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Abstract

State-of-the-art constraint solvers uniformly maintain the same level
of local consistency (usually arc consistency) on all the instances. We
propose two approaches to adjust the level of consistency depending on
the instance and on which part of the instance we propagate. The first ap-
proach, parameterized local consistency, uses as parameter the stability of
values, which is a feature computed by arc consistency algorithms during
their execution. Parameterized local consistencies choose to enforce arc
consistency or a higher level of local consistency to a value depending on
whether the stability of the value is above or below a given threshold. In
the adaptive version, the parameter is dynamically adapted during search,
and so is the level of local consistency. In the second approach, we focus
on partition-one-AC, a singleton-based consistency. We propose adap-
tive variants of partition-one-AC that do not necessarily run until having
proved the fixpoint. The pruning can be weaker than the full version, but
the computational e↵ort can be significantly reduced. Our experiments
show that adaptive parameterized maxRPC and adaptive partition-one-
AC can obtain significant speed-ups over arc consistency and over the full
versions of maxRPC and partition-one-AC.

1 Introduction

Enforcing local consistency by applying constraint propagation during search is
one of the strengths of constraint programming (CP). It allows the constraint
solver to remove locally inconsistent values. This leads to a reduction of the
search space. Arc consistency is the oldest and most well-known way of propa-
gating constraints [Bes06]. It has the nice feature that it does not modify the
structure of the constraint network. It just prunes infeasible values. Arc con-
sistency is the standard level of consistency maintained in constraint solvers.

⇤The results contained in this chapter have been presented in [BBCB13] and [BBBT14].
This work has been funded by the EU project ICON (FP7-284715).

1



Several other local consistencies pruning only values and stronger than arc con-
sistency have been proposed, such as max restricted path consistency or single-
ton arc consistency [DB97]. These local consistencies are seldom used in prac-
tice because of the high computational cost of maintaining them during search.
However, on some instances of problems, maintaining arc consistency is not a
good choice because of the high number of ine↵ective revisions of constraints
that penalize the CPU time. For instance, Stergiou observed that when solving
the scen11, an instance from the radio link frequency assignment problem (RL-
FAP) class, with an algorithm maintaining arc consistency, only 27 out of the
4103 constraints of the problem were identified as causing a domain wipe-out
and 1921 constraints did not prune any value [Ste09].

Choosing the right level of local consistency for solving a problem requires
finding a good trade-o↵ between the ability of this local consistency to remove
inconsistent values, and the cost of the algorithm that enforces it. The works of
[Ste08] and [PS12] suggest to take advantage of the power of strong propagation
algorithms to reduce the search space while avoiding the high cost of maintaining
them in the whole network. These methods result in a heuristic approach based
on the monitoring of propagation events to dynamically adapt the level of local
consistency (arc consistency or max restricted path consistency) to individual
constraints. This prunes more values than arc consistency and less than max
restricted path consistency. The level of propagation obtained is not character-
ized by a local consistency property. Depending on the order of propagation,
we can converge on di↵erent closures. In other work, a high level of consistency
is applied in a non exhaustive way, because it is very expensive when applied
exhaustively everywhere in the network during the whole search. In [SS09], a
preprocessing phase learns which level of consistency to apply on which parts
of the instance. When dealing with global constraints, some authors propose
to weaken arc consistency instead of strengthening it. In [KVH06], Katriel et
al. proposed a randomized filtering scheme for AllDi↵erent and Global Cardi-
nality Constraint. In [Sel03], Sellmann introduced the concept of approximated
consistency for optimization constraints and provided filtering algorithms for
Knapsack Constraints based on bounds with guaranteed accuracy.

In this chapter, we propose two approaches for adapting automatically the
level of consistency during search. Our first approach is based on the notion of
stability of values. This is an original notion independent of the characteristics
of the instance to be solved, but based on the state of the arc consistency algo-
rithm during its propagation. Based on this notion, we propose parameterized
consistencies, an original approach to adjust the level of consistency inside a
given instance. The intuition is that if a value is hard to prove arc consistent
(i.e., the value is not stable for arc consistency), this value will perhaps be
pruned by a stronger local consistency. The parameter p specifies the threshold
of stability of a value v below which we will enforce a stronger consistency to
v. A parameterized consistency p-LC is thus an intermediate level of consis-
tency between arc consistency and another consistency LC, stronger than arc
consistency. The strength of p-LC depends on the parameter p. This approach
allows us to find a trade-o↵ between the pruning power of local consistency and
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the computational cost of the algorithm that achieves it. We apply p-LC to the
case where LC is max restricted path consistency. We describe the algorithm p-
maxRPC3 (based on maxRPC3 [BPSW11]) that achieves p-max restricted path
consistency. Then, we propose ap-LC, an adaptive variant of p-LC that uses the
number of failures in which variables or constraints are involved to assess the
di�culty of the di↵erent parts of the problem during search. ap-LC dynamically
and locally adapts the level p of local consistency to apply depending on this
di�culty.

Our second approach is inspired by singleton-based consistencies. They have
been shown extremely e�cient to solve some classes of hard problems [BCDL11].
Singleton-based consistencies apply the singleton test principle, which consists
of assigning a value to a variable and trying to refute it by enforcing a given
level of consistency. If a contradiction occurs during this singleton test, the
value is removed from its domain. The first example of such a local consistency
is Singleton Arc Consistency (SAC), introduced in [DB97]. In SAC, the single-
ton test enforces arc consistency. By definition, SAC can only prune values in
the variable domain on which it currently performs singleton tests. In [BA01],
Partition-One-AC (which we call POAC) has been proposed. POAC is an ex-
tension of SAC that can prune values everywhere in the network as soon as a
variable has been completely singleton tested. As a consequence, the fixpoint
in terms of filtering is often quickly reached in practice. This observation has
already been made on numerical constraint problems. In [TC07, NT13], a con-
sistency called Constructive Interval Disjunction (CID), close to POAC in its
principle, gave good results by simply calling the main procedure once on each
variable or by adapting during search the number of times it is called. Based on
these observations, we propose an adaptive version of POAC, called APOAC,
where the number of times variables are processed for singleton tests on their
values is dynamically and automatically adapted during search. A sequence
of singleton tests on all values of one variable is called a varPOAC call. The
number k of times varPOAC is called will depend on how e↵ective POAC is or
not in pruning values. This number k of varPOAC calls will be learned during a
sequence of nodes of the search tree (learning nodes) by measuring stagnation
in the amount of pruned values. This amount k of varPOAC calls will be applied
at each node during a sequence of nodes (called exploitation nodes) before we
enter a new learning phase to adapt k again. Observe that if the number of
varPOAC calls learned is 0, then adaptive POAC will mimic AC.

The aim of both of the proposed adaptive approaches (i.e., ap-LC and
APOAC) is to adapt the level of consistency automatically and dynamically
during search. ap-LC uses failure information to learn what are the most di�-
cult parts of the problem and it increases locally and dynamically the parameter
p on those di�cult parts. APOAC measures a stagnation in number of inconsis-
tent values removed for k calls of varPOAC. APOAC then uses this information
to stop enforcing POAC. APOAC avoids the cost of the last calls to varPOAC

that delete very few values or no value at all. We thus see that both ap-LC and
APOAC learn some information during search to adapt the level of consistency.
This allows them to benefit from the pruning power of a high level of consistency
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while avoiding the prohibitive time cost of fully maintaining this high level.
The rest of the paper is organized as follows. Section 2 contains the necessary

formal background. Section 3 describes the parameterized consistency approach
and gives an algorithm for parameterized maxRPC. In Section 4, the adaptive
variant of parameterized consistency is defined. Sections 5 and 6 are devoted to
our study of singleton-based consistencies. In Section 5, we propose an e�cient
POAC algorithm that will be used as a basis for the adaptive versions of POAC.
Section 6 presents di↵erent ways to learn the number of variables on which to
perform singleton tests. All these sections contain experimental results that
validate the di↵erent contributions. Section 7 concludes this work.

2 Background

A constraint network is defined as a set of n variables X = {x
1

, ..., x
n

}, a
set of ordered domains D = {D(x

1

), ..., D(x
n

)}, and a set of e constraints
C = {c

1

, ..., c
e

}. Each constraint c
k

is defined by a pair (var(c
k

), sol(c
k

)),
where var(c

k

) is an ordered subset of X, and sol(c
k

) is a set of combinations
of values (tuples) satisfying c

k

. In the following, we restrict ourselves to binary
constraints, because the local consistency (maxRPC) we use here to instanti-
ate our approach is defined on the binary case only. However, the notions we
introduce can be extended to non-binary constraints, by using maxRPWC for
instance [BSW08]. A binary constraint c between x

i

and x
j

will be denoted by
c
ij

, and �(x
i

) will denote the set of variables x
j

involved in a constraint with
x
i

.
A value v

j

2 D(x
j

) is called an arc consistent support (AC support) for
v
i

2 D(x
i

) on c
ij

if (v
i

, v
j

) 2 sol(c
ij

). A value v
i

2 D(x
i

) is arc consistent (AC)
if and only if for all x

j

2 �(x
i

) v
i

has an AC support v
j

2 D(x
j

) on c
ij

. A
domain D(x

i

) is arc consistent if it is non empty and all values in D(x
i

) are arc
consistent. A network is arc consistent if all domains in D are arc consistent. If
enforcing arc consistency on a network N leads to a domain wipe out, we say
that N is arc inconsistent.

A tuple (v
i

, v
j

) 2 D(x
i

)⇥D(x
j

) is path consistent (PC) if and only if for any
third variable x

k

there exists a value v
k

2 D(x
k

) such that v
k

is an AC support
for both v

i

and v
j

. In such a case, v
k

is called witness for the path consistency
of (v

i

, v
j

).
A value v

j

2 D(x
j

) is a max restricted path consistent (maxRPC) support
for v

i

2 D(x
i

) on c
ij

if and only if it is an AC support and the tuple (v
i

, v
j

)
is path consistent. A value v

i

2 D(x
i

) is max restricted path consistent on
a constraint c

ij

if and only if there exist v
j

2 D(x
j

) maxRPC support for v
i

on c
ij

. A value v
i

2 D(x
i

) is max restricted path consistent ifand only if for
all x

j

2 �(x
i

) v
i

has a maxRPC support v
j

2 D(x
j

) on c
ij

. A variable x
i

is
maxRPC if its domain D(x

i

) is non empty and all values in D(x
i

) are maxRPC.
A network is maxRPC if all domains in D are maxRPC.

A value v
i

2 D(x
i

) is singleton arc consistent (SAC) if and only if the
network N |

xi=vi where D(x
i

) is reduced to the singleton {v
i

} is not arc incon-
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sistent. A variable x
i

is SAC if D(x
i

) 6= ; and all values in D(x
i

) are SAC. A
network is SAC if all its variables are SAC.

A variable x
i

is partition-one-AC (POAC) if and only if D(x
i

) 6= ;, all
values in D(x

i

) are SAC, and 8j 2 1..n, j 6= i, 8v
j

2 D(x
j

), 9v
i

2 D(x
i

) such
that v

j

2 AC(N |
xi=vi). A constraint network N = (X,D,C) is POAC if and

only if all its variables are POAC. Observe that POAC, as opposed to SAC, is
able to prune values from all variable domains when being enforced on a given
variable.

Following [DB97], we say that a local consistency LC
1

is stronger than a
local consistency LC

2

(LC
2

� LC
1

) if LC
2

holds on any constraint network on
which LC

1

holds. It has been shown in [BA01] that POAC is strictly stronger
than SAC. Hence, SAC holds on any constraint network on which POAC holds
and there exist constraint networks on which SAC holds but not POAC.

The problem of deciding whether a constraint network has solutions is called
the constraint satisfaction problem (CSP), and it is NP-complete. Solving a CSP
is mainly done by backtrack search that maintains some level of consistency
between each branching step.

3 Parameterized Consistency

In this section, we present an original approach to parameterize a level of consis-
tency LC stronger than arc consistency so that it degenerates to arc consistency
when the parameter equals 0, to LC when the parameters equals 1, and to levels
in between when the parameter is between 0 and 1. The idea behind this is to
be able to adjust the level of consistency to the instance to be solved, hoping
that such an adapted level of consistency will prune significantly more values
than arc consistency while being less time consuming than LC.

Parameterized consistency is based on the concept of stability of values. We
first need to define the ’distance to end’ of a value in a domain. This captures
how far a value is from the last in its domain. In the following, rank(v, S) is
the position of value v in the ordered set of values S.

Definition 1 (Distance to end of a value) The distance to end of a value
v
i

2 D(x
i

) is the ratio

�(x
i

, v
i

) = (|D
o

(x
i

)|� rank(v
i

, D
o

(x
i

)))/|D
o

(x
i

)|,

where D
o

(x
i

) is the initial domain of x
i

.

We see that the first value in D
o

(x
i

) has distance (|D
o

(x
i

)| � 1)/|D
o

(x
i

)|
and the last one has distance 0. Thus, 8v

i

2 D(x
i

), 0  �(x
i

, v
i

) < 1.
We can now give the definition of what we call the parameterized stability

of a value for arc consistency. The idea is to define stability for values based
on the distance to the end of their AC supports. For instance, consider the
constraint x

1

 x
2

with the domainsD(x
1

) = D(x
2

) = {1, 2, 3, 4} (see Figure 1).
�(x

2

, 1) = (4 � 1)/4 = 0.75, �(x
2

, 2) = 0.5, �(x
2

, 3) = 0.25 and �(x
2

, 4) = 0.
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Figure 1: Stability of supports on the example of the constraint x
1

 x
2

with
the domains D(x

1

) = D(x
2

) = {1, 2, 3, 4}. (x
1

, 4) is not p-stable for AC.

If p = 0.2, the value (x
1

, 4) is not p-stable for AC, because the first and only
AC support of (x

1

, 4) in the ordering used to look for supports, that is (x
2

, 4),
has a distance to end smaller than the threshold p. Proving that the pair (4, 4)
is inconsistent (by a stronger consistency) could lead to the pruning of (x

1

, 4).
In other words, applying a stronger consistency on (x

1

, 4) has a higher chance
to lead to its removal than applying it to for instance (x

1

, 1), which had no
di�culty to find its first AC support (distance to end of (x

2

, 1) is 0.75).
At this point, we want to emphasize that the ordering of values used to

look for supports in the domains is not related to the order in which values
are selected by the branching heuristic used by the backtrack search procedure.
That is, we can use a given order of values for looking for supports and another
one for exploring the search tree.

Definition 2 (p-stability for AC) A value v
i

2 D(x
i

) is p-stable for AC on
c
ij

i↵ v
i

has an AC support v
j

2 D(x
j

) on c
ij

such that �(x
j

, v
j

) � p. A value
v
i

2 D(x
i

) is p-stable for AC i↵ 8x
j

2 �(x
i

), v
i

is p-stable for AC on c
ij

.

We are now ready to give the first definition of parameterized local consis-
tency. This first definition can be applied to any local consistency LC for which
the consistency of a value on a constraint is well defined. This is the case for
instance for all triangle-based consistencies [DB01, Bes06].

Definition 3 (Constraint-based p-LC) Let LC be a local consistency
stronger than AC for which the LC consistency of a value on a constraint is
defined. A value v

i

2 D(x
i

) is constraint-based p-LC on c
ij

i↵ it is p-stable for
AC on c

ij

, or it is LC on c
ij

. A value v
i

2 D(x
i

) is constraint-based p-LC i↵
8c

ij

, v
i

is constraint-based p-LC on c
ij

. A constraint network is constraint-based
p-LC i↵ all values in all domains in D are constraint-based p-LC.

Theorem 1 Let LC be a local consistency stronger than AC for which the LC
consistency of a value on a constraint is defined. Let p

1

and p
2

be two parameters
in [0..1]. If p

1

< p
2

, then AC � constraint-based p
1

-LC � constraint-based p
2

-
LC � LC.
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Proof. Suppose that there exist two parameters p
1

, p
2

such that 0  p
1

< p
2


1, and suppose that there exists a p

2

-LC constraint network N that contains
a p

2

-LC value (x
i

, v
i

) that is p
1

-LC inconsistent. Let c
ij

be the constraint on
which (x

i

, v
i

) is p
1

-LC inconsistent. Then, @v
j

2 D(x
j

) that is an AC support
for (x

i

, v
i

) on c
ij

such that �(x
j

, v
j

) � p
1

. Thus, v
i

is not p
2

-stable for AC on
c
ij

. In addition, v
i

is not LC on c
ij

. Therefore, v
i

is not p
2

-LC, and N is not
p
2

-LC.
Definition 3 can be modified to a more coarse-grained version that is not

dependent on the consistency of values on a constraint. This will have the
advantage to apply to any type of strong local consistency, even those, like
singleton arc consistency, for which the consistency of a value on a constraint is
not defined.

Definition 4 (Value-based p-LC) Let LC be a local consistency stronger
than AC. A value v

i

2 D(x
i

) is value-based p-LC if and only if it is p-stable
for AC or it is LC. A constraint network is value-based p-LC if and only if all
values in all domains in D are value-based p-LC.

Theorem 2 Let LC be a local consistency stronger than AC. Let p
1

and p
2

be
two parameters in [0..1]. If p

1

< p
2

then AC � value-based p
1

-LC � value-based
p
2

-LC � LC.

Proof. Suppose that there exist two parameters p
1

, p
2

such that 0  p
1

< p
2


1, and suppose that there exists a p

2

-LC constraint network N that contains a
p
2

-LC value (x
i

, v
i

) that is p
1

-LC-inconsistent. v
i

is p
1

-LC-inconsistent means
that:

1. v
i

is not p
1

-stable for AC: 9c
ij

on which v
i

is not p
1

-stable for AC. Then
@v

j

2 D(x
j

) that is an AC support for (x
i

, v
i

) on c
ij

such that �(x
j

, v
j

) �
p
1

. Therefore, v
i

is not p
2

-stable for AC on c
ij

, then v
i

is not p
2

-stable
for AC.

2. v
i

is LC inconsistent.

(1) and (2) imply that v
i

is not p
2

-LC and N is not p
2

-LC.
For both types of definitions of p-LC, we have the following property on the

extreme cases (p = 0, p = 1).

Corollary 1 Let LC
1

and LC
2

be two local consistencies stronger than AC.
We have: value-based 0-LC

2

= AC and value-based 1-LC
2

= LC. If the LC
1

consistency of a value on a constraint is defined, we also have: constraint-based
0-LC

1

= AC and constraint-based 1-LC
1

= LC.

3.1 Parameterized maxRPC: p-maxRPC

To illustrate the benefit of our approach, we apply parameterized consistency to
maxRPC to obtain the p-maxRPC level of consistency that achieves a consis-
tency level between AC and maxRPC.

7



Algorithm 1: Initialization(X,D,C,Q)

1 begin

2 foreach x
i

2 X do

3 foreach v
i

2 D(x
i

) do
4 foreach x

j

2 �(x
i

) do
5 p-support false;
6 foreach v

j

2 D(x
j

) do
7 if (v

i

, v
j

) 2 c
ij

then

8 LastAC
xi,vi,xj v

j

;
9 if �(x

j

, v
j

) � p then

10 p-support true;
11 LastPC

xi,vi,xj v
j

;
12 break;

13 if searchPCwit(v
i

, v
j

) then
14 p-support true;
15 LastPC

xi,vi,xj v
j

;
16 break;

17 if ¬p-support then

18 remove v
i

from D(x
i

);
19 Q Q [ {x

i

};
20 break;

21 if D(x
i

) = ; then return false;

22 return true;

Definition 5 (p-maxRPC) A value is p-maxRPC if and only if it is
constraint-based p-maxRPC. A network is p-maxRPC if and only if it is
constraint-based p-maxRPC.

From Theorem 1 and Corollary 1 we derive the following corollary.

Corollary 2 For any two parameters p
1

, p
2

, 0  p
1

< p
2

 1, AC � p
1

-
maxRPC � p

2

-maxRPC � maxRPC. 0-maxRPC = AC and 1-maxRPC =
maxRPC.

We propose an algorithm for p-maxRPC, based on maxRPC3, the best exist-
ing maxRPC algoritm. We do not describe maxRPC3 in full detail, as it can be
found in [BPSW11]. We only describe procedures where changes to maxRPC3
are necessary to design p-maxRPC3, a coarse grained algorithm that performs
p-maxRPC. We use light grey to emphasize the modified parts of the original
maxRPC3 algorithm.

maxRPC3 uses a propagation list Q where it inserts the variables whose
domains have changed. It also uses two other data structures: LastAC and
LastPC. For each value (x

i

, v
i

), LastAC
xi,vi,xj stores the smallest AC support

for (x
i

, v
i

) on c
ij

and LastPC
xi,vi,xj stores the smallest PC support for (x

i

, v
i

)
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Algorithm 2: checkPCsupLoss(v
j

, x
i

)

1 begin

2 if LastAC
xj ,vj ,xi2 D(x

i

) then
3 b

i

 max(LastPC
xj ,vj ,xi+1,LastAC

xj ,vj ,xi);
4 else

5 b
i

 max(LastPC
xj ,vj ,xi+1,LastAC

xj ,vj ,xi+1);

6 foreach v
i

2 D(x
i

), v
i

� b
i

do

7 if (v
j

, v
i

) 2 c
ji

then

8 if LastAC
xj ,vj ,xi /2 D(x

i

) & LastAC
xj ,vj ,xi>LastPC

xj ,vj ,xi then

9 LastAC
xj ,vj ,xi v

i

;

10 if �(x
i

, v
i

) � p then

11 LastPC
xj ,vj ,xi v

i

;
12 return true;

13 if searchPCwit(v
j

, v
i

) then
14 LastPC

xj ,vj ,xi v
i

;
15 return true;

16 return false;

on c
ij

(i.e., the smallest AC support (x
j

, v
j

) for (x
i

, v
i

) on c
ij

such that (v
i

, v
j

)
is PC). This algorithm comprises two phases: initialization and propagation.

In the initialization phase (algorithm 1) maxRPC3 checks if each value
(x

i

, v
i

) has a maxRPC-support (x
j

, v
j

) on each constraint c
ij

. If not, it re-
moves v

i

from D(x
i

) and inserts x
i

in Q. To check if a value (x
i

, v
i

) has a
maxRPC-support on a constraint c

ij

, maxRPC3 looks first for an AC-support
(x

j

, v
j

) for (x
i

, v
i

) on c
ij

, then it checks if (v
i

, v
j

) is PC. In this last step, changes
were necessary to obtain p-maxRPC3 (lines 9-12). We check if (v

i

, v
j

) is PC
(line 13) only if �(x

j

, v
j

) is smaller than the parameter p (line 9).
The propagation phase of maxRPC3 involves propagating the e↵ect of dele-

tions. While Q is non empty, maxRPC3 extracts a variable x
i

from Q and
checks for each value (x

j

, v
j

) of each neighboring variable x
j

2 �(x
i

) if it is
not maxRPC because of deletions of values in D(x

i

). A value (x
j

, v
j

) becomes
maxRPC inconsistent in two cases: if its unique PC-support (x

i

, v
i

) on c
ij

has
been deleted, or if we deleted the unique witness (x

i

, v
i

) for a pair (v
j

, v
k

) such
that (x

k

, v
k

) is the unique PC-support for (x
j

, v
j

) on c
jk

. So, to propagate
deletions, maxRPC3 checks if the last maxRPC support (last known support)
of (x

j

, v
j

) on c
ij

still belongs to the domain of x
i

, otherwise it looks for the next
support (algorithm 2). If such a support does not exist, it removes the value
v
j

and adds the variable x
j

to Q. Then if (x
j

, v
j

) has not been removed in the
previous step, maxRPC3 checks (algorithm 3) whether there is still a witness
for each pair (v

j

, v
k

) such that (x
k

, v
k

) is the PC support for (x
j

, v
j

) on c
jk

. If
not, it looks for the next maxRPC support for (x

j

, v
j

) on c
jk

. If such a support
does not exist, it removes v

j

from D(x
j

) and adds the variable x
j

to Q.
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Algorithm 3: checkPCwitLoss(x
j

, v
j

, x
i

)

1 begin

2 foreach x
k

2 �(x
j

) \ �(x
i

) do
3 witness false;
4 if v

k

 LastPC
xj ,vj ,xk2 D(x

k

) then
5 if �(x

k

, v
k

) � p then

6 witness true;

7 else

8 if LastAC
xj ,vj ,xi2 D(x

i

) & LastAC
xj ,vj ,xi=LastAC

xk,vk,xi

9 OR LastAC
xj ,vj ,xi2 D(x

i

) & ( LastAC
xj ,vj ,xi , vk) 2 c

ik

10 OR LastAC
xk,vk,xi2 D(x

i

) & ( LastAC
xk,vk,xi , vj) 2 c

ij

11 then witness true ;
12 else

13 if searchACsup(x
j

, v
j

, x
i

) & searchACsup(x
k

, v
k

, x
i

) then
14 foreach

v
i

2 D(x
i

), v
i

� max(LastAC
xj ,vj ,xi ,LastAC

xk,vk,xi)
do

15 if (v
j

, v
i

) 2 c
ji

& (v
k

, v
i

) 2 c
ki

then

16 witness true;
17 break;

18 if ¬witness & ¬checkPCsupLoss(v
j

, x
k

) then return false ;

19 return true;

In the propagation phase, we also modified maxRPC3 to check if the values
are still p-maxRPC instead of checking if they are maxRPC. In p-maxRPC3,
the last p-maxRPC support for (x

j

, v
j

) on c
ij

is the last AC support if (x
j

, v
j

)
is p-stable for AC on c

ij

. If not, it is the last PC support. Thus, p-maxRPC3
checks if the last p-maxRPC support (last known support) of (x

j

, v
j

) on c
ij

still belongs to the domain of x
i

. If not, it looks (algorithm 2) for the next
AC support (x

i

, v
i

) on c
ij

, and checks if (v
i

, v
j

) is PC (line 13) only when
�(x

i

, v
i

) < p (line 10). If no p-maxRPC support exists, p-maxRPC3 removes
the value and adds the variable x

j

to Q. If the value (x
j

, v
j

) has not been
removed in the previous phase, p-maxRPC3 checks (algorithm 3) whether there
is still a witness for each pair (v

j

, v
k

) such that (x
k

, v
k

) is the p-maxRPC support
for v

j

on c
jk

and �(x
k

, v
k

) < p. If not, it looks for the next p-maxRPC support
for v

j

on c
jk

. If such a support does not exist, it removes v
j

from D(x
j

) and
adds the variable x

j

to Q.
p-maxRPC3 uses the data structure LastPC to store the last p-maxRPC

support (i.e., the latest AC support for the p-stable values and the latest PC
support for the others). Algorithms 1 and 2 update the data structure LastPC
of maxRPC3 to be LastAC for all the values that are p-stable for AC (line 11
of Algorithm 1 and line 11 of Algorithm 2) and avoid seeking witnesses for
those values. Algorithm 3 avoids checking the loss of witnesses for the p-stable
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values by setting the flag witness to true (line 6). Correctness of p-maxRPC3
directly comes from maxRPC3: The removed values are necessarily p-maxRPC-
inconsistent and all the values that are p-maxRPC-inconsistent are removed.

3.2 Experimental validation of p-maxRPC

To validate the approach of parameterized local consistency, we conducted a first
basic experiment. The purpose of this experiment is to see if there exist instances
on which a given level of p-maxRPC, with a value p that is uniform (i.e., identical
for the entire constraint network) and static (i.e., constant through the entire
search process), is more e�cient than AC or maxRPC, or both.

We have implemented the algorithms that achieve p-maxRPC as described in
the previous section in our own binary constraint solver, in addition to maxRPC
(maxRPC3 version [BPSW11]) and AC (AC2001 version [BRYZ05]). All the al-
gorithms are implemented in our JAVA CSP solver.We tested these algorithms
on several classes of CSP instances from the International Constraint Solver
Competition 091. We have only selected instances involving binary constraints.
To isolate the e↵ect of propagation, we used the lexicographic ordering for vari-
ables and values. We set the CPU timeout to one hour. Our experiments were
conducted on a 12-core Genuine Intel machine with 16Gb of RAM running at
2.92GHz.

On each instance of our experiment, we ran AC, max-RPC, and p-maxRPC
for all values of p in {0.1, 0.2, . . . , 0.9}. Performance has been measured in terms
of CPU time in seconds, the number of visited nodes (NODE) and the number
of constraint checks (CCK). Results are presented as ”CPU time (p)”, where p
is the parameter for which p-maxRPC gives the best result.

Table 1 reports the performance of AC, maxRPC, and p-maxRPC for the
value of p producing the best CPU time, on instances from Radio Link Frequency
Assignment Problems (RLFAPs), geom problems, and queens knights problems.
The CPU time of the best algorithm is bold-faced. On RLFAP and geom, we
observe the existence of a parameter p for which p-maxRPC is faster than both
AC and maxRPC for most instances of these two classes of problems. On the
queens-knight problem, however, AC is always the best algorithm. In Figures
2 and 3, we try to understand more closely what makes p-maxRPC better or
worse than AC and maxRPC. Figures 2 and 3 plot the performance (CPU,
NODE and CCK) of p-maxRPC for all values of p from 0 to 1 by steps of 0.1
against performance of AC and maxRPC. Figure 2 shows an instance where
p-maxRPC solves the problem faster than AC and maxRPC for values of p in
the range [0.3..0.8]. We observe that p-maxRPC is faster than AC and maxRPC
when it reduces the size of the search space as much as maxRPC (same number
of nodes visited) with a number of CCK closer to the number of CCK produced
by AC. Figure 3 shows an instance where the CPU time for p-maxRPC is never
better than both AC and maxRPC, whatever the value of p. We see that p-
maxRPC is two to three times faster than maxRPC. But p-maxRPC fails to

1http://cpai.ucc.ie/09/
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Table 1: Performance (CPU time, nodes and constraint checks) of AC, p-
maxRPC, and maxRPC on various instances.

AC p-maxRPC maxRPC
scen1-f8 CPU >3600 1.39 (0.2) 6.10

#nodes – 927 917

#ccks – 1,397,440 26,932,990

scen2-f24 CPU >3600 0.13 (0.3) 0.65

#nodes – 201 201

#ccks – 296,974 3,462,070

scen3-f10 CPU >3600 0.89 (0.5) 2.80

#nodes – 469 408

#ccks – 874,930 13,311,797

geo50-20-d4-75-26 CPU 111.48 17.80 (1.0) 15.07
#nodes 477,696 3,768 3,768

#ccks 96,192,822 40,784,017 40,784,017

geo50-20-d4-75-43 CPU 1,671.35 1,264.36 (0.5) 1,530.02

#nodes 4,118,134 555,259 279,130

#ccks 1,160,664,461 1,801,402,535 3,898,964,831

geo50-20-d4-75-46 CPU 1,732.22 371.30 (0.6) 517.35

#nodes 3,682,394 125,151 64,138

#ccks 1,516,856,615 584,743,023 1,287,674,430

geo50-20-d4-75-84 CPU 404.63 0.44 (0.6) 0.56

#nodes 2,581,794 513 333

#ccks 293,092,144 800,657 1,606,047

queensKnights10-5-add CPU 27.14 30.79 (0.2) 98.44

#nodes 82,208 81,033 78,498

#ccks 131,098,933 148,919,686 954,982,880

queensKnights10-5-mul CPU 43.89 83.27 (0.1) 300.74

#nodes 74,968 74,414 70,474

#ccks 104,376,698 140,309,576 1,128,564,278

improve AC because the number of constraint checks performed by p-maxRPC
is much higher than the number of constraint checks performed by AC, whereas
the number of nodes visited by p-maxRPC is not significantly reduced compared
to the number of nodes visited by AC. From these observations, it thus seems
that p-maxRPC outperforms AC and maxRPC when it finds a compromise
between the number of nodes visited (the power of maxRPC) and the number
of CCK needed to maintain (the light cost of AC).

In Figures 2 and 3 we can see that the CPU time for 1-maxRPC (respec-
tively 0-maxRPC) is greater than the CPU time for maxRPC (respectively AC),
although the two consistencies are equivalent. The reason is that p-maxRPC
performs tests on the distances. For p = 0, we also explain this di↵erence by
the fact that p-maxRPC maintains data structures that AC does not use.

4 Adaptative Parameterized Consistency: ap-
maxRPC

In the previous section, we have defined p-maxRPC, a version of parameterized
consistency where the strong local consistency is maxRPC. We have performed
some initial experiments where p has the same value during the whole search and

12
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Figure 2: Instance where p-maxRPC
outperforms both AC and maxRPC.
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Figure 3: Instance where AC outper-
forms p-maxRPC.

everywhere in the constraint network. However, the algorithm we proposed to
enforce p-maxRPC does not specify how p is chosen. In this section, we propose
two possible ways to dynamically and locally adapt the parameter p in order to
solve the problem faster than both AC and maxRPC. Instead of using a single
value for p during the whole search and for the whole constraint network, we
propose to use several local parameters and to adapt the level of local consistency
by dynamically adjusting the value of the di↵erent local parameters during
search. The idea is to concentrate the e↵ort of propagation by increasing the
level of consistency in the most di�cult parts of the given instance. We can
determine these di�cult parts using heuristics based on conflicts in the same vein
as the weight of a constraint or the weighted degree of a variable in [BHLS04].

4.1 Constraint-based ap-maxRPC : apc-maxRPC

The first technique we propose, called constraint-based ap-maxRPC, assigns a
parameter p(c

k

) to each constraint c
k

in C. We define this parameter to be
correlated to the weight of the constraint. The idea is to apply a higher level of
consistency in parts of the problem where the constraints are the most active.

Definition 6 (The weight of a constraint [BHLS04]) The weight w(c
k

)
of a constraint c

k

2 C is an integer that is incremented every time a domain
wipe-out occurs while performing propagation on this constraint.

We define the adaptive parameter p(c
k

) local to constraint c
k

in such a way
that it is greater when the weight w(c

k

) is higher w.r.t. other constraints.
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8c
k

2 C, p(c
k

) =
w(c

k

)�min
c2C

(w(c))

max
c2C

(w(c))�min
c2C

(w(c))
(1)

Equation 1 is normalized so that we are guaranteed that 0  p(c
k

)  1 for
all c

k

2 C and that there exists c
k1 with p(c

k1) = 0 (the constraint with lowest
weight) and c

k2 with p(c
k2) = 1 (the constraint with highest weight).

We are now ready to define adaptive parameterized consistency based on
constraints.

Definition 7 (constraint-based ap-maxRPC) A value v
i

2 D(x
i

) is
constraint-based ap-maxRPC (or apc-maxRPC) on a constraint c

ij

if and only
if it is constraint-based p(c

ij

)-maxRPC. A value v
i

2 D(x
i

) is apc-maxRPC i↵
8c

ij

, v
i

is apc-maxRPC on c
ij

. A constraint network is apc-maxRPC i↵ all
values in all domains in D are apc-maxRPC.

4.2 Variable-based ap-maxRPC: apx-maxRPC

The technique proposed in Section 4.1 can only be used on consistencies where
the consistency of a value on a constraint is defined. We present a second tech-
nique which can be used on constraint-based or variable-based local consisten-
cies indi↵erently. We instantiate our definitions to maxRPC but the extension
to other consistencies is direct. We call this new technique variable-based ap-
maxRPC. We need to define the weighted degree of a variable as the aggregation
of the weights of all constraints involving it.

Definition 8 (The weighted degree of a variable [BHLS04]) The
weighted degree wdeg(x

i

) of a variable x
i

is the sum of the weights of the
constraints involving x

i

and one other uninstantiated variable.

We associate each variable with an adaptive local parameter based on its
weighted degree.

8x
i

2 X, p(x
i

) =
wdeg(x

i

)�min
x2X

(wdeg(x))

max
x2X

(wdeg(x))�min
x2X

(wdeg(x))
(2)

As in Equation 1, we see that the local parameter is normalized so that we
are guaranteed that 0  p(x

i

)  1 for all x
i

2 X and that there exists x
k1 with

p(x
k1) = 0 (the variable with lowest weighted degree) and x

k2 with p(x
k2) = 1

(the variable with highest weighted degree).

Definition 9 (variable-based ap-maxRPC) A value v
i

2 D(x
i

) is variable-
based ap-maxRPC (or apx-maxRPC) if and only if it is value-based p(x

i

)-
maxRPC. A constraint network is apx-maxRPC i↵ all values in all domains
in D are apx-maxRPC.
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4.3 Experimental evaluation of ap-maxRPC

In Section 3.2 we have shown that maintaining a static form of p-maxRPC during
the entire search can lead to a promising trade-o↵ between computational e↵ort
and pruning when all algorithms follow the same static variable ordering. In this
section, we want to put our contributions in the real context of a solver using the
best known variable ordering heuristic, dom/wdeg, though it is known that this
heuristic is so good that it substantially reduces the di↵erences in performance
that other features of the solver could provide. We have compared the two
variants of adaptive parameterized consistency, namely apc-maxRPC and apx-
maxRPC, to AC and maxRPC. We ran the four algorithms on instances of
radio link frequency assignment problems, geom problems, and queens knights
problems.

Table 2 reports some representative results. A first observation is that,
thanks to the dom/wdeg heuristic, we were able to solve more instances before
the cuto↵ of one hour, especially the scen11 variants of RLFAP. A second ob-
servation is that apc-maxRPC and apx-maxRPC are both faster than at least
one of the two extreme consistencies (AC and maxRPC) on all instances except
scen7-w1-f4 and geo50-20-d4-75-30. Third, when apx-maxRPC and/or apc-
maxRPC are faster than both AC and maxRPC (scen1-f9, scen2-f25, scen11-f9,
scen11-f10 and scen11-f11), we observe that the gap in performance in terms
of nodes and CCKs between AC and maxRPC is significant. Except for scen7-
w1-f4, the number of nodes visited by AC is three to five times greater than
the number of nodes visited by maxRPC and the number of constraint checks
performed by maxRPC is twelve to sixteen times greater than the number of
constraint checks performed by AC. For the geom instances the CPU time of
the ap-maxRPC algorithms is between AC and maxRPC, and it is never lower
than the CPU time of AC. This probably means that when solving these in-
stances with the dom/wdeg heuristic, there is no need for sophisticated local
consistencies. In general we see that the ap-maxRPC algorithms fail to improve
both the two extreme consistencies simultaneously for the instances where the
performance gap between AC and maxRPC is low.

If we compare apx-maxRPC to apc-maxRPC, we observe that although apx-
maxRPC is coarser in its design than apc-maxRPC, apx-maxRPC is often faster
than apc-maxRPC. We can explain this by the fact that the constraints initially
all have the same weight equal to 1. Hence, all local parameters ap(c

k

) initially
have the same value 0, so that apc-maxRPC starts resolution by applying AC
everywhere. It will start enforcing some amount of maxRPC only after the
first wipe-out occurred. On the contrary, in apx-maxRPC, when constraints all
have the same weight, the local parameter p(x

i

) is correlated to the degree of
the variable x

i

. As a result, apx-maxRPC benefits from the filtering power of
maxRPC even before the first wipe-out.

In Table 2, we reported only the results on a few representative instances.
Table 3 summarizes the entire set of experiments. It shows the average CPU
time for each algorithm on all instances of the di↵erent classes of problems
tested. We considered only the instances solved before the cuto↵ of one hour
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Table 2: Performance (CPU time, nodes and constraint checks) of AC,
variable-based ap-maxRPC (apx-maxRPC), constraint-based ap-maxRPC (apc-
maxRPC), and maxRPC on various instances.

AC apx-maxRPC apc-maxRPC maxRPC
scen1-f9 CPU 90.34 31.17 33.40 41.56

#nodes 2,291 1,080 1,241 726

#ccks 3,740,502 3,567,369 2,340,417 50,045,838

scen2-f25 CPU 70.57 46.40 27.22 81.40

#nodes 12,591 4,688 3,928 3,002

#ccks 15,116,992 38,239,829 8,796,638 194,909,585

scen6-w2 CPU 7.30 1.25 2.63 0.01
#nodes 2,045 249 610 0

#ccks 2,401,057 1,708,812 1,914,113 85,769

scen7-w1-f4 CPU 0.28 0.17 0.54 0.30

#nodes 567 430 523 424

#ccks 608,040 623,258 584,308 1,345,473

scen11-f9 CPU 2,718.65 1,110.80 1,552.20 2,005.61

#nodes 103,506 40,413 61,292 32,882

#ccks 227,751,301 399,396,873 123,984,968 3,637,652,122

scen11-f10 CPU 225.29 83.89 134.46 112.18

#nodes 9,511 3,510 4,642 2,298

#ccks 12,972,427 17,778,458 6,717,485 156,005,235

scen11-f11 CPU 156.76 39.39 93.69 76.95

#nodes 7,050 2,154 3,431 1,337

#ccks 7,840,552 10,006,821 5,143,592 91,518,348

scen11-f12 CPU 139.91 69.50 88.76 61.92
#nodes 7,050 2,597 3,424 1,337

#ccks 7,827,974 11,327,536 5,144,835 91,288,023

geo50-20d4-75-19 CPU 242.13 553.53 657.72 982.34

#nodes 195,058 114,065 160,826 71,896

#ccks 224,671,319 594,514,132 507,131,322 2,669,750,690

geo50-20d4-75-30 CPU 0.84 1.01 1.07 1.02

#nodes 359 115 278 98

#ccks 261,029 432,705 313,168 1,880,927

geo50-20d4-75-84 CPU 0.02 0.09 0.05 0.29

#nodes 59 54 59 52

#ccks 33,876 80,626 32,878 697,706

queensK20-5-mul CPU 787.35 2,345.43 709.45 >3600

#nodes 55,596 40,606 41,743 –

#ccks 347,596,389 6,875,941,876 379,826,516 –

queensK15-5-add CPU 24.69 17.01 14.98 35.05

#nodes 24,639 12,905 12,677 11,595

#ccks 90,439,795 91,562,150 58,225,434 394,073,525

by at least one of the four algorithms. To compute the average CPU time of an
algorithm on a class of instances, we add the CPU time needed to solve each
instance solved before the cuto↵ of one hour, and for the instances not solved
before the cuto↵, we add one hour. We observe that the adaptive approach is,
on average, faster than the two extreme consistencies AC and maxRPC, except
on the geom class.

In apx-maxRPC and apc-maxRPC, we update the local parameters p(x
i

) or
p(c

k

) at each node in the search tree. We could wonder if such a frequent update
does not produce too much overhead. To answer this question we performed
a simple experiment in which we update the local parameters every 10 nodes
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Table 3: Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of
each class of problems tested, when the local parameters are updated at each
node

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC
geom (10) #solved 10 10 10 10

average CPU 69.28 180.57 191.03 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 9.63 8.30 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 325.90 467.28 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 395.41 121.75 >610.51

Table 4: Average CPU time of AC, variable-based ap-maxRPC (apx-maxRPC),
constraint-based ap-maxRPC (apc-maxRPC), and maxRPC on all instances of
each class of problems tested, when the local parameters are updated every 10
nodes

class (#instances) AC apx-maxRPC apc-maxRPC maxRPC
geom (10) #solved 10 10 10 10

average CPU 69.28 147.20 189.42 279.30

scen (10) #solved 10 10 10 10

average CPU 18.95 7.40 8.86 13.94

scen11 (10) #solved 4 4 4 4

average CPU 810.15 311.74 417.97 564.17

queensK (11) #solved 6 6 6 5

average CPU 135.95 269.51 117.18 >610.52

only. We re-ran the whole set of experiments with this new setting. Table 4
reports the average CPU time for these results. We observe that when the local
parameters are updated every 10 nodes, the gain for the adaptive approach is,
on average, greater than when the local parameters are updated at each node.
This gives room for improvement, by trying to adapt the frequency of update
of these parameters.

5 Partition-One-Arc-Consistency

In this section, we describe our second approach, which is inspired from
singleton-based consistencies. Singleton Arc Consistency (SAC) [DB97] makes a
singleton test by enforcing arc consistency and can only prune values in the vari-
able domain on which it currently performs singleton tests. Partition-One-AC
(POAC) [BA01] is an extension of SAC, which, as observed in [BD08], combines
singleton tests and constructive disjunction [VSD98]. POAC can prune values
everywhere in the network as soon as a variable has been completely singleton
tested.

We propose an adaptive version of POAC, where the number of times vari-
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ables are processed for singleton tests on their values is dynamically and auto-
matically adapted during search. Before moving to adaptive partition-one-AC,
we first propose an e�cient algorithm enforcing POAC and we compare its
behaviour to SAC.

5.1 The algorithm

The e�ciency of our POAC algorithm, POAC1, is based on the use of counters
associated with each value (x

j

, v
j

) in the constraint network. These counters
are used to count how many times a value v

j

from a variable x
j

is pruned during
the sequence of POAC tests on all the values of another variable x

i

(the varPOAC
call to x

i

). If v
j

is pruned |D(x
i

)| times, this means that it is not POAC and
can be removed from D(x

j

).
POAC1 (Algorithm 4) starts by enforcing arc consistency on the network (line

2). Then it puts all variables in the ordered cyclic list S using any total ordering
on X (line 3). varPOAC iterates on all variables from S (line 7) to make them
POAC until the fixpoint is reached (line 12) or a domain wipe-out occurs (line
8). The counter FPP (FixPoint Proof) counts how many calls to varPOAC have
been processed in a row without any change in any domain (line 9).

The procedure varPOAC (Algorithm 5) is called to establish POAC w.r.t. a
variable x

i

. It works in two steps. The first step enforces arc consistency in
each sub-network N = (X,D,C [{x

i

= v
i

}) (line 4) and removes v
i

from D(x
i

)
(line 5) if the sub-network is arc-inconsistent. Otherwise, the procedure TestAC
(Algorithm 6) increments the counter associated with every arc inconsistent
value (x

j

, v
j

), j 6= i in the sub-network N = (X,D,C [ {x
i

= v
i

}). (Lines 6
and 7 have been added for improving the performance in practice but are not
necessary for reaching the required level of consistency.) In line 8 the Boolean
CHANGE is set to true if D(x

i

) has changed. The second step deletes all the
values (x

j

, v
j

), j 6= i with a counter equal to |D(x
i

)| and sets back the counter
of each value to 0 (lines 12-13). Whenever a domain change occurs in D(x

j

),
if the domain is empty, varPOAC returns failure (line 14); otherwise it sets the
Boolean CHANGE to true (line 15).

Enforcing arc consistency on the sub-networks N = (X,D,C [ {x
i

= v
i

})
is done by calling the procedure TestAC (Algorithm 6). TestAC just checks
whether arc consistency on the sub-network N = (X,D,C [ {x

i

= v
i

}) leads to
a domain wipe-out or not. It is an instrumented AC algorithm that increments
a counter for all removed values and restores them all at the end. In addition
to the standard propagation queue Q, TestAC uses a list L to store all the
removed values. After the initialisation of Q and L (lines 2-3), TestAC revises
each arc (x

j

, c
k

) in Q and adds each removed value (x
j

, v
j

) to L (lines 5-10). If
a domain wipe-out occurs (line 11), TestAC restores all removed values (line 12)
without incrementing the counters (call to RestoreDomains with UPDATE =
false) and it returns failure (line 13). Otherwise, if values have been pruned
from the revised variable (line 14) it puts in Q the neighbouring arcs to be
revised. At the end, removed values are restored (line 16) and their counters are
incremented (call to RestoreDomains with UPDATE = true) before returning

18



Algorithm 4: POAC1(X,D,C)

1 begin

2 if ¬EnforceAC(X,D,C) then return false ;
3 S  CyclicList(Ordering(X));
4 FPP 0;
5 x

i

 first(S);
6 while FPP < |X| do
7 if ¬varPOAC(x

i

, X,D,C,CHANGE) then
8 return false;

9 if CHANGE then FPP 1;
10 else FPP++;
11 x

i

 NextElement(x
i

, S);

12 return true;

success (line 17).

Proposition 1 POAC1 has a worst-case time complexity in O(n2d2(T + n)),
where T is the time complexity of the arc-consistency algorithm used for sin-
gleton tests, n is the number of variables, and d is the number of values in the
largest domain.

Proof. The cost of calling varPOAC on a single variable is O(dT + nd) because
varPOAC runs AC on d values and updates nd counters. In the worst case, each
of the nd value removals trigger n calls to varPOAC. Therefore POAC1 has a time
complexity in O(n2d2(T + n)). ⇤

5.2 Comparison of POAC and SAC behaviors

Although POAC has a worst-case time complexity greater than SAC, we ob-
served in practice that maintaining POAC during search is often faster than
maintaining SAC. This behavior occurs even when POAC cannot remove more
values than SAC, i.e. when the same number of nodes is visited with the same
static variable ordering. This is due to what we call the (filtering) convergence
speed : when both POAC and SAC reach the same fixpoint, POAC reaches the
fixpoint with fewer singleton tests than SAC.

Figure 4 compares the convergence speed of POAC and SAC on an CSP
instance where they have the same fixpoint. We observe that POAC is able
to reduce the domains, to reach the fixpoint, and to prove the fixpoint, all in
fewer singleton tests than SAC. This pattern has been observed on most of the
instances and whatever ordering was used in the list S. The reason is that each
time POAC applies varPOAC to a variable x

i

, it is able to remove inconsistent
values from D(x

i

) (like SAC), but also from any other variable domain (unlike
SAC).
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Algorithm 5: varPOAC(x
i

, X,D,C, CHANGE)

1 begin

2 SIZE |D(x
i

)|; CHANGE false;
3 foreach v

i

2 D(x
i

) do
4 if ¬TestAC(X,D,C [ {x

i

= v
i

}) then

5 remove v
i

from D(x
i

);
6 if ¬EnforceAC(X,D,C, x

i

) then return false ;

7 if D(x
i

) = ; then return false;
8 if SIZE 6= |D(x

i

)| then CHANGE true;
9 foreach x

j

2 X\{x
i

} do

10 SIZE |D(x
j

)|;
11 foreach v

j

2 D(x
j

) do
12 if counter(x

j

, v
j

) = |D(x
i

)| then remove v
j

from D(x
j

) ;
13 counter(x

j

, v
j

) 0;

14 if D(x
j

) = ; then return false;
15 if SIZE 6= |D(x

j

)| then CHANGE true;

16 return true

The fact that SAC cannot remove values in variables other than the one on
which the singleton test is performed makes it a poor candidate for adapting
the number of singleton tests. A SAC-inconsistent variable/value pair never
singleton tested has no chance to be pruned by such a technique.

6 Adaptive POAC

This section presents an adaptive version of POAC that approximates POAC
by monitoring the number of variables on which to perform singleton tests.

To achieve POAC, POAC1 calls the procedure varPOAC until it has proved
that the fixpoint is reached. This means that, when the fixpoint is reached,
POAC1 needs to call n (additional) times the procedure varPOAC without any
pruning to prove that the fixpoint was reached. Furthermore, we experimentally
observed that in most cases there is a long sequence of calls to varPOAC that
prune very few values, even before the fixpoint has been reached (see Figure 4
as an example). The goal of Adaptive POAC (APOAC) is to stop iterating on
varPOAC as soon as possible. We want to benefit from strong propagation of
singleton tests while avoiding the cost of the last calls to varPOAC that delete
very few values or no value at all.

6.1 Principle

The APOAC approach alternates between two phases during search: a short
learning phase and a longer exploitation phase. One of the two phases is exe-
cuted on a sequence of nodes before switching to the other phase for another
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Algorithm 6: TestAC(X,D,C [ {x
i

= v
i

})
1 begin

2 Q  {(x
j

, c
k

) | c
k

2 �(x
i

), x
j

2 var(c
k

), x
j

6= x
i

} ;
3 L ; ;
4 while Q 6= ; do
5 pick and delete (x

j

, c
k

) from Q ;
6 SIZE |D(x

j

)| ;
7 foreach v

j

2 D(x
j

) do
8 if ¬HasSupport(x

j

, v
j

, c
k

) then
9 remove v

j

from D(x
j

) ;
10 L L [ (x

j

, v
j

) ;

11 if D(x
j

) = ; then
12 RestoreDomains(L, false) ;
13 return false ;

14 if |D(x
j

)| < SIZE then

15 Q  Q [ {(x
j

0 , c
k

0)|c
k

0 2 �(x
j

), x
j

0 2 var(c
k

0), x
j

0 6= x
j

, c
k

0 6= c
k

};

16 RestoreDomains(L, true) ;
17 return true ;

sequence of nodes. The search starts with a learning phase. The total length of
a pair of sequences learning + exploitation is fixed to the parameter LE.

Before providing a more detailed description, let us define the (log
2

of the)
volume of a constraint network N = (X,D,C), used to approximate the size of
the search space:

V = log
2

nY

i=1

|D(x
i

)|

We use the logarithm of the volume instead of the volume itself, because of
the large integers the volume generates. We also could have used the perimeter
(i.e.,

P
i

|D(x
i

)|) for approximating the search space size, as done in [NT13].

Algorithm 7: RestoreDomains(L,UPDATE)

1 begin

2 if UPDATE then

3 foreach (x
j

, v
j

) 2 L do

4 D(x
j

) D(x
j

) [ {v
j

} ;
5 counter(x

j

, v
j

) counter(x
j

, v
j

) + 1 ;

6 else

7 foreach (x
j

, v
j

) 2 L do

8 D(x
j

) D(x
j

) [ {v
j

} ;
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Figure 4: The convergence speed of POAC and SAC.

However, experiments have confirmed that the volume is a more precise and
e↵ective criterion for adaptive POAC.

The ith learning phase is applied to a sequence of L = 1

10

· LE consecutive
nodes. During that phase, we learn a cuto↵ value k

i

, which is the maximum
number of calls to the procedure varPOAC that each node of the next (ith)
exploitation phase will be allowed to perform. A good cuto↵ k

i

is such that
varPOAC removes many inconsistent values (that is, obtains a significant volume
reduction in the network) while avoiding calls to varPOAC that delete very few
values or no value at all. During the ith exploitation phase, applied to a sequence
of 9

10

·LE consecutive nodes, the procedure varPOAC is called at each node until
fixpoint is proved or the cuto↵ limit of k

i

calls to varPOAC is reached.
The ith learning phase works as follows. Let k

i�1

be the cuto↵ learned at
the previous learning phase. We initialize maxK to max(2 · k

i�1

, 2). At each
node n

j

in the new learning sequence n
1

, n
2

, . . . n
L

, APOAC is used with a
cuto↵ maxK on the number of calls to the procedure varPOAC. APOAC stores
the sequence of volumes (V

1

, . . . , V
last

), where V
p

is the volume resulting from
the pth call to varPOAC and last is the smallest among maxK and the number
of calls needed to prove fixpoint. Once the fixpoint is proved or the maxKth
call to varPOAC performed, APOAC computes k

i

(j), the number of varPOAC

calls that are enough to su�ciently reduce the volume while avoiding the extra
cost of the last calls that remove few or no value. (The criteria to decide what
’su�ciently’ means are described in Section 6.2.) Then, to make the learning
phase more adaptive, maxK is updated before starting node n

j+1

. If k
i

(j) is
close to maxK, that is, greater than 3

4

·maxK, we increase maxK by 20%. If
k
i

(j) is less than 1

2

· maxK, we reduce maxK by 20%. Otherwise, maxK is
unchanged. Once the learning phase ends, APOAC computes the cuto↵ k

i

that
will be applied to the next exploitation phase. k

i

is an aggregation of the k
i

(j)
values, j = 1, ..., L, computed using one of the aggregation techniques presented
in Section 6.3.
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Table 5: Total number of instances solved by AC, several variants of APOAC,
and POAC.

ki(j) ki AC APOAC-2 APOAC-n APOAC-fp POAC

LR 70-PER #solved 115 116 119 118 115

Med #solved 115 114 118 118 115

LD 70-PER #solved 115 117 121 120 115

Med #solved 115 116 119 119 115

6.2 Computing ki(j)

We implemented APOAC using two di↵erent techniques to compute k
i

(j) at a
node n

j

of the learning phase:

• LR (Last Reduction) k
i

(j) is the rank of the last call to varPOAC that
reduced the volume of the constraint network.

• LD (Last Drop) k
i

(j) is the rank of the last call to varPOAC that has
produced a significant drop of the volume. The significance of a drop is
captured by a ratio � 2 [0, 1]. More formally, k

i

(j) = max{p | V
p


(1� �)V

p�1

}.

6.3 Aggregation of the ki(j) values

Once the ith learning phase is complete, APOAC aggregates the k
i

(j) values
computed during that phase to generate k

i

, the new cuto↵ value on the number
of calls to the procedure varPOAC allowed at each node of the ith exploitation
phase. We propose two techniques to aggregate the k

i

(j) values into k
i

.

• Med k
i

is the median of the k
i

(j), j 2 1..L.

• q-PER This technique generalizes the previous one. Instead of taking the
median, we use any percentile. That is, k

i

is equal to the smallest value
among k

i

(1), . . . , k
i

(L) such that q% of the values among k
i

(1), . . . , k
i

(L)
are less than or equal to k

i

.

Several variants of APOAC can be proposed, depending on how we compute
the k

i

(j) values in the learning phase and how we aggregate the di↵erent k
i

(j)
values. In the next section, we give an experimental comparison of the di↵erent
variants we tested.

6.4 Experimental evaluation of (A)POAC

This section presents experiments that compare the performance of maintaining
AC, POAC, or adaptive variants of POAC during search. For the adaptive
variants we use two techniques to determine k

i

(j): the last reduction (LR) and
the last drop (LD) with � = 5% (see Section 6.2). We also use two techniques to
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Table 6: CPU time for AC, APOAC-2, APOAC-n, APOAC-fp and POAC on
the eight problem classes.

class (#instances) AC APOAC-2 APOAC-n APOAC-fp POAC

Tsp-20 (15) #solved 15 15 15 15 15

sum CPU 1,596.38 3,215.07 4,830.10 7,768.33 18,878.81

Tsp-25 (15) #solved 15 14 15 15 11

sum CPU 20,260.08 >37,160.63 16,408.35 33,546.10 >100,947.01

renault (50) #solved 50 50 50 50 50

sum CPU 837.72 2,885.66 11,488.61 15,673.81 18,660.01

cril (8) #solved 4 5 7 7 7

sum CPU >45,332.55 >42,436.17 747.05 876.57 1,882.88

mug (8) #solved 5 6 6 6 6
sum CPU >29,931.45 12,267.39 12,491.38 12,475.66 2,758.10

K-insertions (10) #solved 4 5 6 5 5

sum CPU >30,614.45 >29,229.71 27,775.40 >29,839.39 >20,790.69

myciel (15) #solved 12 12 12 12 11

sum CPU 1,737.12 2,490.15 2,688.80 2,695.32 >20,399.70

Qwh-20 (10) #solved 10 10 10 10 10

sum CPU 16,489.63 12,588.54 11,791.27 12,333.89 27,033.73

Sum of CPU times >146,799 >142,273 88,221 >115,209 >211,351

Sum of average CPU times per class >18,484 >14,717 8,773 >9,467 >10,229

aggregate these k
i

(j) values: the median (Med) and the qth percentile (q-PER)
with q = 70% (see Section 6.3). In experiments not presented in this paper
we tested the performance of APOAC using using the 10th to 90th percentiles.
The 70th percentile showed the best behavior. We have performed experiments
for the four variants obtained by combining two by two the parameters LR vs
LD and Med vs 70-PER. For each variant we compared three initial values for
the maxK used by the first learning phase: maxK 2 {2, n,1}, where n is
the number of variable in the instance to be solved. These three versions are
denoted by APOAC-2, APOAC-n and APOAC-fp respectively.

We compare these search algorithms on instances available from Lecoutre’s
webpage.2 We selected four binary classes containing at least one di�cult in-
stance for MAC (> 10 seconds): mug, K-insertions, myciel and Qwh-20. We
also selected all the n-ary classes in extension: the traveling-salesman problem
(TSP-20, TSP-25), the Renault Megane configuration problem (Renault) and
the Cril instances (Cril). These eight problem classes contain instances with 11
to 1406 variables, domains of size 3 to 1600 and 20 to 9695 constraints.

For the search algorithm maintaining AC, the algorithm AC2001 (resp.
GAC2001) [BRYZ05] is used for the binary (resp. non-binary) problems. The
same AC algorithms are used as refutation procedure for POAC and APOAC
algorithms. The dom/wdeg heuristic [BHLS04] is used both to order variables
in the Ordering(X) function (see line 3 of Algorithm 4) and to order variables
during search for all the search algorithms. The results presented involve all the
instances solved before the cuto↵ of 15,000 seconds by at least one algorithm.

Table 5 compares all the competitors and shows the number of instances

2www.cril.univ-artois.fr/˜lecoutre/benchmarks.html
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Figure 5: Number of instances solved when the time allowed increases.

(#solved) solved before the cuto↵. We observe that, on the set of instances
tested, adaptive versions of POAC are better than AC and POAC. All of them,
except APOAC-2+LR+Med, solve more instances than AC and POAC. All the
versions using the last drop (LD) technique to determine the k

i

(j) values in
the learning phase are better than those using last reduction (LR). We also see
that the versions that use the 70th percentile (70-PER) to aggregate the k

i

(j)
values are better than those using the median (Med). This suggests that the
best combination is LD+70-PER. This is the only combination we will consider
in the following.

Table 6 focuses on the performance of the three variants of APOAC
(APOAC-2, APOAC-n and APOAC-fp), all with the combination (LD+70-
PER). The second column reports the number #SolvedbyOne of instances solved
before the cuto↵ by at least one algorithm. For each algorithm and each class,
Table 6 shows the sum of CPU times required to solve those #SolvedbyOne
instances. When a competitor cannot solve an instance before the cuto↵, we
count 15,000 seconds for that instance and we write ’>’ in front of the corre-
sponding sum of CPU times. The last two rows of the table give the sum of
CPU times and the sum of average CPU times per class. For each class taken
separately, the three versions of APOAC are never worse than AC and POAC
at the same time. APOAC-n solves all the instances solved by AC and POAC,
and for four of the eight problem classes it outperforms both AC and POAC.
However, there remain a few classes, such as Tsp-20 and renault, where even
the first learning phase of APOAC is too costly to compete with AC despite our
agile auto-adaptation policy that limits the number of calls to varPOAC during
learning (see Section 6.1). Table 6 also shows that maintaining a high level of
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Table 7: Performance of APOAC-n compared to AC and POAC on n-ary prob-
lems.

AC APOAC-n POAC

#solved 84/87 87/87 83/87

sum CPU >68,027 33,474 >140,369

gain w.r.t. AC – >51% –
gain w.r.t. POAC – >76% –

consistency, such as POAC, throughout the entire network generally produces
a significant overhead.

Table 7 and Figure 5 sum up the performance results obtained on all the in-
stances with n-ary constraints. The binary classes are not included in the table
and figure, because they have not been exhaustively tested. Figure 5 gives the
performance profile for each algorithm presented in Table 6: AC, APOAC-2,
APOAC-n, APOAC-fp and POAC. Each point (t, i) on a curve indicates the
number i of instances that an algorithm can solve in less than t seconds. The
performance profile underlines that AC and APOAC are better than POAC:
whatever the time given, they solve more instances than POAC. The compar-
ison between AC and APOAC highlights two phases: A first phase (for easy
instances), during which AC is better than APOAC, and a second phase, where
APOAC becomes better than AC. Among the adaptive versions, APOAC-n is
the variant with the shortest first phase (it adapts quite well to easy instances),
and it remains the best even when time increases.

Finally, Table 7 compares the best APOAC version (APOAC-n) to AC and
POAC on n-ary problems. The first row of the table gives the number of solved
instances by each algorithm before the cuto↵. We observe that APOAC-n solves
more instances than AC and POAC. The second row of the table gives the sum
of CPU time required to solve all the instances. Again, when an instance cannot
be solved before the cuto↵ of 15,000 seconds, we count 15,000 seconds for that
instance. We observe that APOAC-n significantly outperforms both AC and
POAC. The last two rows of the table give the gain of APOAC-n w.r.t. AC and
w.r.t. POAC. We see that APOAC-n has a positive total gain greater than 51%
compared to AC and greater than 76% compared to POAC.

7 Conclusion

We have proposed two approaches to adjust the level of consistency automat-
ically during search. For the parameterized local consistency approach, we in-
troduced the notion of stability of values for arc consistency, a notion based
on the depth of their supports in their respective domain. This approach us
allows us to define levels of local consistency of increasing strength between
arc consistency and a given strong local consistency. We have introduced two
techniques which allow us to make the parameter adaptable dynamically and
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locally during search. As a second approach, we proposed POAC1, an algorithm
that enforces partition-one-AC e�ciently in practice. We have also proposed an
adaptive version of POAC that monitors the number of variables on which to
perform singleton tests. Our experiments show that in both approaches, adapt-
ing the level of local consistency during search can outperform both MAC and
maintaining a chosen local consistency stronger than AC.

Our approaches concentrate on adapting the level of consistency between the
standard arc consistency and a chosen higher level. There are many constraints
(especially global constraints) on which arc consistency is already a (too) high
level of consistency and on which the standard consistency is bound consistency
or some simple propagation rules. In these cases, an approach to that chosen in
this paper could allow us to adapt automatically between arc consistency and
the given lower level.
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