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ASYMPTOTIC-PRESERVING SCHEME FOR THE RESOLUTION OF EVOLUTION
EQUATIONS WITH STIFF TRANSPORT TERMS

BAPTISTE FEDELE ∗, CLAUDIA NEGULESCU ∗, AND STEFAN POSSANNER †

Abstract. We develop an asymptotic-preserving scheme to solve evolution problems containing stiff transport
terms. This scheme is based on a micro-macro decomposition of the unknown, coupled with a stabilization procedure.
The numerical method is applied to the Vlasov equation in the gyrokinetic regime and to the Vlasov-Poisson 1D1V
equation, models occurring in plasma physics. The asymptotic-preserving properties of our procedure permit to study
the long-time behavior of these models. Indeed, classical numerical approaches have to cope with large numerical errors
in such time asymptotics, whereas our AP-procedure permits to limit this drawback.

Key words. Plasma physics, kinetic equations, Vlasov-Poisson system, asymptotic analysis, asymptotic-preserving
schemes, BGK equilibria.

AMS subject classifications. 35Q83, 65M06, 65F05, 35B40.

1. Introduction. The main objective of this work is to introduce and subsequently investigate
an efficient numerical scheme for the resolution of evolution equations containing stiff transport terms,
namely

∂tf
ε + Lf ε +

b

ε
· ∇f ε = 0 , t ∈ R+ , x ∈ Ω ⊂ Rd , (1.1)

where b : R+ × Ω → Rd is a known (passive, linear transport model) or self-consistently computed
(active, nonlinear transport model) vector-field satisfying ∇ · b = 0 , and L is a given operator (for ex.
transport or diffusion operator). The small parameter ε � 1 represents the stiffness of the problem
and signifies that we have to cope with a very strong vector-field b. It brings up the main difficulties
in the numerical resolution of (1.1), due to the introduction of multiple scales in the problem. Indeed,
the dynamics along the b-field is very rapid, as compared to its perpendicular evolution. In the formal
limit ε→ 0, the problem reduces to the constraint

b · ∇f0 = 0 , (1.2)

which signifies that the unknown f0 is constant along the field-lines of b. However, in general, problem
(1.2) does not permit to determine these different constants, for example when b has closed field lines
in the considered domain. Thus the reduced problem (1.2) is ill-posed, information has been lost while
setting formally ε = 0 in (1.1). This feature is typical for singularly-perturbed problems or multi-scale
problems (see [7, 36] ).

The study of multi-scale problems is challenging from a mathematical as well a numerical point of
view. Standard explicit numerical schemes require very small time steps, dependent on the ε-parameter,
in order to accurately account for the microscopic information (living at the ε-scale). This procedure,
even if accurate, has however the big disadvantage of being numerically very costly in simulation time
and memory. Fully implicit schemes or IMEX-schemes are also not of use for ε � 1, due to the ill-
conditioned reduced model (1.2). Alternative methodologies are thus required, taking into account for
the various scales present in the problem. Asymptotic analysis will be one of the mathematical tools
used in this paper, permitting to recover the microscopic information lost in the reduced model (1.2).
The numerical scheme presented here is based on such developments.

Evolution equations of the type (1.1) arise often in applications coming from fluid dynamics (see
[31]) and plasma physics (see [9, 24, 26]). To mention only some examples, in thermonuclear fusion
plasmas, the evolution of ions is described via the non-dimensional Vlasov (η = 0) or Fokker-Planck
(η > 0) equation

∂tf
ε
i + v · ∇xf

ε
i +

(
E +

1

ε
v ×B

)
· ∇vf

ε
i = η∇v · [vf εi +∇vf

ε
i ] , (1.3)
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where f εi (t,x,v) represents the ion distribution, dependent on time, space and velocity. This equation
is coupled via the electromagnetic fields (E(t,x),B(t,x)) to an equation describing the electron evolu-
tion. The coupling is done by means of Maxwell’s equations or Poisson’s equation in the electrostatic
case. The magnetic field is strong in tokamak experiments in the aim to confine the plasma and to
render the fusion possible. This feature is translated in (1.3) in the magnitude of the scaling parameter
ε� 1.

The further example concerns the long-time asymptotic study of the electron 1D1V Vlasov-Poisson
system 

∂tfe + v ∂xfe − E(t, x) ∂vfe = 0 , ∀t ∈ R+ , ∀(x, v) ∈ Ω ⊂ R2

−∂xxϕ = 1− ne , ne(t, x) =

∫
R
fe(t, x, v) dv , E = −∂xϕ .

(1.4)

Introducing the field u := (v,−E(t, x))t and the stream function Ψ := 1
2 |v|

2−ϕ(t, x), one has u =⊥∇Ψ,
where ⊥∇ := (∂v,−∂x). Considering additionally long-time scales, the Vlasov-Poisson system (1.4)
transforms into the nonlinear, coupled system

∂tf
ε
e +

uε

ε
· ∇x,vf εe = 0 , ∀(t, x, v) ∈ R+ × Ω

−∆x,vΨ
ε = nεe − 2 , nεe(t, x) =

∫
R
f εe(t, x, v) dv , uε =⊥∇Ψε .

(1.5)

Finally a last example comes from fluid mechanics : consider the incompressible Euler equations
in the long-time scaling, describing a bi-dimensional, inviscid flow with velocity u := (u1, u2, 0) and
pressure p {

ε ∂tu
ε + (uε · ∇)uε +∇pε = 0 , ∀(t,x) ∈ R+ × Ω ,

∇ · uε = 0 .
(1.6)

Introducing the vorticity ωε := ∇ × uε, the Euler system leads to the following nonlinear, coupled
system  ∂tω

ε +
uε

ε
· ∇ωε = 0 ,

−∆Ψε = ωε , uε =⊥∇Ψε ,

(1.7)

constituted of a transport equation for the vorticity, which is self-consistently coupled with a Poisson
equation for the determination of the stream-function Ψε, result of the divergence-free constraint of uε.
When adding in (1.7) a small viscosity term ν∆ωε, ν being the reciprocal of the Reynolds number, one
obtains an equation related to the incompressible Navier-Stokes equations.

The goal of this work is now to develop an efficient, uniformly accurate and stable (w.r.t. ε)
numerical scheme for the resolution of the following linear, stiff transport problem

(V )ε

 ∂tf
ε +

b

ε
· ∇f ε = 0 , ∀ t ∈ (0, T ) , ∀x = (x, y) ∈ Ω ⊂ R2 ,

f ε(0,x) = fin(x) ∀x ∈ Ω ,
(1.8)

with given, smooth and time-independent vector-field b : Ω → R2, satisfying ∇ · b = 0. This simpli-
fied transport equation contains the numerical difficulties arising, due to stiffness, in equation (1.1).
Given an efficient numerical algorithm for the resolution of (1.8), the above examples can be man-
aged as follows: the nonlinear coupling can be treated iteratively, as shall be shown in Section 6 for
the Vlasov-Poisson test case, and the discretization of the general non-stiff term Lf ε of (1.1) can be
done via standard schemes suited for this particular operator. The scheme we propose in this pa-
per shall be verified in two test cases: firstly in a simplified version of the gyrokinetic scaling (1.3),
containing only the stiff magnetic term 1

ε (v × B) · ∇vf
ε
i , and secondly in the long-time asymptotics

of the Vlasov-Poisson system (1.5). The third example (1.7) will be the aim of a forthcoming paper [20].
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Due to the divergence constraint of b, there exists a stream-function Ψ such that b =⊥∇Ψ. Using
the Poisson-bracket notation for two functions χ, θ, namely

{χ, θ} := ∂xχ∂yθ − ∂yχ∂xθ = ∇χ ·⊥∇θ ,

the transport equation (1.8) can be simply rewritten as

(V )ε

 ∂tf
ε +

1

ε
{f ε,Ψ} = 0 , t ∈ (0, T ) , x ∈ Ω ⊂ R2 ,

f ε(0, ·) = fin ,
(1.9)

and shall be completed with adequate boundary conditions, depending on the shape of the domain Ω
and on the vector-field b. In order to recover the examples presented above, we shall investigate two
different cases, resumed in the following Hypothesis.

Hypothesis A : The domain Ω will be either the whole R2 (simplified case (1.3)) or an infinite
strip (L1, L2)×R (case (1.5)) of the (x, y)-plane. In the second case, we shall assume periodic boundary
conditions in x and the field b : Ω 7→ R2 is supposed to be also periodic in x. Furthermore b is supposed
to be sufficiently smooth, time-independent and divergence-free ∇ · b = 0 .

With regard to the numerical solution of (1.8), we aim to:
• design a simple and robust numerical scheme, working on a Cartesian grid;
• design a scheme which enjoys the Asymptotic-Preserving properties (AP-scheme), in the sense

that it has to be uniformly stable and accurate w.r.t.. ε;
• give a detailed explanation why the proposed AP-method behaves better than standard meth-

ods (explicit, implicit, IMEX);
• design a scheme which is simply “generalizable” to more dimensions and various advection

fields.
Let us underline at this point one important fact. We are interested in designing a scheme working on
a Cartesian grid. One can imagine that for stiff problems of the type (1.8) (or more generally (1.1)),
it could be better to adapt the coordinate system, choosing field-aligned variables, and transforming
thus the problem into an evolution problem with a strong anisotropy aligned with one coordinate axis,
which is much simpler to solve (via IMEX schemes for ex., see [19]). However, our aim is to avoid a
coordinate transformation and to design a simple scheme based on a Cartesian grid. The advantage is
that the numerical treatment becomes simpler, the disadvantage will be mentioned in Section 2, namely
the introduction of a second, auxiliary unknown. The scheme we are going to propose is hence an al-
ternative to the existing schemes for such evolution problems with stiff transport terms, and marries
at the same time simplicity and Asymptotic-Preserving property.

Several AP-schemes were designed in the last years for various types of problems, including aniso-
tropic elliptic [14, 15] or parabolic [33] equations, Vlasov equations in the hydrodynamic regime [21],
drift-diffusion regime [11,29] or the high-field limit [12,28], Euler system in the low-Mach regime [16,17].
Briefly, an AP-scheme is a numerical scheme specially designed for singularly-perturbed problems P ε,
containing some small parameter ε � 1, and which enjoy the following properties (see commutative
diagram 1.1):

• for fixed ε > 0, the AP-scheme, denoted in this diagram P ε,h, is a consistent discretization of
the continuous problem P ε, where h denotes the grid parameters;

• the stability condition is independent of ε;
• for fixed discretization parameters h, the AP-scheme P ε,h provides in the limit ε→ 0 a consis-

tent discretization of the limit problem P 0.

One can put these schemes in the category of multi-scale numerical methods. At the end, let us
also remark here that standard schemes for the resolution of (1.1) exist in literature, based on Galerkin
methods [27], IMEX-techniques [3] or spectral methods [22].

The outline of this paper is the following. In Section 2, the asymptotic-preserving reformulation
of the singularly-perturbed advection equation (1.8) is detailed. The reformulation is based on a
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P ε,h P ε

P 0,h P 0

ε
→

0

h→ 0

h→ 0

ε
→

0

Fig. 1.1: Properties of AP-schemes.

micro-macro decomposition and a stabilization procedure. Section 3 deals with some mathematical
aspects of the AP-reformulation, in order to show its well-posedness. Section 4 presents the numerical
discretization of our asymptotic-preserving procedure. Section 5 focuses on a mathematical test case
and its numerical resolution by our AP-scheme. In particular, we study the stabilization of the numerical
scheme. Finally, Section 6 is dedicated to the numerical resolution of the Vlasov-Poisson 1D1V system.
We focus notably in this part on the long-time behavior of the two-stream instability, leading to BGK-
like equilibria. The last section concludes the paper with some remarks and perspectives.

2. Asymptotic-Preserving reformulation. We shall present in this section an AP-reformu-
lation of the singularly-perturbed advection problem (1.8) completed with adequate boundary condi-
tions, explicited in Hypothesis A, scheme which shall behave better (regularly) in the limit ε→ 0. For
this, the well-posed limit-model has firstly to be identified by investigating the asymptotic behaviour
of the solutions f ε, as ε � 1. We underline here that b is time-independent in the following, if not
explicitly mentioned, as in Section 6.

2.1. Identification of the limit model. As mentioned in the introduction, letting formally
ε → 0 in (1.8), leads to an ill-posed problem, which does not permit to compute in a unique manner
the limit solution f0(t, x, y). The only information we get is that f0 is constant along the field-lines of
b.

In order to establish the limit model (V )0 corresponding to (1.8), let us suppose that f ε admits the
following Hilbert expansion

f ε = f0 + εf1 + ε2f2 + ... . (2.1)

Injecting this Ansatz in (1.8) leads to the infinite hierarchy of equations

b · ∇f0 = 0, (2.2)

∂tf
0 + b · ∇f1 = 0, (2.3)

∂tf
1 + b · ∇f2 = 0, (2.4)

...

Equation (2.2) reveals that f0 belongs to the kernel of the dominant operator T := b ·∇. However, this
information is not enough to determine completely f0. It is necessary to use the next equation (2.3),
to get the missing information. To eliminate f1 from this equation, one projects (2.3) on the kernel of
T . This projection is nothing else than the average of a quantity q along the field lines of b and will
be denoted by 〈q〉. Briefly, if Z(s; x) is the characteristic flow associated to the field b, i.e.

d

ds
Z(s; x) = b(Z(s; x)) ,

Z(0; x) = x ,

the average of a function q ∈ L2(Ω) over the field lines of b is defined as

〈q〉(x) := lim
S→∞

1

S

∫ S

0

q(Z(s; x)) ds ∀x ∈ Ω .
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One can show (after some hypothesis on the regularity of b, see [4]) that 〈·〉 is a well-defined application,
furthermore that 〈q〉 is constant along the field lines of b and that one has 〈b · ∇q〉 = 0. The above
mentioned procedure permits then to obtain a well-posed limit model for f0. We already know that f0

belongs to the kernel of T , meaning f0 = 〈f0〉, such that the limit model (V )0 writes

(V )0

{
∂tf

0 = 0, b · ∇f0 = 0 , ∀(t,x) ∈ (0, T )× Ω ,

f0(0,x) = 〈fin(x)〉 ∈ ker T , x ∈ Ω .
(2.5)

The following theorem proves rigorously the convergence of the solution f ε of (1.8) towards the solution
f0 of the limit model (2.5), as ε→ 0.

Theorem 2.1. [4] Consider a subset Ω of R2 satisfying Hypothesis A. Assume that b ∈W 1,∞
loc (R2)

(where in the case Ω is a strip, we extend b periodically to the whole R2) satisfying ∇ · b = 0 as well
as the growth condition

∃C > 0 s.t. |b(x)| ≤ C (1 + |x|) , ∀x ∈ Ω .

Suppose furthermore that fin ∈ L2(Ω). Then (1.8) resp. (2.5) admit unique weak solutions f ε, f0 ∈
L∞(0, T ;L2(Ω)) and one has f ε

?
⇀
ε→0

f0, weakly-? in L∞(0, T ;L2(Ω)).
If the initial conditions are well prepared in the sense that f εin is smooth enough and satisfies f εin →

ε→0
f0
in ∈

ker T in L2(Ω), then one has even f ε →
ε→0

f0 in L∞(0, T ;L2(Ω)).

2.2. Micro-Macro reformulation. The design of a multiscale numerical procedure for the reso-
lution of problem (1.8) is now inspired by the asymptotic study performed in Section 2.1. To recover the
missing microscopic information in the reduced model (1.2), we shall decompose f ε into a macroscopic
and a microscopic part, as follows

f ε = pε + ε qε , with b · ∇f ε = εb · ∇qε . (2.6)

This signifies that pε belongs to the kernel of the dominant operator T = b · ∇ and is considered as
the macroscopic part. This decomposition is not unique as one has still to fix the values of pε (or
equivalently qε) on the field-lines, fact which shall be done in the next subsections.
Plugging for the moment (2.6) into (1.8) leads to the following augmented system for the two unknowns
(f ε, qε) {

∂tf
ε + b · ∇qε = 0 , ∀(t,x) ∈ (0, T )× Ω ,

b · ∇f ε = εb · ∇qε , ∀(t,x) ∈ (0, T )× Ω ,
(2.7)

associated with the initial condition f ε(0, ·) = fin and adequate boundary conditions (Hypothesis A).
Now several possibilities are conceivable to fix the values of qε on the field-lines, rendering thus the
decomposition (2.6) unique. Let us observe here that the values of qε on these lines are of no importance
for the computation of our physical unknown f ε, as only b · ∇qε is occurring in the system (2.7). Thus
any arbitrary choice could do the work.

2.3. Zero mean value. From a purely mathematical point of view, one first idea is to fix the
average of qε along the field lines of b, by enforcing zero mean, i.e.

〈qε〉 = 0 . (2.8)

Imposing (2.8) can be done by slightly changing the system, adding an additional “subtle” term σ〈qε〉 ,
with σ ∈ R an arbitrary constant, namely{

∂tf
ε + b · ∇qε = 0 ,

b · ∇f ε = εb · ∇qε − σ 〈qε〉 .
(2.9)

Indeed, one can remark immediately that taking the average of the second equation over the field-lines
yields automatically the constraint 〈qε〉 = 0 , since 〈b · ∇θ〉 = 0 , for all θ. The new introduced term is
hence a tricky zero, rendering qε unique by fixing its average values along the b-lines to zero. One can
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show now that (2.9) is completely equivalent to (1.8), for each ε > 0. Indeed, two ingredients help to
prove this equivalence between both formulations. On one hand, for given f ε and ε > 0, the equation b · ∇qε =

1

ε
b · ∇f ε,

〈qε〉 = 0 ,

has a unique solution qε. On the other hand, the second equation in (2.9) yields immediately, as men-
tioned above, the constraint 〈qε〉 = 0.

This idea is very nice from a mathematical point of view, however, if one is thinking at the numerical
implementation, one has to average over the field lines of b, in order to discretize the new term σ 〈qε〉
in the second equation of (2.9). This procedure is rather hard (we are working on Cartesian grids with
not-aligned fields b) and can introduce moreover ε-dependent error terms in the results. Thus we shall
leave this idea behind, and search for a more practical one.

2.4. Regularization. In order to render qε unique in (2.7), one can imagine to use a regular-
ization technique. Regularization is a very broad field in mathematics, and is devoted to the design
and analysis of methods for obtaining stable solutions of ill-posed problems. In particular, the usual
regularization technique consists in replacing the ill-posed problem by a nearby (slightly-perturbed)
well-posed problem, whose resolution poses no difficulties (uniqueness, stability of the solution). The
original solution is recovered only in the limit of vanishing regularization/perturbation parameter. The
choice of the perturbation term as well as the strength of the perturbation parameter is essential and
constitutes the key point of the method. There is a rich literature on regularization techniques, we
refer the interested reader to the references [2, 6, 8, 18].

Coming now to our problem, one can regularize (2.7) either by adding in the second equation a term
of the type “α∂tq

ε” or of the form “σ qε”. These two regularizations permit to get a unique qε, however
the corresponding solutions behave very differently in the desired asymptotic limit ε → 0. To see this
difference, let us simplify by putting formally ε = 0 in (2.7) and take a look at both regularizations,
namely

(W )

{
∂tf

0 + b · ∇q0 = 0 ,

α ∂tq
0 + b · ∇f0 = 0 ,

(P )

{
∂tf

0 + b · ∇q0 = 0 ,

b · ∇f0 + σq0 = 0 ,
(2.10)

where the constants α > 0 resp. σ > 0 have to be sufficiently small in order not to perturb too much
the original problem. Now, one can eliminate in both systems the auxiliary unknown q0 and get an
equation involving only f0, which reads

(W ) ∂ttf
0 − 1

α
∇ ·
[
(b⊗ b)∇f0,σ

]
= 0 ; (P ) ∂tf

0 − 1

σ
∇ ·
[
(b⊗ b)∇f0,σ

]
= 0 .

As one can observe, regularizing (2.7) by adding a term of the form “α∂tq
ε” leads in the limit ε→ 0 to

a wave-equation, whereas the regularization by adding “σqε” leads to a parabolic equation.

Which one is better suited for our anisotropic transport problem can be understood by remembering
the asymptotic behaviour of the unique solution f ε of the original advection equation (1.8) as ε becomes
smaller and smaller. As shown in Section 2.1, one gets in the (weak) limit ε→ 0 a function f0 which is
constant along the field lines of b. This gives us a hint that the regularization (P ) is better suited for
our problem, as the corresponding limit problem is a diffusion problem, with strong diffusivity along the
field lines. Hence one is expecting to get a better approximation of f0 via (P ) than via a wave-equation
of the form (W ), which describes rather a very rapid wave-motion.

2.5. The stabilized AP-reformulation. To summarize, our Asymptotic-Preserving scheme for
an efficient resolution of the anisotropic transport equation (1.8) is based on the resolution of the
following well-posed reformulated system

(MM)σε

{
∂tf

ε,σ + b · ∇qε,σ = 0 , ∀(t,x) ∈ (0, T )× Ω ,

b · ∇f ε,σ = εb · ∇qε,σ − σ qε,σ , ∀(t,x) ∈ (0, T )× Ω ,
(2.11)

6



with σ > 0 a small parameter to be fixed later on. This system is completed by an initial condition
f ε,σ(0, ·) = fin(·) and adequate boundary conditions (Hypothesis A). Remark that no initial condition
is needed for the auxiliary variable qε . Let us underline here the difference between (2.9) and (2.11).
Both procedures are fixing the value of the auxiliary variable q on the field lines of b by imposing zero
mean 〈q〉 = 0. To see this in (2.11), it is enough to take the average 〈·〉 of the second equation. How-
ever, while (2.9) is completely equivalent to the starting model (1.8), the system (2.11) introduces an
error, as the supplementary term we introduced, σqε,σ, is no more zero but contains also the non-zero
fluctuation part of qε,σ. The big advantage of (2.11) with respect to (2.9) is that a discretization of the
average operator 〈·〉 is not necessary anymore.

The ε-regularity of the system (2.11) allows now to pass directly to the ε→ 0 limit in (2.11) to get
the corresponding limit model, i.e.

(MM)σ0

{
∂tf

0,σ + b · ∇q0,σ = 0 ,

b · ∇f0,σ + σ q0,σ = 0 .
(2.12)

Eliminating q0,σ from this system, yields the degenerate diffusion equation with fixed σ > 0)

∂tf
0,σ − 1

σ
∇ ·
[
(b⊗ b)∇f0,σ

]
= 0 , (2.13)

which shows clearly what the regularization term is doing in the limit ε → 0. Let us also remark
here that (2.13) is a well-posed problem (for σ > 0 ), due to the standard parabolic theory associated
with the evolution triple Q ↪→ V ≡ V ? ↪→ Q? , where the spaces are defined in the next section.

Remark that the positive, symmetric bilinear form m(u, v) :=
1

σ
(b · ∇u ,b · ∇v)V satisfies Garding’s

inequality (see [37] for more details). For future numerical discretizations, it will be more convenient
to rewrite these systems by using the Poisson bracket. Introducing the stream function Ψ such that
b = (∂yΨ,−∂xΨ) =⊥∇Ψ, the previous Micro-Macro system (2.11) reads

(MM)σε

{
∂tf

ε,σ + {qε,σ,Ψ} = 0 ,

{f ε,σ,Ψ} = ε {qε,σ,Ψ} − σ qε,σ .
(2.14)

Before introducing the numerical discretization of the AP-reformulation (2.14) in Section 4, let us
however do in the next section some mathematical investigations.

3. Some mathematical observations. The rigorous mathematical study of the existence and
uniqueness of a solution to the AP-reformulation (2.11) along with the rigorous study of its limit
towards (2.12) is a delicate question and shall be treated in a supplementary, more mathematical work.
To give however some ideas about the well-posedness of this model, and underline the difficulties of the
mathematical study, we shall concentrate in this paper only on the existence and uniqueness questions
corresponding to the implicit time semi-discretization of (2.11), namely

(MM)σ,nε

{
f ε,σ,n+1 + ∆t b · ∇qε,σ,n+1 = f ε,σ,n ,

b · ∇f ε,σ,n+1 = ε b · ∇qε,σ,n+1 − σ qε,σ,n+1.
(3.1)

Here, we discretized the time interval [0, T ] with fixed T > 0, as follows

tn := n∆t , ∆t := T/Nt , n ∈ J0, NtK , Nt ∈ N ,

and denoted by f ε,σ,n an approximation of f ε,σ(tn, ·). This system is associated with boundary condi-
tions for (f ε,σ,n+1, qε,σ,n+1) following Hypothesis A.

Let us now specify the mathematical framework of problem (3.1). For this, choose firstly the Hilbert
spaces V = L2(Ω) and Q = {v ∈ L2(Ω) | b·∇v ∈ L2(Ω) , v satisfying the boundary conditions precised
in Hypothesis A }, associated with the standard L2 scalar-product for V and (u, v)Q := (u, v)L2 + (b ·
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∇u,b · ∇v)L2 for Q. We introduce now the following bi-linear forms A, B, Cε,σ:

A(u, v) :=

∫
Ω

uv dx, A : V × V → R ,

B(v, r) :=

∫
Ω

v (b · ∇r) dx, B : V ×Q→ R ,

Cε,σ(r, s) := −ε B(s, r) + σ (r, s)L2 , Cε,σ : Q×Q→ R ,

(3.2)

and their associated linear operators A, B, Cε,σ:

A : V −→ V ? , B : V −→ Q? , Cε,σ : Q −→ Q? ,

〈Au, v〉V ?,V := A(u, v) , 〈Bv, r〉Q?,Q := B(v, r) , 〈Cε,σr, s〉Q?,Q := Cε,σ(r, s) .

Remark 3.1. The bi-linear form B defines also the adjoint linear operator B? : Q −→ V ? via
B(v, r) = 〈Bv, r〉Q?,Q = 〈v,B?r〉V,V ? for all (v, r) ∈ V × Q. Observe also that B?r = b · ∇r for all
r ∈ Q, whereas in the distributional sense Bv = −b · ∇v for all v ∈ V .

With these definitions, the variational formulation of the previous problem (3.1) writes now : for fixed
ε ≥ 0, σ > 0, ∆t > 0 and f ε,σ,n ∈ V ?, find (f ε,σ,n+1, qε,σ,n+1) ∈ V ×Q, such that :{ A(f ε,σ,n+1, θ) + ∆tB(θ, qε,σ,n+1) = 〈f ε,σ,n, θ〉V ?×V , ∀θ ∈ V,

B(f ε,σ,n+1, χ)− Cε,σ(qε,σ,n+1, χ) = 0, ∀χ ∈ Q.
(3.3)

To prove the existence and uniqueness of a weak solution to (3.3), we shall need some properties
of these operators.

Lemma 3.2. Let Hypothesis A be satisfied. Then, A(·, ·), B(·, ·) resp. Cε,σ(·, ·) are continuous bi-
linear forms on V × V , V ×Q resp. Q×Q. Furthermore, A(·, ·) is coercive on V × V and Cε,σ(·, ·) is
positive semi-definite on Q×Q.

Remark 3.3. Let us remark here that Cε,σ(·, ·) is not coercive on Q×Q. However, as we will see
later, this hypothesis is not crucial for both existence and uniqueness of a solution of the variational
formulation (3.3).

Without any other hypothesis on B(·, ·) (as for example an inf-sup condition) we are now able to
present the following existence/uniqueness result of a solution to (3.3), and this due to the presence of
the regularization term σq.

Theorem 3.1. Let Hypothesis A be satisfied and let A(·, ·), B(·, ·) and Cε,σ(·, ·) be the continuous
bi-linear forms defined in (3.2). Then, for every given f ε,σ,n ∈ V ? the problem (3.3) has for each fixed
ε ≥ 0, σ > 0, ∆t > 0 and n ∈ J0, NtK, a unique weak solution (f ε,σ,n+1, qε,σ,n+1) in V ×Q.
This solution satisfies the following estimates, for all ε > 0, σ > 0 , ∆t > 0, n ∈ J0, NtK:

||f ε,σ,n+1||V ≤ ||f ε,σ,n||V ? , (3.4)

||qε,σ,n+1||2V ≤
1

σ∆t
||f ε,σ,n||2V ? , ||b · ∇qε,σ,n+1||V ≤

2

∆t
||f ε,σ,n||V ? . (3.5)

Proof. Due to the lack of coercivity of Cε,σ, we shall start by considering the regularized problem :
for α > 0, find (f ε,σ,n+1

α ∈ V, qε,σ,n+1
α ) ∈ V ×Q, solution of :{ A(f ε,σ,n+1

α , θ) + ∆tB(θ, qε,σ,n+1
α ) = 〈f ε,σ,n, θ〉V ?×V , ∀θ ∈ V,

B(f ε,σ,n+1
α , χ)− α(qε,σ,n+1

α , χ)Q − Cε,σ(qε,σ,n+1
α , χ) = 0, ∀χ ∈ Q.

(3.6)

Multiplying the second equation by ∆t and subtracting both equations, one can show via Lax-Milgram
theorem that (3.6) admits, for each fixed α > 0, ε ≥ 0, σ > 0, ∆t > 0 and n ∈ J0, NtK, a unique weak
solution. Indeed, thanks to the term α(qε,σ,n+1

α , χ)Q in the second equation of (3.6), the regularized
operator Cε,σ(·, ·) + α(·, ·)Q is now coercive on Q×Q.
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Our aim is now to bound f ε,σ,n+1
α and qε,σ,n+1

α uniformly in α. Then, passing to the limit α → 0
in (3.6) would permit to conclude about both existence and uniqueness of a weak solution of (3.3).

First, let us choose θ = f ε,σ,n+1
α and χ = qε,σ,n+1

α in (3.6), multiply the second equation with ∆t
and subtract both equations to get

A(f ε,σ,n+1
α , f ε,σ,n+1

α ) + α∆t ||qε,σ,n+1
α ||2Q + ∆t Cε,σ(qε,σ,n+1

α , qε,σ,n+1
α ) = 〈f ε,σ,n, f ε,σ,n+1

α 〉V ?×V .

By using the coercivity of A(·, ·) and the fact that Cε,σ(q, q) = σ||q||2L2 (due to the boundary conditions),
we get

||f ε,σ,n+1
α ||2V + α∆t ||qε,σ,n+1

α ||2Q + ∆t σ ||qε,σ,n+1
α ||2V ≤ ||f ε,σ,n||V ∗ ||f ε,σ,n+1

α ||V ,
leading to

||f ε,σ,n+1
α ||V ≤ ||f ε,σ,n||V ? , ||qε,σ,n+1

α ||2V ≤
1

∆t σ
||f ε,σ,n||2V ? . (3.7)

Now, thanks to the first equation of (3.6), i.e.

∆tB(θ, qε,σ,n+1
α ) = −A(f ε,σ,n+1

α , θ) + 〈f ε,σ,n, θ〉V ∗×V , ∀θ ∈ V ,

we have

||b · ∇qε,σ,n+1
α ||L2(Ω) = sup

θ∈L2(Ω)

(b · ∇qε,σ,n+1
α , θ)L2(Ω)

||θ||L2(Ω)
≤ 2

∆t
||f ε,σ,n||V ? . (3.8)

The estimates (3.7) as well as (3.8) are independent of α > 0 and thus one can extract weakly
convergent subsequences and pass to the limit α → 0 in the variational formulation (3.6) to conclude
the proof.

Remark 3.4. One can also observe from the ε-independent estimates (3.4)-(3.5) that up to extract-
ing a subsequence of {f ε,σ,n+1, qε,σ,n+1}ε>0 we have the ε-convergences

f ε,σ,n+1 ⇀
ε→0

f0,σ,n+1 in V , qε,σ,n+1 ⇀
ε→0

q0,σ,n+1 in Q ,

which underlines the fact that the AP-reformulation (2.11) is regular and tends towards the limit-model
(2.12) as ε goes to zero.
The σ-convergences are more delicate. One has only

f ε,σ,n+1 ⇀
σ→0

f ε,0,n+1 in V ,

however there is no convergence for qε,σ,n+1. This again was to be expected as in the limit σ → 0 one
looses the uniqueness of q, the term σq being a regularization term.

4. Numerical discretization. Let us come now to the numerical part of our work and introduce
here a numerical discretization of our reformulated system:

(MM)σε

{
∂tf

ε,σ + {qε,σ,Ψε,σ} = 0 ,

{f ε,σ,Ψε,σ} = ε {qε,σ,Ψε,σ} − σ qε,σ ,
(4.1)

where the stream function Ψε,σ is supposed to be given in this section, linked to the given time-
independent vector field b through b := ∇⊥Ψε,σ.

4.1. Discretization parameters. In what follows, one assumes a bounded simulation domain
ΩS := (−Lx, Lx)×(−Ly, Ly) . Concerning the time interval [0, T ] , T > 0 , we employ the discretization:

tn := n∆t , ∆t := T/Nt , n ∈ J0, NtK , Nt ∈ N .

Similarly, let us supply the domain ΩS with a uniform spatial discretization:

xi := (i− 1)∆x− Lx , yj := (j − 1)∆y − Ly , ∆x := 2Lx/Nx , ∆y := 2Ly/Ny ,

with i ∈ J1, Nx + 1K , and j ∈ J1, Ny + 1K . For any function f : [0, T ] × ΩS → R , fni,j refers to the
numerical approximation of f(tn, xi, yj), and fnh shall simply denote the discrete grid-function (fni,j)i,j .
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The domain ΩS is a truncation of the real physical domain Ω = R2 or Ω = (L1, L2) × R. To be
close to the physical reality, we took in our simulations for the variable belonging to R a sufficiently
large bounded domain and supposed that the distribution function f ε,σ is vanishing on that border,
whereas periodic boundary conditions are imposed for the bounded variable. To be more precise, we
imposed for the truncation of the physical domain Ω = R2 that

fni,j = 0 for i = 1; j = 1; i = Nx + 1; j = Ny + 1 ,

whereas for the truncation of the physical domain Ω = (L1, L2)× R we imposed

fni,j = 0 ∀i and j = 1; j = Ny + 1 as well as fn1,j = fnNx+1,j ∀j .

4.2. Space semi-discretization. For the Poisson brackets appearing in the Micro-Macro refor-
mulation (4.1), let us adopt the second order Arakawa discretization [1]. For two functions u, v : ΩS →
R, the discrete version of the Poisson bracket {u, v} calculated at the point (xi, yj) is expressed by:

[uh, vh]i,j :=
1

12∆x∆y

(
ui+1,j Ai,j + ui−1,j Bi,j + ui,j+1 Ci,j + ui,j−1Di,j

+ui+1,j+1 Ei,j + ui−1,j−1 Fi,j + ui−1,j+1 Gi,j + ui+1,j−1Hi,j
)
.

where the coefficients write

Ai,j := vi,j+1 − vi,j−1 + vi+1,j+1 − vi+1,j−1 , Ei,j := vi,j+1 − vi+1,j ,

Bi,j := vi,j−1 − vi,j+1 − vi−1,j+1 + vi−1,j−1 , Fi,j := vi,j−1 − vi−1,j ,

Ci,j := vi−1,j − vi+1,j − vi+1,j+1 + vi−1,j+1 , Gi,j := vi−1,j − vi,j+1 ,

Di,j := vi+1,j − vi−1,j + vi+1,j−1 − vi−1,j−1 , Hi,j := vi+1,j − vi,j−1 .

Thus, the semi-discretization in space of the Micro-Macro problem (4.1) reads:

(MM)σε,h

{
∂tf

ε,σ
i,j + [qε,σh ,Ψε,σ

h ]i,j = 0 ,

[f ε,σh ,Ψε,σ
h ]i,j − ε [qε,σh ,Ψε,σ

h ]i,j + σ qε,σi,j = 0 .
(4.2)

4.3. Time discretization. We shall use a DIRK (diagonally-implicit Runge-Kutta) approach in
order to achieve second-order accuracy in time for the problem (4.1). The general form of a RK-method
is recalled here for the following equation

∂tu = Lu ,

where L refers to some differential operator. An r-stage Runge-Kutta approach is determined by its
Butcher table

c1 a11 . . . a1r

...
...

...
cr ar1 . . . arr

b1 . . . br
For a given un, the subsequent un+1 is defined by the formula

un+1 = un + ∆t

r∑
j=1

bjuj ,

where each ui is defined by

ui = un + ∆t

r∑
j=1

aijLuj .

In the case where bj = arj for j = 1, ... , r , then un+1 is equal to the last stage of the method, namely
ur. For the Micro-Macro problem (4.1), we consider the following 2-stage Butcher table
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λ λ 0
1 1− λ λ

1− λ λ

For λ := 1 − 1/
√

2, the method is L − stable. For all n ∈ J0, NtK, the full discretization of the
Micro-Macro problem (4.1) writes now

(MM)σ,nε,h



Stage 1 :

f ε,σ1,i,j + λ∆t [qε,σ1,h,Ψ
ε,σ
h ]i,j = f ε,σ,ni,j ,

[f ε,σ1,h ,Ψ
ε,σ
h ]i,j − ε [qε,σ1,h,Ψ

ε,σ
h ]i,j + σ qε,σ1,i,j = 0 .

Stage 2 :

f ε,σ2,i,j + λ∆t [qε,σ2,h,Ψ
ε,σ
h ]i,j = f ε,σ,ni,j +

1− λ
λ

(f ε,σ1,i,j − f
ε,σ,n
i,j ) ,

[f ε,σ2,h ,Ψ
ε,σ
h ]i,j − ε [qε,σ2,h,Ψ

ε,σ
h ]i,j + σ qε,σ2,i,j = 0 .

Final Stage :

(f ε,σ,n+1
i,j , qε,σ,n+1

i,j ) = (f ε,σ2,i,j , q
ε,σ
2,i,j) .

(4.3)

Remark 4.1. In the following, we shall simply call our Micro-Macro scheme (4.3), obtained with
Arakawa space discretization and DIRK time discretization, the (DAMM)-scheme.

5. Verification of the AP-scheme in a mathematical test case. In this section we investigate
the numerical properties of our asymptotic-preserving (DAMM)-scheme (4.3) for the resolution of (4.1)
with given field b. The section is devoted to the investigation of a linear case where the stream
function Ψ does not depend on f ε and is static. In mind, we have as an application the Vlasov/Fokker-
Planck equation with strong given magnetic field (1.3). Convergence results regarding the discretization
parameters and numerical study of the asymptotic limit ε → 0 are presented. Moreover, the influence
of the stabilization parameter σ on the numerical results is discussed.

5.1. Analytical solution for both ε-regimes. Let us choose in this section the stationary

stream function Ψ(x, y) =
1

2
(x2 + y2), corresponding to b = (y,−x)T . In this case, we can compute

explicitly the characteristics corresponding to the transport equation (1.8). Indeed, the characteristic

curve Ct,x,yε (s) :=
(
X(s), Y (s)

)
passing at instant t through (x, y), solves the ODE
Ẋ(s) =

Y (s)

ε
,

Ẏ (s) = −X(s)

ε
,

(X(t), Y (t)) = (x, y) ,

and has the explicit form

Ct,x,yε (s) :=

(
X
Y

)
(s; t, x, y) = R

(s− t
ε

)(
x
y

)
.

with the rotation matrix given by

R(θ) :=

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 .

These characteristic curves are nothing else than spirals in the (t, x, y)-phase-space. All characteristics
are 2π ε-periodic in s. The solution f ε of the advection equation (1.8) is now constant along these
curves, such that

f ε(t, x, y) = fin(X(0; t, x, y), Y (0; t, x, y)) , ∀(t, x, y) ∈ [0, T ]× Ω ,
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which leads to the following analytic expression of the unique solution to (1.8)

f ε(t, x, y) = fin

(
cos
( t
ε

)
x− sin

( t
ε

)
y, sin

( t
ε

)
x+ cos

( t
ε

)
y
)
. (5.1)

Finally, the ε→ 0 limit solution f0 solves the problem (2.5), leading to

f0 = 〈fin〉 =
1

2π

∫ 2π

0

fin(R cos(s), R sin(s)) ds , (5.2)

where R :=
√
x2 + y2. Let us choose now as initial data a Gaussian peak not centered in the origin,

i.e.

fin(x, y) = exp

(
− (x− 0.5)2 + (y − 0.5)2

2 η2

)
, η = 0.05 , Lx = Ly = 1 ,

and investigate how the numerical scheme is rendering its movement.
In the following, we shall denote by Πh(f ε) resp. f ε,σh the exact solution (5.1) calculated on the

grid mesh resp. the numerical solution of (4.1) obtained with our (DAMM)-scheme, and Πh(f0) refers
to the exact limit solution (5.2) calculated on the grid mesh. Let Q := (0, T )×ΩS . We introduce also
the numerical errors

Lpε,X := ||Πh(f ε)− f ε,σh ||Lp
h(X ) , Lp0,X := ||Πh(f0)− f ε,σh ||Lp

h(X ) , (5.3)

where p ∈ {1, 2, ...,∞}, X stands for Q or ΩS , and Lph denotes the discrete Lp-norm.

Figure 5.1 shows now the numerical solution obtained with the (DAMM)-scheme and the corre-
sponding exact solution, in the non-limit (ε = 1) regime. The solutions related to the limit regime
(ε=0) are plotted in Figure 5.2. One observes that the numerical scheme we propose in this paper
approximates well the exact solutions in both extreme regimes. In the next paragraphs we will try to
prove more rigorously this visible correspondence and justify the choice of the stabilization parameter
σ.

Fig. 5.1: (Non-limit case ε = 1). Superposition of the distribution function f ε,σh at several time steps tn

(left-panel) compared to the exact solution f ε (right-panel), with Nt = 2000, T = 3.5, Nx = Ny = 200,
σ = ∆x2.
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Fig. 5.2: (Limit case ε = 0). Plot of f0,σ
h at final time T = 1 with Nt = 200 and σ = ∆x (left-panel),

compared to the limit exact solution f0 (right-panel). Mesh size : Nx = Ny = 200.

5.2. AP-property. Let us start by discussing the AP-property of our scheme. As a reference
scheme, we decided to take a fully implicit DIRK-scheme with Arakawa space discretization, solving
(1.8). In Figure 5.3 (a) we plot the condition number of the system matrix of the (DAMM)-scheme
and of the implicit reference scheme as a function of ε. One observes that the condition number of
the (DAMM)-scheme is bounded uniformly in ε, whereas the implicit scheme is ill-conditioned in the
limit ε → 0. This underlines one important advantage of our (DAMM)-scheme when compared with
standard schemes, namely the fact that the (DAMM)-scheme does not degenerate in the limit ε → 0.
From the right panel (b), however, it is evident that the condition number of the (DAMM)-scheme
depends on the stabilization parameter σ. This reflects the fact that in the limit σ → 0, the solution
(f ε,0,n, qε,0,n) of (3.1) is not unique, and therefore the problem becomes ill-posed. As mentioned later
on, σ has to be chosen not too small, such to have a reasonable condition number, and not too large,
in order not to modify too much the problem. Concerning the numerical analysis, we do not present
any result in this work, since we have proved in a previous publication (see [19]) that the Micro-Macro
procedure coupled with a stabilization method permits to avoid an amplification of the truncation error
with decreasing ε .

5.3. Convergence property. Next we study the convergence properties of the (DAMM)- scheme.
Figure 5.4 displays the convergence rates in ∆t and in ∆x = ∆y, obtained by comparison with the exact
solutions (5.1) for ε = 1 and σ = ∆x2. In panel (a), one observes the expected second-order convergence
rates with respect to time. In panel (b), the second-order convergence in space due to the Arakawa
discretization of the Poisson brackets is evident. We observe from Table 5.1 that the convergence rate
in space is even better for ε = 0. Indeed, in this simple test-case, in the limit ε → 0, the distribution
function is radial, namely f0,σ = gσ(x2 + y2). Following [1], we observe that the leading terms of the
truncation error, corresponding to the discretization of the Poisson bracket, vanish for that case.

5.4. Influence of the stabilization. Our next objective is to investigate the influence of the
stabilization parameter σ on the quality of the numerical solution in the different ε-regimes. Let us
start the discussion with the limit regime ε = 0. In Figure 5.5 (a), we plot the L1

0,ΩS
error (w.r.t. the

exact limit sol.) over time t , for two different choices of σ, namely σ = ∆x and σ = ∆x2, and for
several choices of ∆x. One observes two phases: at first the numerical solution relaxes towards the
(weak) analytic limit solution, until a plateau is reached and the error remains constant over time.
This relaxation is faster for smaller values of σ, fact which can be explained by taking a look at the
degenerate diffusion equation (2.13) we are effectively solving in the limit ε → 0. Smaller σ means
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Fig. 5.3: Condition numbers as a function of ε with σ = ∆x2 for both (DAMM) and fully implicit schemes
(a), and as a function of σ with ε = 1 for the (DAMM)-scheme (b). Here T = 1, Nt = 200, Nx = Ny = 50.
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Fig. 5.4: Convergence studies for the (DAMM)-scheme: errors L1
ε,Q, L2

ε,Q, and L∞ε,Q as a function of ∆t (a)
and ∆x = ∆y (b), respectively. Parameters were T = 1, ε = 1 and σ = ∆x2.

stronger diffusion along the field lines of b, which means that the number of iterations neq to reach the
equilibrium plateau decreases with ∆x, see Table 5.1. Observe also that the error in the equilibrium
phase is the same for each σ = ∆xr with r ≥ 1, only the relaxation rate strongly depends on the choice
of r.

Let us mention briefly the computational time (CPU time) one needs for reaching the equilibrium
plateau for the different cases studied in Figure 5.5 (a). The problem is that the condition number
of the system matrix is inversely proportional to σ, as already demonstrated in Figure 5.3 (b). This
bad conditioning would lead necessarily to an increase in CPU time for very small σ which has to be
evaluated. For example, regarding the case ∆x = 2/80 (third curve in Figure 5.5 (a) and third line in
Table 5.1), one obtains tCPU (σ = ∆x) = 53 s in contrast to tCPU (σ = ∆x2) = 104 s. Thus, even if
Figure 5.5 (a) suggests that a higher r would be more suitable to attain quickly the equilibrium plateau,
this previous study about the CPU time advices us to be more careful and choose σ not too small.
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In the regime ε = 1, displayed in Figure 5.5 (b), the L1
ε,ΩS

error increases linearly with time for all
choices of ∆x. There is a very weak σ dependence in this regime as shown by the quasi superposition
of the curves. The linear increase of the error is due to the dispersive character of the Arakawa dis-
cretization which leads to errors in the phase velocities. The not-dependence on σ is due to the fact
that the term εb · ∇ qε in the second equation of (2.11) is larger for ε = 1 than the term σ qε.
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Fig. 5.5: L1
0,ΩS

(panel (a)) and L1
ε,ΩS

(panel (b)) errors over time for the (DAMM)-scheme for two
different ε-regimes and several ∆x.

Table 5.1: Corresponding to Figure 5.5 (a) with ε = 0 . L1
0,ΩS

-error at final time T = 2 and ∆t = 0.01;
number of iterations neq and CPU-time tCPU for reaching the equilibrium plateau; condition nbr. CN

of the linear system.

σ = ∆x σ = ∆x2

L1
0,ΩS

at time T neq tCPU CN L1
0,ΩS

at time T neq tCPU CN

∆
x

2/20 0.0106 > 200 3.1s 8.4e3 0.0082 175 2.8s 1.3e5
2/40 0.0011 169 12s 2.6e4 0.0010 66 4.9s 8.5e5
2/80 3.2737e− 5 123 53s 9.1e4 3.2735e− 5 10 104s 3.9e6
2/160 1.8992e− 6 19 133s 2.9e5 1.8992e− 6 5 1302s 3.5e7

Finally, we shall discuss an intermediate ε-regime given by ε = 0.1. We simulate nfinal = 500
time steps with ∆t = 0.01 , thus a final time of T = 5 for ε = 0.1, and choose σ = ∆x with ∆x ∈
{2/40, 2/80, 2/160}. In Figure 5.6, one observes the two previously discussed regimes for the L1 errors.
The dashed lines refer to the error L1

ε,ΩS
with respect to the exact solution (5.1) whereas the solid lines

show the error L1
0,ΩS

w.r.t the limit solution (5.2). In the first phase of the simulation (short times), we

recover Figure 5.5 (B), in particular the error L1
0,ΩS

is large and L1
ε,ΩS

increases linearly. At a certain
point, these two errors cross, and afterwards (at large times) the solution relaxes towards the weak limit
solution (equilibrium plateau), and we recover Figure 5.5 (A), in particular, the error L1

ε,ΩS
is maximal

at the end of the simulation, whereas L1
0,ΩS

decreases towards the plateau. To understand Figure 5.6,
one has to keep in mind that it corresponds to an intermediate ε-value (ε = 0.1), and that the final
simulation time is T = 5 . The physical time is thus Tphys = 50, whereas in Figure 5.5 (B) the physical
time was Tphys = 1, so Figure 5.6 combines intermediate ε-values with long-times asymptotics, which
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explains why one recovers there the two regimes of Figure 5.5 , in particular, the short-time regime
(Figure 5.5 (B)) and the long-time regime (Figure 5.5 (A)) . In between, the AP-scheme proceeds to
the transition between ”non-stiff” and ”stiff” regimes.
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Fig. 5.6: L1
ε,ΩS

and L1
0,ΩS

errors over time for the (DAMM)-scheme for several ∆x with ε = 0.1,

σ = ∆x. Dashed lines refer to the error L1
ε,ΩS

whereas the solid lines show the error L1
0,ΩS

.

5.5. Choice of the stabilization parameter σ. After having given some qualitative observa-
tions about the influence of the discretization parameter σ in different ε-regimes, let us present some
ideas to optimize the choice of σ. In Figure 5.7 (a), we plot the L1

ε,ΩS
error at the final time T for

the non-limit regime ε = 1 as a function of σ for several values of ∆x. In order to minimize the error
L1
ε,ΩS

, the curves suggest to choose a σ-value depending on ∆x. To investigate more precisely this
dependence, we propose to take as ”optimal” σ, for each fixed ∆x, the value σεh computed via

σεh := max

{
σ ∈ [σmin, 1]

∣∣∣∣∣ ||Πh(f ε)− f ε,σh ||L1
h(ΩS) − ||Πh(f ε)− f ε,σmin

h ||L1
h(ΩS)

||Πh(f ε)− f ε,σmin

h ||L1
h(ΩS)

< η

}
, (5.4)

(where η is an arbitrary precision) and evaluate how σεh varies with ∆x. In Figure 5.7 (b), we display
ln(σεh) as a function of ln(∆x) for η = 0.01 and σmin = 7e − 6. The data approach a polynomial line
of slope p = 1.917, suggesting a relation between σεh and ∆x of the form σεh = C ∆xp (with C > 0),
very close to the relation chosen in the last sections. To end this paragraph, let us briefly analyze
the influence of η, the precision criterion, appearing in (5.4). For that, Table 5.2 presents for several
values of η, the slope of the polynomial fitting of order 1 of the data ln(σεh) = f(ln(∆x)), as well as
its determination coefficient r2, defined as the square of the correlation coefficient. One notes that
the slope is around 2 in each case, validating the choice we have made before, for the stabilization
parameter σ in the large ε-regime, namely σεh = (∆x)2.

We perform a similar analysis in the limit regime ε = 0. For that, we display in Figure 5.8 (a)
the L1

0,ΩS
error at the final time T as a function of σ , for several values of ∆x. As in the non-

limit ε-regime, the curves suggest us to choose a σ depending on ∆x. Let us define the application
Z : σ 7→ ||Πh(f0)− f0,σ

h ||L1
h(ΩS). To study the dependence between σ and ∆x, we choose for each ∆x

a σ0
h defined by:

σ0
h := arg max

σ∈[σmin,1]

∣∣∣∣dZdσ
∣∣∣∣ (σ) , (5.5)

and we plot in Figure 5.8 (b) the evolution of ln(σ0
h) as a function of ln(∆x). The corresponding data
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Fig. 5.7: (Non-limit case ε = 1). Study of the influence of σ in the L1
ε,ΩS

error (a) and of the relation
between σεh and ∆x (b). Time discretization : T = 0.1 and ∆t = 0.01.

Table 5.2: Polynomial fitting of order 1 for the data ln(σεh) = f(ln(∆x)) for several values of the
precision η. In each case, the slope p of the line and the determination coefficient r2 are written.

η p r2

1e− 1 1.974 0.9975
5e− 2 1.974 0.9975
1e− 2 1.9175 0.9988
5e− 3 1.8675 0.9988
1e− 3 1.8597 0.9989

follow a linear relation, with a slope of p = 0.857, meaning that σ can be chosen as σ = ∆x in the limit
regime ε = 0 with the aim to reduce the L1

0,ΩS
error and avoid a bad condition number.

To conclude this first numerical part, one can say that this simple test case permits to make a
deep analysis of the (DAMM)-scheme. In particular, the AP behavior of the scheme was confirmed,
the orders of convergence in both space and time were confirmed, and the influence of σ as well as its
delicate choice have been intensively investigated. This study was enabled by the existence of analytic
solutions of the problem, rigorously compared to solutions obtained by the (DAMM)-scheme for several
ε-regimes. Thanks to this verification, the (DAMM)-scheme can be used to resolve more complicated
models where no analytic solutions are at hand. This is the topic of the next part.

6. Numerical simulations for the Vlasov-Poisson test case. The aim of this section is dual:
firstly to solve numerically the Vlasov-Poisson system (1.5) using the (DAMM)-scheme and to simulate
some particular physical phenomena (such as the Landau damping or the two-stream instability) ;
and secondly to study the long-time asymptotics ε → 0 of the two-stream instability. Note that the
literature on the Vlasov-Poisson system is very rich, some theoretical as well as numerical results can
be found in the non-exhaustive list [5, 13,23,25].

6.1. The Vlasov-Poisson system and its numerical discretization. In this chapter, we set
Q := (0, T )× (0, Lx)× (−Lv, Lv). Using the Poisson bracket, the Vlasov-Poisson 1D1V system verified
by f ε := f ε(t, x, v) reads

(V P )ε

 ∂tf
ε +

1

ε
{f ε,Ψε} = 0 ,

−∂xxϕε(t, x) = 1− nε(t, x) ,

(6.1)
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Fig. 5.8: (Limit case ε = 0). Study of the influence of σ in the L1
0,ΩS

error (a) and of the relation

between σ0
h and ∆x (b). Time discretization : T = 0.1 and ∆t = 0.01.

where Ψε(t, x, v) := v2/2 − ϕε(t, x) is the stream-function and nε(t, x) :=

∫
R
f ε(t, x, v)dv denotes the

electron density. Due to the fact that this problem is non-linear (unlike the previous one), its study is
a more delicate task, and one should think of a linearization procedure.
Following the same reformulation as before, we can construct an Asymptotic-Preserving scheme for the
Vlasov-Poisson system by introducing an auxiliary variable qε(t, x, v). The AP-reformulation of (6.1)
is then discretized with the help of the (DAMM)-scheme as before. The determination of the electric
field Eε(t, x) is guaranteed by the resolution of the discrete Poisson equation. The fully discretized
(first order in time) reformulated Vlasov-Poisson system is summarized here for clarity. For each time
step n, one is looking for (f ε,σ,n+1

h , qε,σ,n+1
h ), by iterating in l ∈ N like

(RV P )ε,σ,n,lh



−
ϕε,σ,n+1,l
i+1 − 2ϕε,σ,n+1,l

i + ϕε,σ,n+1,l
i−1

∆x2
= 1−∆v

Nv∑
j=1

f ε,σ,n+1,l
i,j ,

Ψε,σ,n+1,l
i,j =

1

2
v2
j − ϕ

ε,σ,n+1,l
i ,

f ε,σ,n+1,l+1
i,j + ∆t [qε,σ,n+1,l+1

h ,Ψε,σ,n+1,l
h ]i,j = f ε,σ,ni,j ,

[f ε,σ,n+1,l+1
h ,Ψε,σ,n+1,l

h ]i,j = ε [qε,σ,n+1,l+1
h ,Ψε,σ,n+1,l

h ]i,j − σ qε,σ,n+1,l+1
i,j ,

(6.2)

and starting from
f ε,σ,n+1,0
i,j := f ε,σ,ni,j .

This iterative procedure has been performed to cope with the non-linearity of the Vlasov-Poisson
system. In the following simulations, the stopping criterion for these iterations (at l = lf ) is

||f ε,σ,n+1,l+1
i,j − f ε,σ,n+1,l

i,j ||L1
h

||f ε,σ,n+1,l
i,j ||L1

h

+
||ϕε,σ,n+1,l+1

i − ϕε,σ,n+1,l
i ||L1

h

||ϕε,σ,n+1,l
i ||L1

h

< 10−2 ,

and we finish by posing

f ε,σ,n+1
i,j := f

ε,σ,n+1,lf+1
i,j .

Remark 6.1. As briefly mentioned at the beginning of Section 2, in the Vlasov-Poisson test-case,
the vector b =⊥∇Ψε is time-dependent since Ψε depends on f ε via the Poisson equation. Nevertheless,
the fixed point iteration procedure that we have employed in (6.2) permits to linearize the problem and
during an iteration l→ l+ 1 the stream-function Ψε is considered fixed, given by the previous iteration.
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Remark 6.2. Note that we wrote the previous system (6.2) without the DIRK time discretization
in order to simplify its writing, however the following simulations have been implemented with the
(DAMM)-scheme, including a DIRK time discretization.

6.2. Numerical simulations for weak Landau damping and ε = 1. In order to validate
our numerical procedure, we are interested in the Landau damping, for which analytic results are
at hand. The Landau damping represents the exponential decrease of the electric field energy as a
function of time (see [30,35] for more details). For these simulations, the following initial data (see for
example [13,21]) is considered:

fin(x, v) =
1√
2π

(1 + γ cos(kx)) e−v
2/2 , (6.3)

where γ refers to the amplitude and k to the mode of the perturbation of the homogeneous equilibrium

M(v) = (2π)−1/2 e−v
2/2. In the following simulations, we take Lv = 10, Lx = 2π/k, ε = 1 and

σ = (∆x/Lx)2. In this section, we investigate the weak Landau damping, choosing a low amplitude of
perturbation γ. According to [34], the weak Landau damping manifests for times t < 1/

√
γ. Beyond

this time, the non-linear effects begin to be significant. Thus, we resolve the Vlasov-Poisson system
(6.2) with the above initial condition (6.3) for γ = 0.001 and k = 0.5 . To simplify the notation, we
shall denote in the following simply by f ε our numerical solution obtained by the (DAMM)-scheme.
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Fig. 6.1: (Weak Landau damping for ε = 1). L1-norm of the electric field (in log-scale) versus time (a)
and deviations of plasma and electric energies versus time (b) for both (DAMM) and spectral

schemes. Nx = Ny = 256, ∆t = 0.01, T = 20, σ = (∆x/Lx)2.

In Figure 6.1 (a) we represent the evolution in time of the L1-norm of the electric field ||Eε(t, ·)||1
(in log-scale) obtained from the (DAMM)-scheme. So as to validate efficiently our (DAMM)-scheme,
we plot in the same Figure 6.1 (a) the corresponding evolution with a reference spectral scheme which
resolves the system (6.1). The curves obtained from the two numerical schemes coincide perfectly.
Moreover, we pay attention to the damping rate ωi and the frequency of oscillations ωp, which depend
on the perturbation mode k. Under certain approximations, several formulae of these latter can be found
(see for example [32]). One sees that both schemes approach the analytic values (for k = 0.5), namely
ωi = −0.153 and ωp = 2π/Tp = 1.415. In Figure 6.1 (b), we plot the deviation (from their initial value)

of both electric and plasma energies. These latter are defined as Eε(t) := 1/2

∫ Lx

−Lx

|Eε(t, x)|2 dx and

Pε(t) := 1/2

∫
R

∫ Lx

−Lx

v2 f ε(t, x, v) dx dv. The curves indicate clearly that the total energy T ε := Eε+Pε

is conserved in compliance with the theory, for both (DAMM) and spectral schemes. Thus, the weak
Landau damping is well simulated by the (DAMM)-scheme.
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In Figure 6.2 we displayed the distribution function in phase-space at time t = 0 (panel (a)), t = 20
(panel (c)) and t = 40 (panel (e)). Note that we have plotted the perturbed part of the distribution
function f ε, meaning f ε −M(v). In the panels (b), (d), and (f), we represented the cross-sections at
x = Lx/2 of the previous plots, at the same times. These figures show us the continuous filamentation
of f ε over time.

6.3. Numerical simulations for strong Landau damping and ε = 1. We shall perform now
the numerical simulations for the non-linear Landau damping by taking a stronger perturbation as in
the previous study. Nevertheless, we stay in the non-limit regime ε = 1. In Figure 6.3, we plot the
distribution function f ε(t, x, v) at different times, with γ = k = 0.3 and the initial data (6.3). Three
levels can be pointed out. Up to t = 10 (panel (a)), the linear effects dominate and the behavior
of the electric energy is very close to the linear case. Then, starting from t = 20 (panel (b)), the
damping is stopped due to particle trapping, for finally leading to saturation at around t = 40 (panel
(d)). The phase-space trapping holes are clearly visible. In Figure 6.4, we plot the space average of
the distribution function at several times. The formation of several plateaus is clearly visible at time
t = 10 (panel (b)), indicating the trapping of particles in these areas. Over time, this trapping persists,
although the numerical diffusion tends to damp these states. Indeed, due to the numerical dissipation,
the filamentation is progressively eliminated when the filamentation scale becomes smaller than the
velocity grid ∆v.

In Figure 6.5 (a), we plot the evolution of the electric energy (in log-scale) as a function of time.
Contrary to the weak Landau damping, the growth or decay rates of the oscillations are not known.
Nevertheless, we can compare the (DAMM)-scheme to the reference spectral scheme. We observe a
good correspondence between these two schemes. In order to carry on the investigations of the strong
Landau damping, we look at the evolution of some particular quantities. The Vlasov-Poisson system is
well-known to conserve the total particle number (mass), the momentum, the total energy, the Lp-norms
and the entropy. These quantities are given respectively by (Ωx := (0, Lx))

M ε(t) :=

∫
R×Ωx

f ε(t, x, v) dx dv , (6.4)

Mε
o(t) :=

∫
R×Ωx

v f ε(t, x, v) dx dv , (6.5)

T ε(t) := Eε + Pε , (6.6)

Cεp(t) :=

(∫
R×Ωx

|f ε(t, x, v)|p dx dv

)1/p

, (6.7)

Sε(t) :=

∫
R×Ωx

−f ε(t, x, v) ln(f ε(t, x, v)) dx dv . (6.8)

Due to the presence of the stabilization parameter σ, the conserved quantities introduced previ-
ously are no more constant over time when computed via the (DAMM)-scheme. We investigated this
in the panels of Figure 6.5. In particular in the panel (b) we see that the total energy is not conserved
by the (DAMM)-scheme with 3 % of deviation from its initial value. Analogous observations can be
done for the mass (panel (c)), the entropy (panel (d)) and the L2-norm (panel (f)). Nevertheless, the
(DAMM)-scheme conserves the momentum (which is null for the initial condition (6.3)), unlike the
spectral scheme. Despite the non-conservation of these quantities, their deviations from their initial
value stay weak.

Having carefully considered the Landau damping through several numerical simulations performed
by the (DAMM)-scheme, we are interested now in the study of the two-stream instability. Since the
Landau damping does not attain an equilibrium (due to the continuous filamentation), it is not suitable
for investigating the limit regime ε→ 0. As we will see, things are different in the case of the two-stream
instability, which permit to investigate the limit ε→ 0.

6.4. Numerical simulations of the two-stream instability, study of the limit case ε→ 0..
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6.4.1. Two-stream instability in the non-limit case ε = 1. The two stream instability can
be thought of as the inverse of the Landau damping. It occurs when the velocity of the particles is
slightly greater than the wave velocity vφ. The instability causes a transfer of energy, from the particles
to electric field, unlike the Landau damping phenomenon where the exchange of energy occurs from the
electric field to the particles. Thus, to simulate this instability, one imposes the following initial data:

f1
in(x, v) =

1√
2π

(1 + γ cos(kx))
e−(v−3)2/2 + e−(v+3)2/2

2
. (6.9)

As a first step, we keep ε = 1. We choose γ = 0.001, k = 0.2, Lv = 10, Lx = 2π/k and
σ = (∆x/Lx)2. In Figure 6.6, we plot the distribution function f ε(t, x, v), solution of (6.1) at different
times, with the previous initial condition (6.9). The panels (a) and (c) refer to the (DAMM)-scheme
whereas the panels (b) and (d) correspond to the reference spectral scheme. In both cases, the instability
grows until the non-linear effects become significant. Over time, the non-linear effects cause a trapping
phenomenon. To push ahead with the investigations, we plot in Figure 6.7 the evolution over time of
ln(||Eε(t, ·)||1) (a). The analytic value of the growth rate for the electric field, i.e. ωi(k = 0.2) = 0.2548,
is very close to the numerical value observed and the curves obtained via the two numerical schemes
(DAMM and spectral) coincide. As we made for the non-linear Landau damping, we examine in Figure
6.7 the conservation of several quantities over time, for both (DAMM) and spectral schemes. As for the
non-linear Landau damping, only the momentum (panel (e)) is well conserved by the (DAMM)-scheme,
the total energy (panel (b)), the mass (panel (c)), the entropy (panel (d)) and the L2-norm (panel (f))
indicate weak deviations from their initial value. Nevertheless, we will see in the next section the main
advantages of the (DAMM)-scheme, when compared to standard schemes.

6.4.2. Two-stream instability in the limit regime ε → 0. In order to conclude this section,
we show that the AP-property of the (DAMM)-scheme can be useful when an equilibrium is reached.
Recall that in the case of the Vlasov-Poisson system (6.1), passing to ε→ 0 is equivalent to passing to
t → ∞. Thus, the (DAMM)-scheme seems suitable to study the long-time behavior of the non-linear
two-stream instability. In this part, we modify the initial condition, taking

f2
in(x, v) =

1√
2π

v2e−v
2/2(1 + γ cos(k x)) . (6.10)

Although no rigorous proofs exist, the two-stream instability leads (in a certain weak sense) to a
BGK (Bernstein-Greene-Kruskal) equilibrium after the growth phase. In Figure 6.8, the qualitative
behavior of such equilibrium is visible. We have plotted the initial condition (6.10) in the panel (a),
then we resolve the Vlasov-Poisson system with the (DAMM)-scheme for ε = 0, σ = (∆x/Lx)2,
∆t = 0.01, Nx = Ny = 256, Lx = 2π/k, Lv = 5, and the initial condition (6.10), with k = 0.5 and
γ = 0.05. From the first time iteration n = 3 (panel (b)), the equilibrium seems to be attained and
the filamentations are smoothed out. Note the formation of the separatrix which connects the saddle
points at v = 0 and x = 0 = 4π. Due to the topological conservation of the Vlasov-Poisson equation
(see [27]), the distribution function keeps over time the nature and the number of its extrema. Panels
(c) and (d) represent the distribution function f ε at the time iteration n = 15 and n = 50, respectively.
Note that the separatrix, clearly visible in the panel (b), is progressively smoothed out due to the
numerical dissipation of the scheme. Besides, the value of the central extremum in (2π, 0) remains
essentially constant in time.Thus, the (DAMM)-scheme conserves the nature and the position of this
latter, meaning that the particle trapping is well-reproduced by our scheme. In Figure 6.9, we have
plotted the contours of the distribution function f ε at the same times. We see clearly in the center the
particle trapping on the panels (b), (c) and (d).

In order to confirm this BGK saturation, we shall check if the contours of the distribution function
f0 are aligned with the contours of the stream-function Ψ0 = v2/2−ϕ0, as one expects that, in the limit
ε → 0, f0 depends only on Ψ0. Thanks to the AP-property of our (DAMM)-scheme, we can obtain
this equilibrium with a very low numerical cost, without too much numerical pollution. Few iterations
are effectively needed to reach this equilibrium. To put into evidence the dependence f0(Ψ0), we use
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the fitting proposed by Heath and al [27], namely

f0
fit = a (Ψ0 + ϕM ) (Ψ0 + Ψ?) e−βΨ0

, (6.11)

where a and β are fitting parameters to be found numerically, ϕM is the maximum of ϕ0 and Ψ? is
defined by

Ψ? =
ϕM − βΨMϕM + 2ΨM − βΨ2

M

β ϕM + βΨM − 1
,

where ΨM is the value at which f0 attains its maximum. We choose a = 0.2948 and β = 1.20. From
the numerical simulation, we extract ϕM = 0.60, ΨM = 0.93 and thus Ψ? = 0.90. In Figure 6.10, we
plot the evolution of f0(Ψ0) as compared to the fitting distribution f0

fit. Panel (a) represents f0(Ψ0) at

time t = 0, clearly, there is no alignment between f0 and Ψ0, as expected. The panels (c) and (e) which
zoom the panel (a) in two regimes confirm this affirmation, we see clearly the non-functional structure
of the plot (multi-valued function). However, in panel (b), we plot the same evolution but after fifty
time iterations. One notes a very good correspondence between the numerical curve and the fitting
one. The panels (d) and (f) show a good alignment of the points, showing that a BGK equilibrium
is attained. Nevertheless, we observe an anormal inflexion of the curve near to the point f0(Ψ0 = 0).
A similar phenomenon was observed in [10], with a different numerical scheme. In the panel (f), we
examine f0(Ψ0) near to its minimum. We pay attention here that there is no splitting phenomenon,
confirming that the saturation is totally achieved.

To summarize, the (DAMM)-scheme permits, by passing to the limit ε → 0, to obtain a BGK
equilibrium with a low number of iterations, permitting to control the accumulation of the errors. This
is an essential advantage, as compared to standard schemes.

7. Concluding remarks and perspectives. The long-time behavior of the Vlasov-Poisson sys-
tem is a challenging problem, requiring some investigations. Numerically, it is arduous to obtain a
solution avoiding numerical pollution in such time asymptotics. We have developed an asymptotic-
preserving scheme, based on a micro-macro decomposition coupled with a stabilization procedure in
order to limit this difficulty. The analysis of the two-stream instability has shown the remarkable prop-
erties of the (DAMM)-scheme, permitting to attain a BGK-like equilibrium in few time-step iterations
with low numerical costs and small errors. Nevertheless, the (DAMM)-scheme could be improved,
notably through its stabilization part. The circle test case helped us a lot to better understand the
choice of the stabilization parameter. But the Vlasov-Poisson test case shows that this parameter
alters the conservation properties of the system. One may imagine for a future work to replace the
stabilization parameter by a more general operator which could improve the conservation properties of
the Vlasov-Poisson equation.
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Fig. 6.2: (Weak Landau damping for ε = 1) Zoom of the distribution function f ε(t, x, v)−M(v) at
different times with k = 0.5 and γ = 0.001, obtained with the (DAMM)-scheme (a), (c) and (e) and

cross-sections at x = Lx/2 of this latter (b), (d) and (f). Mesh size : Nx = Ny = 256. Other
parameters were : ∆t = 0.01, T = 40, ε = 1 and σ = (∆x/Lx)2.
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(a) t=10. (b) t=20.

(c) t=30. (d) t=40.

(e) t=50. (f) t=60.

Fig. 6.3: (Strong Landau damping for ε = 1) Zoom of the distribution function f ε(t, x, v) at different
times with k = γ = 0.3, obtained with the (DAMM)-scheme. Mesh size : Nx = Ny = 256. Parameters

were : ∆t = 0.01, T = 60, ε = 1 and σ = (∆x/Lx)2.
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Fig. 6.4: (Strong Landau damping for ε = 1) Spatial average of the distribution function f ε(t, x, v) at
different times with k = γ = 0.3, obtained with the (DAMM)-scheme. Mesh size : Nx = Ny = 256.

Parameters were : ∆t = 0.01, T = 60, ε = 1 and σ = (∆x/Lx)2.
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Fig. 6.5: (Strong Landau damping for ε = 1) Energy of the electric field versus time (a) and deviation
over time for both (DAMM) and spectral schemes of several quantities (b), (c), (d), (e) and (f). Mesh

size: Nx = Ny = 256. T = 60, ∆t = 0.01, ε = 1, and σ = (∆x/Lx)2.
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(a) (DAMM)-scheme, t = 25. (b) Spectral scheme, t = 25.

(c) (DAMM)-scheme, t = 40. (d) Spectral scheme, t = 40.

Fig. 6.6: (Two-stream instability for ε = 1 and f1
in) Distribution function f ε(t, x, v) at different times

with k = 0.2 and γ = 0.001 for the (DAMM)-scheme ((a) and (c)) and the spectral scheme ((b) and
(d)). T = 50, Nx = 256, Ny = 256, ∆t = 0.1, ε = 1 and σ = (∆x/Lx)2.
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Fig. 6.7: (Two-stream instability for ε = 1 and f1
in) Electric field versus time (a) and deviation over

time for both (DAMM) and spectral schemes of several quantities (b), (c), (d), (e) and (f). Mesh size:
Nx = Ny = 256. T = 50, ∆t = 0.01, ε = 1, and σ = (∆x/Lx)2.
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(a) Initial condition (b) n=3

(c) n=15 (d) n=50

Fig. 6.8: (Two-stream instability for ε = 0 and f2
in) Distribution function f0(t, x, v) at different times

for the two stream instability with k = 0.5 and γ = 0.05 via the (DAMM)-scheme. Parameters were
Nx = Ny = 256, ∆t = 0.1, and σ = (∆x/Lx)2.
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Fig. 6.9: (Two-stream instability for ε = 0 and f2
in) Contour plots of the distribution function

f0(t, x, v) at different times for the two stream instability with k = 0.5 and γ = 0.05 via the
(DAMM)-scheme. Parameters were Nx = Ny = 256, ∆t = 0.1, and σ = (∆x/Lx)2.

31



−5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Ψ
0
(0,⋅,⋅)

f0
(0

,⋅
,⋅
)

 

 

(DAMM)−scheme

Fitting

(a) n = 0.

−5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Ψ
0
(∞,⋅,⋅)

f0
(∞

,⋅
,⋅
)

 

 

(DAMM)−scheme

Fitting

(b) n = 50 and ε = 0.

−0.6 −0.4 −0.2 0

0.105

0.11

0.115

0.12

0.125

Ψ
0
(0,⋅,⋅)

f0
(0

,⋅
,⋅
)

 

 

(DAMM)−scheme

(c) n = 0.

−0.5 −0.4 −0.3 −0.2 −0.1 0

0.11

0.115

0.12

Ψ
0
(∞,⋅,⋅)

f0
(∞

,⋅
,⋅
)

 

 

(DAMM)−scheme

(d) n = 50 and ε = 0.

6 6.5 7 7.5
2

3

4

5

6

7

8

9

x 10
−3

Ψ
0
(0,⋅,⋅)

f0
(0

,⋅
,⋅
)

 

 

(DAMM)−scheme

(e) n = 0.

6 6.5 7 7.5
0

2

4

6

8

10

x 10
−3

Ψ
0
(∞,⋅,⋅)

f0
(∞

,⋅
,⋅
)

 

 

(DAMM)−scheme

(f) n = 50 and ε = 0.

Fig. 6.10: (Two-stream instability for ε = 0 and f2
in) Plot of the distribution function at times t = 0

(panels (a), (c), (e)) and t = 50 ∆t (panels (b), (d), (f)), with ∆t = 0.01 as a function of Ψ0. Mesh
size: Nx = Ny = 256. Stabilization parameter : σ = (∆x/Lx)2.
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