0 = (û0

i,3ŝ
1
33 + û1

i,3ŝ033) (106)

• Power of ε : −1/3
0 = (û0

i,3ŝ
2
33 + û1

i,3ŝ133 + û2
i,3ŝ033) (107)

• Power of ε : 0

(s̄0i3 + ū0
ik s̄0k3) = (ŝ0i3 + û0

i,α ŝ0α3 + û0
i,3ŝ333 + û1

i,3ŝ233 + û2
i,3ŝ133 + û3

i,3ŝ033) (108)
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• Power of ε : 1/3

(s̄1i3 + ū0
i,k s̄1k3 + ū1

i,k s̄0k3)

= (ŝ1i3 + û0
i,α ŝ1α3 + û1

i,α ŝ0α3)

+ (û0
i,3ŝ

4
33 + û1

i,3ŝ333

+ û2
i,3ŝ

2
33 + û3

i,3ŝ133 + û4
i,3ŝ033) (109)

• Power of ε : 2/3

(s̄2i3 + ū0
i,k s̄2k3 + ū1

i,k s̄1k3 + ū2
i,k s̄0k3)

= (ŝ233 + û0
i,α ŝ2α3 + û1

i,α ŝ1α3 + û0
i,α ŝ2α3)

+ (û0
i,3ŝ533 + û1

i,3ŝ433 + û2
i,3ŝ333 + û3

i,3ŝ233 + û4
i,3ŝ133 + û5

i,3ŝ033) (110)

• Power of ε : 1

(s̄3i3 + ū0
i,k s̄3k3 + ū1

i,k s̄2k3 + ū2
i,k s̄1k3 + ū3

i,k s̄0k3)

= (ŝ3i3 + û0
i,α ŝ3α3 + û1

i,α ŝ2α3 + û2
i,α ŝ1α3 + û3

i,α ŝ0α3)

+ (û0
i,3ŝ633 + û1

i,3ŝ533 + û2
i,3ŝ433 + û3

i,3ŝ333 + û4
i,3ŝ233 + û5

i,3ŝ133 + û6
i,3ŝ033)

(111)

• . . .

It is worth noting that the above equations hold both in S+ and in S−, for the sake
of briefness they have been detailed only in one case. Moreover, by remarking that
the left-hand sides in Eqs. (108)–(111) can be identified as the expansions of the
i3 components of the first Piola-Kirchhoff stress tensor P̄i3 = (s̄i3 + ūik s̄k3) in the
adherents, a significant simplification of these equations it is possible.

According to the soft-material-interphase assumption, by substituting Eq. (94)
in the constitutive law holding in the interphase B of the rescaled domain (i.e.,
last equation of the problem (96)), written for j = 3, the following conditions are
deduced:

• Power of ε : −1
0 = (û0

k,3û0
k,3) (112)

• Power of ε : −2/3
0 = (û0

k,3û
1
k,3 + û1

k,3û0
k,3) (113)

• Power of ε : −1/3
0 = (û0

k,3û2
k,3 + û1

k,3û1
k,3 + û2

k,3û0
k,3) (114)
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• Power of ε : 0

ŝ0α3 = Â33α3
[
û0
3,3 + (û0

s,3û3
s,3 + û1

s,3û2
s,3)
]+ 1

2
Âβ3α3(û

0
β,3 + û0

s,β û0
s,3)

ŝ033 = Â3333
[
û0
3,3 + (û0

s,3û3
s,3 + û1

s,3û2
s,3)
]+ 1

2
Â33β3(û

0
β,3 + û0

s,β û0
s,3)

(115)

• Power of ε : 1/3

ŝ1α3 = Â33α3

[
û1
3,3 + (û0

s,3û4
s,3 + û1

s,3û3
s,3 + 1

2
û2

s,3û2
s,3)

]

+ 1

2
Âβ3α3(û

1
β,3 + û0

s,β û1
s,3 + û1

s,β û0
s,3)

ŝ133 = Â3333

[
û1
3,3 + (û0

s,3û4
s,3 + û1

s,3û3
s,3 + 1

2
û2

s,3û2
s,3)

]

+ 1

2
Â33β3(û

1
β,3 + û0

s,β û1
s,3 + û1

s,β û0
s,3)

(116)

• . . .

From Eqs. (112)–(115) it follows that:

û0
,3 = 0 in B ⇒ [û0] = 0 (117)

û1
,3 = 0 in B ⇒ [û1] = 0 (118)

ŝ0α3 = 0 = ŝ033 in B (119)

where it is set [ f ](z1, z2) = f (z1, z2, 1/2) − f (z1, z2,−1/2) for f : B �→ R
3.

By combining Eqs. (117)–(119) into Eqs. (98)–(101), the following relationship is
obtained:

(û2
i,3ŝ133)3 = 0 in B (120)

which integrated with respect to z3 gives

û2
i,3ŝ133 = const. = P̄0

i3|S± in B (121)

where P̄0
i3|S± is the common value taken at the interfacesS± (cfr. Eq. (108)). More-

over, by substituting Eq. (116) and Eqs. (117)–(119) into Eq. (121) the following
relationship is obtained:

1

2
Â3333(| û2

i,3 |2 û2
i,3) = P̄0

i3 = in B (122)
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By solving with respect to û2
,3 and by integrating with respect to z3 one has:

[û2] = 1

( 12 Â3333)1/3

1

| P̄0i3 |2/3 P̄0i3 (123)

Thereby, substituting Eqs. (112)–(115) into Eqs. (108)–(110) it is obtained that:

[P̄0i3] = 0 (124)

[P̄1i3] = 0 (125)

[P̄2i3] = 0 (126)

with

P̄0
i3 = (s̄0i3 + ū0

i,k s̄0k3) (127)

P̄1
i3 = (s̄1i3 + ū0

i,k s̄1k3 + ū1
i,k s̄0k3) (128)

P̄2
i3 = (s̄2i3 + ū0

i,k s̄2k3 + ū1
i,k s̄1k3 + ū2

i,k s̄0k3) (129)

The final step of the asymptotic expansion method consists in applying the match-
ing conditions in order to find the proper interface law for the limit equilibrium
problem, in which the interphase is replaced by the limit interfaceS and the adher-
ents by the domains Ω0± = {(x1, x2, x3) ∈ Ω : ±x3 > 0}. By taking into account
the asymptotic expansion of the displacement field (95) and assuming that uε in the
adherent can be expanded in a Taylor series representation along the x3-direction, it
results:

uε(x̄,±ε

2
) = uε(x̄, 0±) ± ε

2
uε

,3(x̄, 0±) + · · ·
= u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±)

+ε
(
u3(x̄, 0±) ± 1

2
u0

,3(x̄, 0±)
)+ · · · (130)

In view of the continuity of the displacements at the interfacesS ε± andS± one has

u0(x̄, 0±) + ε1/3u1(x̄, 0±) + ε2/3u2(x̄, 0±) + · · ·
= û0(z̄,±1

2
) + ε1/3û1(z̄,±1

2
) + · · ·

= ū0(z̄,±1

2
) + ε1/3ū1(z̄,±1

2
) + · · · (131)

and, identifying the terms in the same powers of ε, it is deduced that:
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u0(x̄, 0±) = û0(z̄,±1

2
) = ū0(z̄,±1

2
)

u1(x̄, 0±) = û1(z̄,±1

2
) = ū1(z̄,±1

2
)

u2(x̄, 0±) = û2(z̄,±1

2
) = ū2(z̄,±1

2
) (132)

Analogous results can be obtained for the tractions vector, herein expressed in
terms of the first Piola-Kirchhoff tensor:

P0(x̄, 0±)i3 = P̂0(z̄,±1

2
)i3 = P̄0(z̄,±1

2
)i3

P1(x̄, 0±)i3 = P̂1(z̄,±1

2
)i3 = P̄1(z̄,±1

2
)i3

P2(x̄, 0±)i3 = P̂2(z̄,±1

2
)i3 = P̄2(z̄,±1

2
)i3 (133)

Let the following notation be adopted: [[f]] := f(x, 0+) − f(x, 0−) with f :
Ω0+ ∪ Ω0− �→ R

3; accordingly, the proper contact conditions for the limit equilib-
rium problem, i.e. expressed in terms of the relevant fields defined on Ω0+ ∪ Ω0−, can
be obtained by using this relation into the interphase laws Eqs. (117), (118), (123),
(124)–(126):

[ūl ] = [[ul]] l = 0, 1, 2

[P̄l i3] = [[Pl i3]] l = 0, 1, 2
(134)

By applying the matching relations (134) and taking into account Eqs. (132) and
(133), the interface laws for the soft interphase can be rewritten in the limit config-
uration Ω0+ ∪ Ω0− ∪ S in a form involving only the fields in the adherents:

[[u0]] = 0 [[P0i3]] = 0 (135)

[[u1]] = 0 [[P1i3]] = 0 (136)

[[u2]] = 1

( 12 Â3333)1/3

1

|P0i3|2/3 P0i3 [[P2i3]] = 0 (137)

which are the final expressions of the interface conditions for the proposed St.Venant-
Kirchhoff anisotropic model. It is worth remarking that the imperfect interface con-
dition, prescribing a jump of the displacement, appears at the second order. By taking
into account the expansions (95) and the relations (127)–(129), one finds:
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Pεi3 = P0i3 + O(ε1/3) (138)

[[Pεi3]] = ε2/3[[P2i3]] + O(ε) (139)

[[uε]] = ε2/3[[u2]] + O(ε) (140)

which, substituted into (135)–(137), give

[[Pεi3]] = 0 + o(ε) (141)

Pεi3 = Aε
3333

2 ε3
| [[uε]] |2 [[uε]] + o(ε1/3) (142)

Note that, to the aim to fully express the interface law Eq. (142) within the interphase
domain, Eq. (94) is taken into account: Â3333 = Aε

3333
ε

.
Finally, the imperfect interface law can be rewritten in terms of the Piola stress

vector P i3 and the displacement jump [[u]] in the limit configuration (Fig. 1c):

P i3 = Â3333

2 ε2
| [[u]] |2 [[u]] (143)

Remark that Eq. (143) is the relevant expression, from a computational point of
view, of the interface law for the proposed St. Venant-Kirchhoff model. Thereby, it
represents the transmission condition for the stress vector P i3 across the interface
S . As a definition, Â3333 is the interface stiffness for this soft nonlinear interface.
Moreover, Eq. (143) highlights that this transmission condition is an effectively non-
linear imperfect interface law. It is worth remarking that such an imperfect interface
condition, in order to be numerically implemented needs to fix a value for the thick-
ness ε. This fact can represent a shortcoming for the proposed model. Nevertheless,
such a parameter, in many cases can be measurable, for instance in the case of the
glue layers in bonding problems.

3.2 Homogenization of the Microcracked Interphase

The interface law (see Eq.142) is a function of the elastic constant Aε
3333 of the

interphase material. This latter is assumed to be orthotropic with principal axes
(i1, i3) and weakened by one family of parallel rectilinear microcracks with length
2l and orientation φ = (i1, t) = 0◦. In order to recover the elastic constant Aε

3333

and consecutively the interface stiffness Â3333, the homogenization technique for
microcracked orthotropic media in the two-dimensional context, refer to [17] for
further details. Therefore, in what follows only the relevant relations are outlined.

Recall the expression of the effective compliance tensor S of the microcracked
interphase, obtained through a stress-based homogenization in NIA:

(S)i jkl = (S0)i jkl + (ΔS)i jkl (144)
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where ΔS is the contribution compliance tensor associated to the perturbative term
in the complementary elastic potential Δ f , and accounting for the crack features.
S0 is the compliance of the undamaged initially orthotropic interphase material. As
a result, the elasticity tensor Aε can be easily derived as: Aε = S

−1. Note that the
tensor Aε depends on the interphase thickness ε through the microcrack density ρ:

ρ = l2

|REA| = l2

ε L
(145)

with L a characteristic dimension of the interphase, and ε is the interphase thickness,
as usual. As a result, the elastic constant Aε

3333 reads as:

Aε
3333 = E1E3

E1 + 2BnnρE1E3 − E3ν
2
13

(146)

with

Bnn = π

2
√

E3

√
2√

E1E3
+ 1

G13
− 2ν13

E1
(147)

where E1, E3, G13 and ν13 are the elastic constants of the undamaged interphase.
It is worth pointing out that these latter can be obtained in terms of the elastic
properties of the two adherents, as the result of a homogenization step performed on
the undamaged ε-thick representative elementary volume [17, 50, 51].

Finally, the interface stiffness Â3333, derived from Eq. (146), is expressed by the
following relationship:

Â3333 = L

2 Bnn l2
(148)

4 Numerical Applications

In this section a numerical benchmark is proposed in order to validate the imperfect-
nonlinear-interface model of the St. Venant-Kirchhoff type detailed in Sect. 3 and
to compare it with the spring-like model described in Sect. 2. A quite simple three-
dimensional geometry is treated, in particular an unit brick (210mm × 100mm ×
50mm) joined with a mortar joint (210mm × 100mm × 10mm). The composite
system is assumed to be fixed on a flat rigid plane. The geometry and the boundary
conditions are outlined in Fig. 3. This simple academic model has been chosen to
focus, in a more accurate way, on the behavior of the brick/mortar interface.

With respect to the hypothesis on the constitutive behavior of the principal con-
stituents, i.e. brick and mortar, a linear and a nonlinear isotropic cases have been
distinguished. In the first case, the materials are assumed to be linearly elastic with
parameters: Young modulus Eb = 13 × 103 MPa and Poisson ratio νb = 0.2 for the
brick, and Young modulus Em = 4 × 103 MPa and Poisson ratio νm = 0.2 for the
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Fig. 3 Geometry, boundary conditions and mesh detail—sketch of the three-dimensional model
(on the left). The surface loaded with the incremental displacement is represented in blue and
the red surface is fixed. On the right side, a detail of the free tetrahedral mesh is represented
(color online)

mortar, respectively. Instead, in the nonlinear case, both brick and mortar behave as
hyperelastic materials of the St. Venant-Kirchhoff type with Lamé constants: λb =
3.6 × 103 MPa andμb = 5.4 × 103 MPa for the brick, and λm = 1.1 × 103MPa and
μm = 1.6 × 103MPa for the mortar, respectively.

The interphase, localized at the brick/mortar interface level, is assumed to be
a thin stratified layer comprising of brick and mortar material characteristics. In
all numerical models proposed, the interphase is treated via the imperfect interface
approach. In other words, it is a third material supposed to be initially-transversely
isotropic, whose elastic constants E1, E3, G13 and ν13 are derived starting from
the mechanical properties of the constituents (Eb, Em, νb, νm). In order to obtain its
elastic constants a preliminary standard homogenization for stratified is performed
on the undamaged ε-thick representative elementary volume [48, 50, 51]. Moreover,
this interphase is assumed to be microcracked.

As a result, the following effective elastic constants for the virgin interphase
material are obtained: E1 = 8.5 × 103 MPa, E3 = 6.3 × 103 MPa, G13 = 5 × 103

MPa and ν13 = 0.2.
Two imperfect interface models are taken into account, the nonlinear St. Venant-

Kirchhoff interface, and the soft interface model obtained in Sect. 2. Note that it is
possible to applicate them in a three-dimensional context under the hypothesis of
isotropic interface (i.e. the tangential interface stiffness is assumed to be isotropic
in the interface plane). The nonlinear imperfect interface is modeled according
Eq. (149):

P i3 = Â3333

2 ε2
| [[u]] |2 [[u]] (149)

in which the interface stiffness Â3333 is given by Eq. (148). Assuming the following
values: L = 210 mm, l = L/100 = 2 mm and ε = 0.2 mm, the stiffness results in:
Â3333 = L

2 Bnn l2 = 5.9 × 104 N/mm3.
Concerning the linear-interface case, let the imperfect interface law be recalled:

σ i3 = K33[[u]] (150)
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where the interface stiffnesses in normal and in tangential-to-the-interface directions
comprised in the two-rank matrix K33, are expressed by Eq. (151):

KT = L

Btt l2
, KN = L

2 Bnnl2
(151)

accordingly they result in: KN = 5.9 × 104 N/mm3 and KT = 1.4 × 105 N/mm3.
Several numerical simulations are carried out, aimed at validating the proposed

interface models; in particular, in the model with the linearly elastic constituents, in
what follows denoted as linear model, both the linear and the nonlinear interface laws,
are implemented. In the nonlinear model, i.e. the onewith the hyperelastic St. Venant-
Kirchhoff constituents, only the nonlinear interface law is enforced. Additionally, the
linear and the nonlinearmodels are also implementedwith perfect interface condition
(i.e. [[u]] = 0, [[σ i3]] = 0, [[Pi3]] = 0), in order to have some reference data, in the
following they are referred as LP and NLP, respectively. Moreover, in what follows
the linearmodelwith linear interfacewill be calledL2, the linearmodelwith nonlinear
interface will be called LNL and the nonlinear model with nonlinear interface will
be called NL2.

All analysis are performed with the software COMSOL Multiphysics� 4.3 on
a processor Intel(R) Core(TM) i3-2350M 2.3GHz CPU. A free tetrahedral mesh
of fine size is chosen in all the analysis cases for the whole domain, moreover, the
brick/mortar interface is modeled through interface finite elements of zero thickness,
as represented in Fig. 3. The implemented numericalmodels aim to reproduce a push-
out test on a single brick in a quasi-static loading process. The tests are performed in
displacement-controlled mode with an imposed displacement of a maximum value
equal to 5mm. The degrees of freedom and the solution times expressed in seconds
are summarized in Table1, for all the analysis cases.

It is worth noting that it could be possible to reduce the degrees of freedom and,
consequently, the CPU times, by applying some considerations about the geometrical
symmetries of the considered system. Nevertheless, the remarkable aspect is the
large difference in terms of CPU time among linear and nonlinear calculations,
independently if the nonlinearity is localized at the interface level (LNL) or in the
constituents (NL2). Moreover, both in the linear and in the nonlinear model, the
introduction of the linear and nonlinear-imperfect-interface conditions, i.e. L2 and

Table 1 Values of degrees of freedom (dof) and solution times (in seconds) for all the analyzed
numerical models

Model dof CPU time (s)

LP 2,13,621 309

L2 2,19,822 326

LNL 2,19,822 9716

NLP 2,13,621 8831

NL2 2,19,822 10,317
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Fig. 4 Deformed shape in LNL model—final deformed shape relative to LNLmodel (on the right).
The x1-component of the displacement field is mapped in colors. Final deformed shape of the
interface in the same model (on the left) with color map of the x3-component of the displacement-
jump vector, the maximum value of the displacement is 0.12mm (a factor scale of 5 is applied)
(color online)
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Fig. 5 Comparison in terms of reaction force—reaction force in the x1-direction averaged over the
loaded boundary surface versus the x1-component of the average displacement-jump vector, at the
final step (the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented

NL2 respectively, does not produce a significant increment of the CPU times with
respect to the perfect-interface cases.

The numerical simulations stop when the imposed displacement reaches is max-
imum value (5mm). In Fig. 4 a deformed shape at the final configuration is shown
and the distribution of the displacement field is color-mapped.

The curves shown in Fig. 5 represent the x1-component of the reaction force (i.e.,
in the acting direction of the imposed displacement) averaged on the loaded boundary,
plotted with respect to the x1-component of the displacement jump averaged over the
interface surface, for all the analyzed cases. Interestingly, bothmodels LNL andNL2,
allow to take into account for larger deformations (about one order of magnitude) at
the interface level, than the L2 model.
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Fig. 6 Comparison in terms of displacement jump in x1-direction—final distribution of the
x1-component of the average displacement-jump vector along the interface in the x1-direction
(recall that the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented
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Fig. 7 Comparison in terms of displacement jump in x3-direction—final distribution of the
x3-component of the average displacement-jump vector along the interface in the x1-direction
(recall that the maximum value of the imposed displacement is 5mm). Comparison among: L2

(- -� - -); LNL (–�–); and NL2 (- -�- -). A zoom of the curve relative to L2 is represented

A comparison of Figs. 6 and 7 put in evidence this aspect. The figures represent the
distribution, at the final configuration, of the x1-component and of the x3-component
of the displacement-jump vector, respectively, along a cut line obtained from the
intersection of the interface plane with the plane of symmetry.

Furthermore, Figs. 5, 6 and 7 highlight that is not very useful to model the adher-
ents as hyperelastic materials in order to take into account the geometrical nonlinear-
ities, i.e. large deformations, in terms of global response. In fact, the implementation



118 S. Dumont et al.

Fig. 8 Von Mises stresses in LNL model—Von Mises stress (MPa) in LNL, with a particular of
the stress distribution at the interface level

Fig. 9 Von Mises stresses in NL2 model—Von Mises stress (MPa) in NL2, with a particular of the
stress distribution at the interface level

of a nonlinear imperfect interface, as the proposed St. Venant Kirchhoff model, in a
linearly elastic composite system (LNL), seems to sufficiently catch the nonlinear-
interface behavior as the fully nonlinear model (NL2), reaching the same order of
magnitude in terms of displacement jumps.

Figures8 and 9 show the distribution of the Von Mises stresses in LNL and in
NL2 respectively, in both cases a detail of the interface zone is represented. It is
worth noting the difference in terms of magnitude of the stresses. In particular, in
NL2 model the Von Mises stresses are significantly smaller than in LNL. Moreover,
by analyzing the particular of the interfaces in both model, a significant difference
in terms of stress distribution can be appreciated.
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5 Conclusions

In the first part of the present paper, the principal tools on which the imperfect inter-
face approach is founded, have been introduced. After a brief recall on modeling
background of imperfect interfaces, the matched asymptotic expansion method and
the homogenization for microcracked media in NIA framework, have been exten-
sively detailed.

The matched asymptotic expansion formulation, based on a higher order theory
[53], has been formulated for both soft and hard interface cases. Thereby, the interface
laws until the second (one) order have been derived, in both soft and hard interface
conditions [53]. Such an asymptoticmethod,within the imperfect interface approach,
is coupled to another tool, that is a micromechanical homogenization technique. In
particular, a homogenization for microcrackedmedia in the NIA framework has been
chosen in order to take into account for damage in interphase. Two dual approaches
in NIA have been presented, the stress-based and the strain-based approach.

In the hard imperfect interface model, the matched asymptotic technique has been
expanded until the order one,within the higher order theory framework, recovering an
imperfect interface law in terms of stresses and displacements jumps. This resulting
interface law, is a challenging issue from a computational point of view. Moreover,
a homogenization technique in the strain-based approach under the hypothesis of
dilute concentration, is adopted [20, 21]. This homogenization technique leads to
an expression of the effective elastic coefficients of the type: f (C0) − d [g(C0)]
with f, g generic functions. From this expression, it is well highlighted that the
values of density d are severely limited. It is worth remarking that there exist other
homogenization techniques in dilute concentration approximation that overcome this
shortcoming, for instance the dilute estimate scheme by [6], for which the stiffness
coefficients, in the initially-isotropic (E0, ν0) interphase case, are given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Cρ = 3(2ν0 − 1) + 16((1 − ν0)2)ρ

3(2ν0 − 1) + 32(ν0)2(1 − ν0)ρ
E1
1 = Cρ E0,

E1
3 = E0,

μ1
13 = Cρμ

0,

ν1
31 = Cρν

0.

(152)

Nevertheless, a great advantage of the Goidescu homogenization can be to lead
to coefficients which do not depend on the REV geometry, because of the chosen
form of the microstructural parameter d. For the St. Venant-Kirchhoff type interface
(Sect. 3), a newmatched asymptotic technique, based on fractional expansions of the
relevant fields, has been proposed. This asymptotic procedure has been formulated
by extending the asymptotic method to the finite strain theory [49, 54]. Also in this
case, a homogenization has been performed to treat the microcracked interphase, i.e.
the NIA building block in a stress-based approach.

Finally, a simple three-dimensional benchmark is proposed, in which three
modeling cases have been compared in order to validate the proposed models.
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The chosen application domain is masonry. The first two models, defined as lin-
ear, have been conceived with linearly elastic adherents (brick and mortar), and with
two different interface conditions. In the first case, the brick/mortar interface has
been modeled with the linear spring-type interface law, and in the second case, the
St. Venant-Kirchhoff nonlinear interface law has been implemented. The thirdmodel,
defined as nonlinear, is a fully nonlinear one, in which the adherents are assumed
to be St. Venant-Kirchhoff hyperelastic material and the interface has been modeled
with the St. Venant-Kirchhoff nonlinear interface law. Some comparisons have been
carried out in terms of displacement jumps and of stresses distribution along the
interface. The soundness and the consistency of the proposed interface models are
highlighted, both from a theoretical and a numerical points of view. Moreover, it has
been established that the linear model with the nonlinear interface is able to catch the
large displacements occurring at the interface level as much as the fully nonlinear
model, additionally, the computational cost in the first case is smaller.
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