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A structure-preserving dimension reduction algorithm for large-scale second-order dynamical systems is presented. It is a projection method based on a second-order Krylov subspace. A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The reduced system not only preserves the second-order structure but also has the same order of approximation as the standard Arnoldi-based Krylov subspace method via linearization. The superior numerical properties of the SOAR-based method are demonstrated by examples from structural dynamics and microelectromechanical systems.

Introduction.

A continuous time-invariant single-input single-output second-order system is described by Σ N : Mq(t) + D q(t) + Kq(t) = b u(t), y(t) = l T q(t) (1.1) with initial conditions q(0) = q 0 and q(0) = q0 . Here t is the time variable. q(t) ∈ R N is a vector of state variables. N is the state-space dimension. u(t) and y(t) are the input force and output measurement functions, respectively. M, D, K ∈ R N ×N are system matrices, such as mass, damping, and stiffness as known in structural dynamics. b, l ∈ R N are input distribution and output measurement vectors, respectively.

Second-order systems Σ N arise in the study of many types of physical systems, with common examples being electrical, mechanical, and structural systems, electromagnetics, and microelectromechanical systems (MEMS) [START_REF] Craig | Structural Dynamics: An Introduction to Computer Methods[END_REF][START_REF] Balas | Trends in large space structure control theory: Fondest theory, wildest dreams[END_REF][START_REF] Clark | 3D MEMS simulation using modified nodal analysis[END_REF][START_REF] Bai | New numerical techniques and tools in SUGAR for 3D MEMS simulation[END_REF][START_REF] Ramaswamy | Automatic generation of small-signal dynamic macromodels from 3-D simulation[END_REF][START_REF] Slone | Fast Frequency Sweep Model Order Reduction of Polynomial Matrix Equations Resulting from Finite Element Discretization[END_REF][START_REF] Slone | Broadband model order reduction of polynomial matrix equations using single point well-conditioned asymptotic waveform evaluation: Derivation and theory[END_REF][START_REF] Wittig | Two-step Lanczos algorithm for model order reduction[END_REF]. The state-space dimension N of the system Σ N arising from those applications is often very large and it can be formidable to use for many practical analysis and design tasks within a reasonable computing resource. Therefore, it is necessary to obtain a reduced-order model which retains important properties of the original system and yet is efficient for practical use. In this paper, we discuss a computational technique for dimension reduction of the second-order system Σ N . Specifically, for the given second-order system Σ N , we show how to construct another system Σ n of the same second-order form but with a smaller state-space dimension, such that it accurately captures the input-output behaviors while retaining essential properties of the original system Σ N . An accurate and effective reduced system thus replaces the original one and can be efficiently applied for a variety of types of analyses to significantly reduce design and simulation time.

The most common approach to the dimension reduction of the second-order system Σ N is based on a mathematically equivalent linearized formulation of the secondorder system. Different dimension reduction methods of linear systems have been studied in various fields. Most of these methods can be classified into the families of balancing truncation methods and moment-matching methods; see [START_REF] Freund | Krylov-subspace methods for reduced-order modeling in circuit simulation[END_REF][START_REF] Bai | Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[END_REF][START_REF] Antoulas | Approximation of Large-Scale Dynamical Systems[END_REF] and references therein. However, the linearization approach has a number of disadvantages. It ignores the physical meaning of the original system matrices, and the reduced-order system is no longer in a second-order form. For engineering design and control of such a system, it is highly desirable to have a reduced-order model preserving the second-order form and the essential properties, such as stability and passivity.

Over the years, there have been a number of efforts toward structure-preserving dimension reduction of a second-order system. Su and Craig proposed a structurepreserving method with moment-match property in 1991 [START_REF] Su | Model reduction and control of flexible structures using Krylov vectors[END_REF]. This has been revisited in recent years [START_REF] Ramaswamy | Automatic generation of small-signal dynamic macromodels from 3-D simulation[END_REF][START_REF] Bai | Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[END_REF][START_REF] Slone | Fast Frequency Sweep Model Order Reduction of Polynomial Matrix Equations Resulting from Finite Element Discretization[END_REF][START_REF] Slone | Broadband model order reduction of polynomial matrix equations using single point well-conditioned asymptotic waveform evaluation: Derivation and theory[END_REF]. It has been applied to very large second-order systems. The work of Meyer and Srinivasan [START_REF] Meyer | Balancing and model reduction for second-order form linear systems[END_REF] is an extension of balancing truncation methods for the second-order system. Recent such effort includes [START_REF] Chahlaoui | Model reduction of second order systems[END_REF]. Another structurepreserving model reduction technique was presented in [START_REF] Garvey | Model reduction using structurepreserving transformations[END_REF]. Those two approaches focus on the application of moderate-size second-order systems.

The method presented in this paper is a further study of the work by Su and Craig [START_REF] Su | Model reduction and control of flexible structures using Krylov vectors[END_REF]. We pursue a structure-preserving dimension reduction algorithm for largescale second-order systems. The algorithm is developed under the framework of projection. We use a second-order Krylov subspace as the projection subspace. Subsequently, a second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The resulting reduced system not only preserves the second-order structure but also has the same order of approximation of a reduced linear system obtained by the standard Arnoldi-based Krylov subspace projection method via linearization. We demonstrate the considerable superior numerical properties of this new approach with examples from structural dynamics and MEMS simulations.

The remainder of the paper is organized as follows. In section 2, we review the definitions of transfer function and moment of the second-order system Σ N and specify the goals of dimension reduction. In section 3, we discuss the projection subspace and present a SOAR procedure to generate an orthonormal basis of the projection subspace. In section 4, we present the dimension reduction algorithm via the SOAR method and prove its moment-matching properties. In section 5, we discuss a practical algorithm and review the standard Arnoldi-based dimension reduction for the second-order system with linearization. In section 6, we present results of numerical experiments for examples from different areas of applications. Concluding remarks are in section 7.

Throughout the paper, we follow the notational convention commonly used in matrix computation literature. Specifically, we use boldface letters to denote vectors (lower cases) and matrices (upper cases), I for the identity matrix, e j for the jth column of the identity matrix I, and 0 for zero vectors and matrices. The dimensions of these vectors and matrices are conformed with dimensions used in the context. • T denotes the transpose. N denotes the order of the original system (1.1). span{q 1 , q 2 , . . . , q n } and span{Q} denote the space spanned the vector sequence q 1 , q 2 , . . . , q n and the columns of the matrix Q, respectively.

• 1 and • 2 denote 1-norm and 2-norm, respectively, for vector or matrix.

Second-order system and dimension reduction.

In this section, we first review the definitions of transfer function and moment of the second-order dynamical system Σ N , and then we formally state the goals of dimension reduction. For simplicity, we assume that we have zero initial conditions q(0) = 0, q(0) = 0, and u(0) = 0 in (1.1). Taking the Laplace transform of Σ N , we have

s 2 Mq(s) + sDq(s) + Kq(s) = b ũ(s), ỹ(s) = l T q(s). (2.1)
Here q(s), ỹ(s), and ũ(s) represent the Laplace transform of q(t), y(t), and u(t), respectively. Eliminating q(s) in (2.1) results in the frequency domain input-output relation ỹ(s) = h(s)ũ(s), where h(s) is the transfer function:

h(s) = l T s 2 M + sD + K -1 b. (2.2)
The physically meaningful values of the complex variables s are s = jω, where ω ≥ 0 is referred to as the frequency, j = √ -1. The following lemma shows that the transfer function h(s) can be rewritten in linear form of the variable s. 

C = D M -W 0 , G = K 0 0 W , b = b 0 , l = l 0 , (2.3)
where W is an arbitrary N × N nonsingular matrix. Then the transfer function h(s) as defined in (2.2) can be written as

h(s) = l T (sC + G) -1 b. (2.4)
Proof. The lemma is proved by the following identity of the inverse of the 2 × 2 block matrix sC + G:

(sC + G) -1 = sD + K sM -sW W -1 = P(s) -1 -P(s) -1 sMW -1 sP(s) -1 P(s) -1 (sD + K)W -1 , where P(s) = s 2 M + sD + K.
A common choice of W is to be the identity matrix, W = I, as it is used throughout this paper. If M, D, and K are all symmetric and M is nonsingular, we can choose W = -M. The result is that C and G are symmetric matrices.

The power series expansion of h(s) is formally given by

h(s) = m 0 + m 1 s + m 2 s 2 + • • • = ∞ =0 m s , (2.5)
where m for ≥ 0 are called (low-frequency) moments. By Lemma 2.1 and the assumption that K is invertible, moments m can be compactly expressed as m = l T (-G -1 C) (G -1 b) for ≥ 0. If K is singular, we can consider the Taylor series expansion of h(s) about a selected expansion point s 0 = 0. This will be discussed in section 5.

The desiderata for a moment-matching dimension reduction method are to construct a reduced system of the same second-order form but with many fewer states and meanwhile to match the moments of the transfer functions of the original system and the reduced system as much as possible. Specifically, for the given second-order system Σ N in (1.1), we want to find a reduced second-order system of the same form

Σ n : M n z(t) + D n ż(t) + K n z(t) = b n u(t), y(t) = l T n z(t), (2.6) 
where the state vector z(t) is of dimension n, n < N, and in most cases, n N . M n , D n , and K n are n × n matrices, and b n and l n are vectors of length n. The corresponding transfer function h n (s) of the reduced system Σ n is given by

h n (s) = l T n s 2 M n + sD n + K n -1 b n = l T n (sC n + G n ) -1 b n ,
where

C n = D n M n -I 0 , G n = K n 0 0 I , b n = b n 0 , l n = l n 0 .
The moments of Σ n are m

(n) = l T n (-G -1 n C n ) (G -1 n b n ) for ≥ 0.
It is desired that for the largest q possible, the first q moments of two systems Σ N and Σ n are matched, i.e.,

m = m (n) for = 0, 1, 2, . . . , q -1. (2.7)
This implies that h n (s) is a qth-order Padé-type approximant of h(s):

h(s) = h n (s) + O(s q ).
In section 4, we will show how to construct such a reduced system so that h n (s) is an nth Padé-type approximant of h(s), i.e., q = n. Furthermore, if Σ N is symmetric, namely, M, D, and K are symmetric and b = l, then h n (s) is an nth Padé approximant of h(s), i.e., q = 2n.

3.

Second-order Krylov subspace and SOAR procedure. We will use the framework of a subspace projection technique to derive a reduced system (2.6) with the moment-matching property (2.7). The gist of the projection technique is on the choice of a subspace which the full-order system is to be projected onto. If the transfer function h(s) is written in the linear form (2.4) in terms of the matrices C and G, then it can be cast using only one matrix:

h(s) = l T (I + sG -1 C) -1 G -1 b = l T (I -sH) -1 b 0 , where H = -G -1 C and b 0 = G -1 b.
Then it is natural to consider the following Krylov subspace as the projection subspace for the dimension reduction:

K n (H, b 0 ) = span{ b 0 , H b 0 , H 2 b 0 , H 3 b 0 , . . . , H n-1 b 0 }.
However, in this paper, we will use a second-order Krylov subspace as the projection subspace. We will show that by using this second-order Krylov subspace, the reduced system not only has the same order of approximation as the one derived based on the projection onto the Krylov subspace K n but also preserves the second-order form of the original system Σ N .

We note that

H = -G -1 C = -K -1 D -K -1 M I 0 = A B I 0 and b 0 = K -1 b 0 , where A = -K -1 D and B = -K -1 M. Let r 0 = K -1 b, r 1 = Ar 0 , r = Ar -1 + Br -2 for ≥ 2.
Then one can easily derive that the vectors {r } of length N and the Krylov vectors {H b 0 } of length 2N are related as the following:

r r -1 = H b 0 for ≥ 1. (3.1)
In other words, the vector sequence {r }, in principle, defines the entire Krylov sequence {H j b 0 }. It indicates that the projection subspace spanned by {r } of R N should be able to provide sufficient information for dimension reduction as does the Krylov subspace K n (H; b 0 ) of R 2N . This essential idea is first proposed in [START_REF] Su | Model reduction and control of flexible structures using Krylov vectors[END_REF], although it is not in the form we present here. In [START_REF] Bai | SOAR: A Second-Order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem[END_REF], such a subspace is called a second-order Krylov subspace since the vector r is generated by a linear homogeneous recurrence relation of degree 2. Formally, an nth second-order Krylov subspace with matrices A and B and the starting vector r 0 is defined by

G n (A, B; r 0 ) = span {r 0 , r 1 , r 2 , . . . , r n-1 } .
A SOAR method was proposed in [START_REF] Bai | SOAR: A Second-Order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem[END_REF] for generating an orthonormal basis of G n (A, B; r 0 ). The following is a pseudocode of the SOAR procedure.

Algorithm 1. SOAR procedure.

1.

q 1 = u/ u 2 2. f = 0 3. for j = 1, 2, . . . , n do 4. r = Aq j + Bf 5.
for i = 1, 2, . . . , j do 6.

t ij = q T i r 7. r := r -q i t ij 8.
end for 9.

t j+1,j = r 2 10.

if t j+1,j = 0, 11.

q j+1 := r/t j+1,j 12.

f = Q j T(2 : j + 1, 1 : j) -1 e j 13. else 14.

reset t j+1,j = 1 [START_REF] Garvey | Model reduction using structurepreserving transformations[END_REF].

q j+1 = 0 16. f = Q j T(2 : j + 1, 1 : j) -1 e j 17.
save f 18.

if f belongs to the subspace spanned by previously saved f , then stop (breakdown) [START_REF] Kowalski | Extracting a Few Eigenpairs of Symmetric Indefinite Matrix Pencils[END_REF].

end if 20. end for Note that at line 18 of the algorithm, if f belongs to the subspace spanned by previously saved f vectors, then the algorithm encounters a breakdown and terminates. Otherwise, there is a deflation at step j. After setting t j+1,j to 1 or any nonzero constant and q j+1 = 0, the algorithm continues. To check whether f is in the subspace spanned by the previously saved f , we can use a modified Gram-Schmidt procedure [START_REF] Stewart | Matrix Algorithms[END_REF]. Note that it is not necessary to use extra storage to save those f vectors. They can be stored at the columns of Q n where the corresponding q j = 0.

At the return of the SOAR procedure, it computes a basis Q n of the second-order Krylov subspace:

span{Q n } = G n (A, B; r 0 ).
Furthermore, the nonzero columns of Q n form an orthonormal basis. The dimension of the second-order subspace G n (A, B; r 0 ) equals the number of nonzero columns of Q n , which could be less than n when deflation occurs. To simplify the presentation, we will still use Q n to denote such an orthonormal basis. If the SOAR procedure breaks down at the n 0 th step, then it indicates that

span{Q n 0 } = G ∞ (A, B; r 0 ) = span{r 0 , r 1 , r 2 , . . .}.
Before we proceed to the use of the projection subspace span{Q n } for dimension reduction, we present the following theorem, which shows the relationship between the standard Krylov subspace K n (H; b 0 ) and the second-order Krylov subspace G n (A, B; r 0 ). This is the essential observation leading to moment-matching and approximation properties of the reduced system to be discussed in section 4.

Theorem 3.1. Let Q n be an orthonormal basis of the second-order Krylov subspace G n (A, B; r 0 ). Let Q [n] denote the following 2 × 2 block diagonal matrix:

Q [n] = Q n 0 0 Q n . (3.2) Then H b 0 ∈ span{Q [n] } for = 0, 1, 2, . . . , n -1. This means that K n (H; b 0 ) ⊆ span{Q [n] }.
We say that the standard Krylov subspace K n (H; b 0 ) is embedded into the secondorder Krylov subspace G n (A, B; r 0 ).

Proof. By the fact that the SOAR procedure generates an orthonormal basis of the second-order Krylov subspace [START_REF] Bai | SOAR: A Second-Order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem[END_REF], we have that for any ≥ 0,

r 0 r 1 • • • r -1 = Q R ,
where span{Q } = G (A, B; r 0 ) and Q T Q = I. R is an × nonsingular upper triangular matrix. Hence we have

r 0 r 1 • • • r n-1 0 r 0 • • • r n-2 = Q n 0 0 Q n ⎡ ⎣ R n 0 R n-1 0 0 ⎤ ⎦ .
The theorem is then proved by the preceding expression and (3.1).

To conclude this section, we note that the work in computing an orthonormal basis Q n of the second-order Krylov subspace G n (A, B; r 0 ) is divided between the computation of the matrix-vector products Aq and Bf and the orthogonalization. The cost of the former varies depending on the sparsity and structures of the matrices A and B. The cost of the orthogonalization is about 3n 2 N flops. The main advantage of the SOAR procedure is on the memory requirement. It takes (n + 1)N and is a half of the memory requirement of the Arnoldi procedure (see, for example, [START_REF] Golub | Matrix Computations[END_REF][START_REF] Demmel | Applied Numerical Linear Algebra[END_REF][START_REF] Stewart | Matrix Algorithms[END_REF]) for generating an orthonormal basis of the Krylov subspace K n (H; b 0 ).

4.

Dimension reduction based on the SOAR procedure. We now derive a reduced second-order system using the framework of a projection technique developed for linear systems; for example, see [START_REF] Villemagne | Model reductions using a projection formulation[END_REF]. The idea of projection can be viewed as to approximate the state vector q(t) of the original system Σ N by another state vector z(t) constrained to the subspace G n spanned by Q n . This can be simply expressed by the change-of-state variables

q(t) ≈ Q n z(t), (4.1)
where z(t) is a vector of dimension n. Substituting (4.1) into (1.1) and multiplying the first equation of (1.1) with Q T n from the left yield the system

Σ n : M n z(t) + D n ż(t) + K n z(t) = b n u(t), y(t) = l T n z(t), (4.2) 
where M n , D n , and K n are n×n matrices such that

M n = Q T n MQ n , D n = Q T n DQ n , and K n = Q T n KQ n . b n and l n are n × 1 vectors such that b n = Q T n b and l n = Q T n l.
The second-order system (4.2) is called a reduced-order system Σ n of the original system Σ N .

We note that by explicitly formulating the matrices M n , D n , and K n in Σ n , essential structures of M, D, and K are preserved. For example, if M is symmetric positive definite, so is M n . As a result, we can preserve the stability, symmetry, and physical meanings of the original second-order system Σ N . This is in the same spirit of the widely used PRIMA algorithm for the passive reduced-order modeling of linear dynamical systems arising from interconnect analysis in circuit simulations [START_REF] Odabasioglu | PRIMA: Passive reduced-order interconnect macromodeling algorithm[END_REF].

The transfer function of the reduced second-order system Σ n in (4.2) is given by

h n (s) = l T n (s 2 M n + sD n + K n ) -1 b n . (4.3)
By Lemma 2.1, h n (s) can be equivalently expressed as

h n (s) = l T n (sC n + G n ) -1 b n ,
where

l n = Q T [n] l, b n = Q T [n] b, C n = D n M n -I 0 , G n = K n 0 0 I . (4.4)
Furthermore, by the definition of the 2 × 2 block diagonal matrix

Q [n] in (3.2), C n and G n can be expressed as C n = Q T [n] CQ [n] and G n = Q T [n] GQ [n] . The moments m (n) of Σ n can be compactly expressed as m (n) = l T n (-G -1 n C n ) (G -1 n b n ) for ≥ 0.
We now discuss the moment-matching properties between the original system Σ N in (1.1) and the reduced system Σ n in (4.2). We first show that for the general second-order system Σ N in (1.1), the first n moments of h(s) and h n (s) are matched. Then we show that for a symmetric second-order system, the first 2n moments of h(s) and h n (s) are matched. These results are still true in the presence of deflations. Furthermore, if the SOAR procedure breaks down at the n 0 th step, then the transfer function h n 0 (s) of the reduced-order system Σ n 0 is identical to the transfer function h(s) of the original system Σ N , i.e., h n 0 (s) ≡ h(s). Therefore, we may regard this as a lucky breakdown.

Theorem 4.1. The first n moments of the original system Σ N in (1.1) and the reduced system Σ n in (4.2) are matched, i.e., m = m (n) for = 0, 1, 2, . . . , n -1.

Hence h n (s) is an nth Padé-type approximant of the transfer function h(s):

h(s) = h n (s) + O(s n ).
The result of Theorem 4.1 is from a combination of the subspace embedding Theorem 3.1 and a theorem on the Krylov subspace-based moment-matching property presented in [START_REF] Grimme | Krylov Projection Methods for Model Reduction[END_REF]Theorem 3.1]. For the sake of completeness, we present a proof here. We first prove a couple of lemmas. These lemmas will also be used later.

Lemma 4.2. For = 0, 1, . . . , n -1,

Q [n] Q T [n] H b 0 = H b 0 . Proof. From Theorem 3.1, H b 0 ∈ span{Q [n] } for ≥ 0. Since Q [n] Q T [n]
is the orthogonal projector onto span{Q [n] }, the lemma follows immediately.

Lemma 4.3. For = 0, 1, 2, . . . , n -1, (-G -1 n C n ) G -1 n b n = Q T [n] H b 0 . Proof.
We prove by induction on . As the base case, for = 0, by the definition of b 0 and Lemma 4.2, it gives that b = GQ

[n] Q T [n] b 0 . Then we have G -1 n b n = G -1 n Q T [n] b = G -1 n Q T [n] GQ [n] Q T [n] b 0 = Q T [n] b 0 .
This proves that the lemma is true for = 0. Suppose that the lemma is true for -1. For (< n), by the hypothesis

C n = Q T [n] CQ [n]
and Lemma 4.2, it yields that

-G -1 n C n G -1 n b n = -G -1 n C n -G -1 n C n -1 G -1 n b n = -G -1 n C n • Q T [n] H -1 b 0 = -G -1 n • Q T [n] CQ [n] • Q T [n] H -1 b 0 = -G -1 n Q T [n] C • H -1 b 0 .
Inserting I = GG -1 in the middle of the right-hand side of the preceding expression, we obtain

-G -1 n C n G -1 n b n = -G -1 n Q T [n] • GG -1 • CH -1 b 0 = G -1 n Q T [n] G • H b 0 .
Finally, by Lemma 4.2 again, we have

-G -1 n C n G -1 n b n = G -1 n • Q T [n] G • Q [n] Q T [n] H b 0 = Q T [n] H b 0 .
This finishes the induction argument, which completes the proof of the lemma. Proof of Theorem 4.1. For any < n, by the definition of m (n) and Lemma 4.3, we have

m (n) = l T n (-G -1 n C n ) G -1 n b n = l T n Q T [n] H b 0 .
Next, by the definition of l T n and Lemma 4.2, we have

m (n) = l T Q [n] Q T [n] H b 0 = l T H b 0 = m .
This proves that the first n moments of h(s) and h n (s) are equal.

The following theorem concerns the property of the reduced system Σ n at the breakdown of the SOAR procedure.

Theorem 4.4. If the SOAR procedure breaks down at step n 0 , i.e., span{Q n 0 } = G ∞ (A, B; r 0 ), then the transfer function h n 0 (s) of the reduced system Σ n 0 is identical to the transfer function h(s) of the original system Σ N , i.e., h n 0 (s) ≡ h(s).

Proof. As we discussed in section 3, when the SOAR procedure breaks down at step n 0 , we know that r ∈ span{Q n 0 } = G ∞ (A, B; r 0 ) for all ≥ 0. By Theorem 3.1, this indicates that H b 0 ∈ span{Q [n 0 ] } for all ≥ 0, which implies that

K ∞ H; b 0 ⊆ span{Q [n 0 ] }.
On the other hand, by the Cayley-Hamilton theorem (for example, see [18, p. 86]), there is a polynomial p(t) of degree at most N -1 such that (I -sH) -1 = p(I -sH). It gives that

(I -sH) -1 b 0 ∈ span{Q [n 0 ] }. (4.5)
Thus there exists a vector f such that

(I -sH) -1 b 0 = Q [n 0 ] f . (4.6)
Substituting the definition of b 0 = G -1 b into (4.6) and reordering the expression yields that

Q T [n 0 ] b = Q T [n 0 ] G(I -sH)Q [n 0 ] f = Q T [n 0 ] (G + sC)Q [n 0 ] f = (G n 0 + sC n 0 ) f .
Next multiplying (G n 0 + sC n 0 ) -1 from the left of the preceding equation and by (4.6) and the orthonormality of Q [n 0 ] , we have

(G n 0 + sC n 0 ) -1 Q T [n 0 ] b = f = Q T [n 0 ] (I -sH) -1 G -1 b = Q T [n 0 ] (G + sC) -1 b. (4.7)
Now recall that the transfer function h n 0 of Σ n 0 can be written as

h n 0 (s) = l T n 0 s 2 M n 0 + sD n 0 + K n 0 -1 b n 0 = l T Q [n 0 ] (sC n 0 + G n 0 ) -1 Q T [n 0 ] b.
Hence, by (4.7), we have

h n 0 (s) = l T Q [n 0 ] Q T [n 0 ] (G + sC) -1 b T .
Using (4.5) and Lemma 4.2, we get

h n 0 (s) = l T (G + sC) -1 b T = h(s).
This completes the proof. We now consider the moment-matching property for a symmetric second-order system Σ S N , namely, matrices M, D, and K are symmetric and b = l. The transfer function of Σ S N is given by

h (s) (s) = b T s 2 M + sD + K -1 b.
Correspondingly, the transfer function of the reduced symmetric second-order system Σ S n is of the form

h (s) n (s) = b T n s 2 M n + sD n + K n -1 b n ,
where matrices M n , D n , and K n and the vector b n are defined as in (4.2). Theorem 4.5. For the symmetric second-order system Σ S N and its reduced system Σ S n , the first 2n moments of h (s) (s) and h

(s) n (s) are equal, i.e., m = m (n) for = 0, 1, 2, . . . , 2n -1. Hence h (s) n (s) is an nth Padé approximant of h (s) (s): h (s) (s) = h (s) n (s) + O(s 2n
). The theorem is a consequence of Theorem 4.1 with a careful exploitation of symmetry. We provide only a sketch of the proof.

Sketch of proof. First, by induction, we can show that the following two identities hold:

b T G -1 -CG -1 = b T G -1 -C T G -1 I 0 0 -M for ≥ 0 (4.8) and b T n G -1 n -C n G -1 n = b T n G -1 n -C T n G -1 n I 0 0 -M n for ≥ 0. (4.9)
Then, we note that for any ≤ 2n -1, the moment m (n) can be written in the form

m (n) = b T n (-G -1 n C n ) i+j+1 (G -1 n b n ) = -b T n G -1 n (-C n G -1 n ) i C n (-G -1 n C n ) j (G -1 n b n )
, where = i + j + 1 and 0 ≤ i, j < n. By (4.9), we get

m (n) = -((-G -1 n C n ) i G -1 n b n ) T I 0 0 -M n C n (-G -1 n C n ) j (G -1 n b n ).
By the definitions of M n and C n , the above expression can be written as

m (n) = -((-G -1 n C n ) i G -1 n b n ) T Q T [n] D M M 0 Q [n] (-G -1 n C n ) j (G -1 n b n ). (4.10)
On the other hand, by applying Lemma 4.3 and then Lemma 4.2, we have

Q [n] (-G -1 n C n ) j (G -1 n b n ) = Q [n] Q T [n] (-G -1 C) j (G -1 b) (4.11) = (-G -1 C) j (G -1 b).
Substituting (4.11) into (4.10), we have

m (n) = -((-G -1 C) i G -1 b) T D M M 0 (-G -1 C) j (G -1 b) = -b T G -1 (-C T G -1 ) i I 0 0 -M C(-G -1 C) j (G -1 b).
Finally, by (4.8), we deduce that for ≤ 2n -1,

m (n) = -b T G -1 (-CG -1 ) i C(-G -1 C) j (G -1 b) = b T (-G -1 C) i+j+1 (G -1 b) = m .
This completes the sketch of proof.

Algorithms.

In this section, we continue the discussion of the SOAR-based method for dimension reduction of the second-order system Σ N described in section 4. For the purpose of comparisons, we include the standard Arnoldi-based algorithm for the dimension reduction of Σ N via linearization.

In practice, often an approximant of the transfer function h(s) of the original system Σ N around a selected expansion point s 0 = 0 is interested. In this case, h(s) can be written in the form

h(s) = l T ((s -s 0 ) 2 M + (s -s 0 ) D + K) -1 b,
where D = 2s 0 M + D and K = s 2 0 M + s 0 D + K. s 0 is an arbitrary but of fixed value such that the matrix K is nonsingular. Correspondingly, the moments of h(s) about s 0 can be defined in a way similar to (2.5).

By applying the SOAR procedure (Algorithm 1), we can generate an orthonormal basis Q n of the second-order Krylov subspace G n (A, B; r 0 ) with matrices A = -K -1 D and B = -K -1 M and the starting vector r 0 = K -1 b. The subspace spanned by the nonzero columns of Q n is used as the projection subspace for defining a reduced system Σ n . Subsequently, the transfer function h n (s) of the reduced system Σ n about the expansion point s 0 is given by

h n (s) = l T n ((s -s 0 ) 2 M n + (s -s 0 ) D n + K n ) -1 b n ,
where

M n = Q T n MQ n , D n = Q T n DQ n , K n = Q T n KQ n , l T n = Q T n l, and b T n = Q T n b.
By a straightforward algebraic manipulation, h n (s) can be simply expressed as

h n (s) = l T n s 2 M n + D n + K n -1 b n , (5.1) 
where

M n = Q T n MQ n , D n = Q T n DQ n , K n = Q T n KQ n , l n = Q T n l, and b n = Q T n b.
In other words, the transformed matrix triplet (M, D, K) is used to generate an orthonormal basis Q n of the projection subspace G n , but the original matrix triplet (M, D, K) is directly projected onto the subspace G n to define a reduced system Σ n .

By an equivalent argument as presented in section 4, we can show that the first n moments about the expansion point s 0 of h(s) and h n (s) are the same. Therefore, h n (s) is an nth Padé-type approximant of h(s) about s 0 , i.e.,

h(s) = h n (s) + O ((s -s 0 ) n ) .
Furthermore, if Σ N is a symmetric second-order system, Σ S N , then the first 2n moments about s 0 of h (S) (s) and h (S) n (s) are the same, which implies that h (S) n (s) is an nth Padé approximant of h(s) about s 0 , i.e.,

h (S) (s) = h (S) n (s) + O (s -s 0 ) 2n .
The following algorithm is a high-level description of the second-order structurepreserving dimension reduction algorithm based on the SOAR procedure. Algorithm 2. Second-order structure-preserving dimension reduction algorithm. 1. Select an order n for the reduced system and an expansion point s 0 .

2. Run n steps of the SOAR procedure (Algorithm 1) to generate an orthonormal basis Q n of G n (A, B; r 0 ), where A = -K -1 D, B = -K -1 M, and

r 0 = K -1 b. D = 2s 0 M + D and K = s 2 0 M + s 0 D + K. 3. Compute M n = Q T n MQ n , D n = Q T n DQ n , K n = Q T n KQ n , l n = Q T n l, and b n = Q T n b.
This defines a reduced system Σ n as in (4.2) about the selected expansion point s 0 .

As we have noticed, by the definitions of the matrices M n , D n , and K n in the reduced system Σ n , essential properties of the matrices M, D, and K of the original system Σ N are preserved. For example, if M is symmetric positive definite, so is M n . Consequently, we can preserve the stability, symmetric, and physical meaning of the original second-order system Σ N .

The explicit formulation of the matrices M n , D n , and K n is done by using matrixvector product operations Mq, Dq, and Kq for an arbitrary vector q. Later in this section, we will see that this is an overhead comparing to the method based on the Arnoldi procedure, in which the projection of the matrix is obtained as a by-product without any additional cost. However, we believe this is a numerically better way to use the computed orthonormal basis Q n for the second-order system. The preservation of structure of the underlying problem outweighs the extra cost of floating point operations in modern computing environment. In fact, we observed that this step takes only a small fraction of the total work, due to extreme sparsity of the matrices M and D and K in practical problems we encountered. The bottleneck of computational costs is often associated with the matrix-vector multiplication operations involving K -1 at step 2 of the algorithm.

In the rest of this section, we give a short review on the basic Arnoldi-based Krylov subspace projection method for the dimension reduction of the second-order system Σ N via linearization. By denoting x(t) = [q(t) T , q(t) T ] T , the second-order system Σ N can be written in an equivalent linear form:

Σ L N : C ẋ(t) + Gx(t) = bu(t), y(t) = l T x(t), (5.2) 
where C, G, b, and l are as defined in Lemma 2.1. The transfer function of Σ L N and its Taylor series expansion about a selected expansion point s 0 are given by

h(s) = l T (sC + G) -1 b = l T (I -(s -s 0 )H (L) ) -1 r = ∞ =0 m (s -s 0 ) , where H (L) = -(G + s 0 C) -1 C and r = (G + s 0 C) -1 b. s 0 is an arbitrary but fixed value such that the matrkx G + s 0 C is invertible. The moments of h(s) are m = l T (H (L) ) r for ≥ 0.
Let V n be an orthonormal basis of the Krylov subspace K n (H (L) ; r) generated by the standard Arnoldi process; see, for example, [START_REF] Golub | Matrix Computations[END_REF][START_REF] Demmel | Applied Numerical Linear Algebra[END_REF][START_REF] Stewart | Matrix Algorithms[END_REF]. Then by approximating the state vector x(t) of the linear system Σ L N by another state vector x n (t) constrained to the subspace spanned by V n , namely, x(t) ≈ V n x n (t), where x n (t) is an n × 1 vector, we obtain a reduced linear system Σ L n :

C (L) n ẋn (t) + G (L) n x n (t) = b n u(t), y(t) = l T n x n (t), (5.3) 
where

C (L) n = -H (L) n , G (L) n = I + s 0 H (L) n , b n = V T n r, and l n = V T n l. H (L) n = V T n H (L)
V n is an n × n upper Hessenberg matrix and generated as a by-product of the Arnoldi procedure. Note that r is the first vector in K n (H (L) ; r). Therefore, the vector b n can be rewritten as b n = r 2 e 1 , where e 1 is the first unit vector. The transfer function of the reduced system Σ L n is given by

h (L) n (s) = l T n (sC (L) n + G (L) n ) -1 b n = r 2 • l T n (I -(s -s 0 )H (L) n ) -1 e 1 .
This Arnoldi-based method for the dimension reduction of the second-order system Σ N via linearization is outlined as follows. Algorithm 3. Arnoldi-based method for dimension reduction of second-order system via linearization.

1. Select an order n for the reduced system, and an expansion point s 0 .

2. Run n steps of the Arnoldi procedure to compute an orthonormal basis V n of Krylov subspace K n (H (L) , r), where

H (L) = -(G + s 0 C) -1 C and r = (G + s 0 C) -1 b. 3. Let C (L) n = -H (L) n , G (L) n = I + s 0 H (L)
n , b n = r 2 e 1 , and l n = V T n l. Then a reduced system Σ L n of Σ N is defined by (5.3). It is well known that the first n moments about the expansion point s 0 of h(s) and h (L) n (s) are the same. Therefore, h

(L) n (s) is an nth Padé-type approximant of h(s) about s 0 , i.e., h(s) = h (L) n (s) + O ((s -s 0 ) n ) .
Furthermore, if Σ N is a symmetric second-order system and a symmetric linearization is utilized, then the first 2n moments about the expansion point s 0 of h(s) and h

(L) n (s) are the same. As a result, h (L) n (s) is an nth Padé approximant of h(s) about s 0 , h(s) = h (L) n (s) + O (s -s 0 ) 2n .
Hence the reduced systems Σ n (2.6) and Σ (L) n (5.3) have the same orders of approximations of transfer function h(s). However, only the reduced system Σ n preserves the second-order form of the original system Σ N .

Numerical examples.

In this section, we present three numerical examples to compare the accuracy of dimension reduction methods of Σ N based on the SOAR procedure (Algorithm 2) and on the standard Arnoldi procedure (Algorithm 3). Under the scope of this work, we are concerned only with the basic properties and behaviors of the new SOAR-based method. It is implemented in a straightforward way, as outlined in Algorithm 2. Therefore, we will compare the SOAR method with a straightforward implementation of the Arnoldi method as described in Algorithm 3. All numerical experiments were run in MATLAB on a Sun Ultra 10 workstation.

Example 1. This is an example for the frequency response analysis of a secondorder system of order N = 400, which comes from a finite element model of a shaft on bearing supports with a damper. The data were extracted from MSC/NASTRAN [START_REF] Kowalski | Extracting a Few Eigenpairs of Symmetric Indefinite Matrix Pencils[END_REF]. This is a symmetric second-order system, where M and D are symmetric but not positive definite, and K is symmetric positive definite with 1-norm condition number about O(10 9 ). There is no shift, i.e., s 0 = 0. shows the results for n = 30. This example shows that the SOAR method not only preserves the symmetry and second-order structure but also results in a more accurate approximation. We note that this example was also reported in the previous work [START_REF] Bai | Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[END_REF], the SOAR and Arnoldi methods are reported. The corresponding relative errors are also shown over the frequency range of interest. The results clearly indicate that the SOAR-based method is considerably superior to the Arnoldi-based method. Example 3. This example is from the frequency response simulation of a torsional micromirror described in [START_REF] Clark | Addressing the needs of complex MEMS design[END_REF]. Using a lumped finite element analysis results in a second-order system Σ N of state-space dimension N = 846. Mass and damping matrices M and D are symmetric with small elements: M 1 = O(10 -8 ) and D 1 = O (10 -6 ). In contrast, stiffness matrix K is nonsymmetric with large elements: K 1 = O(10 9 ). All matrices are ill-conditioned with 1-norm condition number about O (10 18 ). An expansion point s 0 = 2 × 10 4 π is selected. The 1-norm condition number of the transformed stiffness matrix K = s 2 0 M + s 0 D + K is still
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Figure 6 .

 6 1(a) shows the magnitudes (in log of base 10) of the exact transfer function h(s) and approximate ones by the SOAR method (Algorithm 2) at n = 15. The relative errors |h(jω) -h n (jω)|/|h(jω)| and |h(jω)-h (L) n (jω)|/|h(jω)| are shown at the second plot of Figure 6.1(a).
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 62 Fig. 6.2. Bode plots of h(jω) of the resonator, its approximations h n (jω) by the SOAR procedure and h (L)n (jω) by the Arnoldi procedure, and relative errors.
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which implements Su and Craig's algorithm [START_REF] Su | Model reduction and control of flexible structures using Krylov vectors[END_REF]. The SOAR-based method uses a much smaller reduced-order system and produces a better approximation of h(s).

Example 2. In this example, we report the numerical results for the simulation of a linear-drive multimode resonator structure [START_REF] Clark | MEMS simulation using SUGAR v0.5[END_REF]. This is a nonsymmetric secondorder system. The mass and damping matrices M and D are singular, and the stiffness matrix K is very ill-conditioned with 1-norm condition number at O (10 15 ). An expansion point s 0 = 2 × 10 5 π is used, the same as in [START_REF] Clark | MEMS simulation using SUGAR v0.5[END_REF]. The 1-norm condition number of the transformed stiffness matrix K = s 2 0 M + s 0 D + K is slightly improved to O (10 13 ). No further attempt is made to improve the condition number of K. In Figure 6.2, the Bode plots of frequency responses of the original second-order system Σ N of order N = 63 and the reduced-order systems of orders n = 10 and n = 20 via ill-conditioned. No attempt is made to improve the condition number of K. Applying the SOAR-based method to the system, we find that a reduced second system of order n = 20 is sufficient for the desired accuracy. Bode plots of h(jω) are shown in Figure 6.3. In Figure 6.3, the transfer function h n (jω) obtained by the SOARbased method is superimposed on h(jω). These results demonstrate again that the SOAR-based method not only preserves the second-order structure but also generates a significantly better approximation than the Arnoldi-based method.

Concluding remarks.

We presented a structure-preserving dimension reduction algorithm for a second-order dynamical system Σ N . The reduced secondorder system Σ n in (4.2) enjoys the same moment-matching properties as the existing Arnoldi-based Krylov subspace algorithm via linearization. This new approach has considerable superior numerical accuracy.

There are a number of interesting research issues for further study. One is about error estimation and adaptive selection of the dimension n of the reduced system, such as the work presented in [START_REF] Bai | Error estimation of the Padé approximation of transfer functions via the Lanczos process[END_REF][START_REF] Odabasioglu | Practical considerations for passive reduction of RLC circuits[END_REF] for dimension reduction of linear systems. Another issue is about the numerical impact of SOAR-based algorithm in the presence of finite precision arithmetic. Another important extension of this work is about the dimension reduction of multi-input, multioutput second-order systems, particularly by taking into the account of deflations in a block second-order Krylov subspace. Applications of this method to the RCS circuit simulation and for comparing to the ENOR and SMOR algorithms [START_REF] Sheehan | ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization[END_REF][START_REF] Zheng | Robust and passive model order reduction for circuits containing susceptance elements[END_REF] used in the circuit simulation community are the subjects of further study.