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Rendering Rough Opaque Materials with
Interfaced Lambertian Microfacets

Daniel Meneveaux, Benjamin Bringier, Emmanuelle Tauzia, Mickaël Ribardière, Lionel Simonot

Abstract—Specular microfacet distributions have been successfully employed by many authors for representing glossiness of
materials. They are generally combined with a Lambertian term to account for the colored aspect. These representations make use of
the Fresnel reflectance factor at the interface, but the transmission factor at the interface should also be managed. One solution is to
employ a multi-layered model with a single layer for the rough interface, which requires a numerical simulation for handling the multiple
reflections of light between the substrate and the interface. In this paper, we propose rather to use a representation corresponding to a
Fresnel interface lying on a Lambertian substrate, for which the multiple reflections of light between the interface and the substrate can
be expressed analytically. With this interfaced Lambertian model, we show how Fresnel transmission affects the material appearance
for flat and rough surfaces with isotropic and anisotropic distributions, that produce light backscattering effects. We also propose a
methodology for using such materials in any physically based Monte Carlo rendering system, as well as an approximate representation,
suitable for GPU applications or measured data fitting. Our approach generalizes several previous models, including flat Lambertian
materials as well as specular and Lambertian microfacets. Our results illustrate the wide range of materials that can be rendered with
this representation.

Index Terms—surface appearance, BRDF, microfacets, importance sampling

F

Figure 1: Rough interfaced Lambertian materials with various parameter values, and comparison with fitted measured materials
for a ceramic mug. Our model generalizes and subsumes several previous existing models: Lambert, Cook-Torrance [1], and
Oren-Nayar [2].

1 INTRODUCTION

Realistic and physically plausible representations of re-
flectance have been studied for a long time in optics
and computer graphics. Yet, many questions still remain
open because the mathematical models dedicated to
Bidirectional Reflectance Distribution Functions (BRDFs)
must fulfill various requirements, such as physical plau-
sibility, ability to naturally represent existing/measured
materials, visual realism, computation efficiency for pro-
ducing computer generated images, material control for
artists, etc.
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The wide variety of empirical models, introduced for
instance by Phong [3], Blinn-Phong [4], or the revised
version proposed by Lewis [5], offers a competitive and
intuitive way to define surface optical properties, but
their parameters do not correspond to actual physical
characteristics and they have limited expressiveness.
Other approaches favor function bases whose coeffi-
cients can be obtained from measurements using projec-
tion or parameter fitting, e.g., with wavelets [6], spherical
harmonics [7], or Phong lobes [8]. Unfortunately with
such representations, both the nature and large number
of coefficients make it difficult for users to manually tune
material appearances. Finally, physically based BRDF
models [1], [2], [9]–[14] are often preferred because they
are defined by parameters that correspond to physical
aspects of materials, such as surface roughness, chro-
maticity, or refractive indices.

Among these latter models, distributions of microfacets
are often used because they represent a wide range
of materials. They have been introduced in computer
graphics to capture glossy reflections on rough opaque
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surfaces [1], [15]. These materials can be metallic
(complex refractive index), highly reflecting light [16],
[17], or dielectric (real refractive index) that only partly
reflect light. In this latter case, transmission should be
accounted for. For instance, Walter et al. [11] propose to
handle refraction of rough transparent dielectrics. With
materials such as paints, plastics, ceramics, and so on,
light goes through the dielectric interface and scatters
within the material body before re-exiting the surface.
This effect is often approximated using a Lambertian
term independent of the specular aspect of the surface.
Two important remarks can be made.

1) A constant Lambertian term combined with spec-
ular microfacets does not ensure energy conserva-
tion because the specular albedo increases with the
incidence direction. Some authors have proposed
to overcome empirically this problem [18], [19].
Although physically plausible, this latter represen-
tation does not explicitly correlate reflectance with
the substrate roughness.

2) The matte component of rough materials is not con-
stant and often exhibits backscattering at grazing
incident directions, as first described by Oren and
Nayar [2] and also modeled by others [20], [21].
This phenomenon can be observed for instance
on the moon appearance, which looks flatter than
a Lambertian sphere. Several surfaces exhibiting
backscattering are presented in this paper and in
the supplemental material.

Several authors have proposed to capture light scattering
with multi-layered representations [12], [22], [23], while
handling multiple light reflections with rough interfaces,
but the translucent medium underneath is considered
as flat and therefore uncorrelated from the interface
roughness, which also prevents backscattering effects.
In addition, these models require precomputations for
handling light multiple scattering within layers.

Simonot [24] tackles this problem by introducing inter-
faced Lambertian microfacets for physically handling trans-
mission through a single Fresnel interface and multiple
reflections with a Lambertian substrate. In this case,
the rough Fresnel interface fits perfectly the Lambertian
substrate, contrary to multi-layered representations for
which the successive interfaces are considered as layers
and managed as uncorrelated. This theoretical model has
been originally defined with a Gaussian distribution of
normals, without taking masking and shadowing into
account. In addition, similarly to Oren and Nayar’s
representation [2] all the microfacets contribute to the
BRDF, and their use in a rendering framework is not
straightforward due to numerical integration.

In this paper, we extend Simonot’s work [24] and pro-
pose a general methodology for rendering any type
of opaque microfacet distributions. We render the ap-
pearance of interfaced Lambertian rough surfaces, and
compare our results with other BRDF models. Figure 1

illustrates some results produced with the approaches
described in this paper. With our model, explicit lighting
simulation within layers is not required since light mul-
tiple reflections between the substrate and the interface
are analytically described. Our methodology directly
integrates this representation in any Monte Carlo based
lighting simulation renderer. We also propose an ap-
proximate model that handles anisotropic Gaussian or
Beckmann distributions.

More specifically, the contributions of this paper consist
of:

• A consistent framework dedicated to microfacet
BRDFs, that integrates a homogeneous matte
opaque body with a rough interface. It general-
izes several existing models, including flat specular
or Lambertian materials, as well as a range from
specular to Lambertian rough surfaces, with vari-
ous distributions, and the corresponding geometric
attenuation factors.

• A practical solution for straightforwardly integrat-
ing such models within Monte Carlo based ren-
dering systems, including importance sampling,
anisotropy, and light scattering within microfacets.

• An approximate model which can be employed for
direct lighting, GPU, and measurement fitting. It
is designed for several distributions and handles
anisotropy.

Our results show that this model accounts for
many reflection phenomena, including backscattering,
anisotropy, and BRDF darkening at incoming and out-
going grazing angles, that can be observed on many
measured materials. These effects are naturally included
in the model since it physically handles the balance
between specular and body reflections.

The remainder of the paper is organized as follows.
Section 2 presents the theory of microfacet BRDF mod-
els and introduces the notation. Section 3 describes
interfaced Lambertian microfacet BRDFs. Section 4 ex-
plains how scattering microfacets can be employed with
various configurations in rendering systems. Section 5
presents our results for various cases, including com-
parisons and fittings from measured BRDFs. Conclusion
and future work are provided in Section 6.

2 MICROFACET-BASED BRDF MODELS

This paper focuses on microfacet-based models
for opaque materials, as described by Torrance
and colleagues [1], [15], Oren and Nayar [2],
Ashikhmin et al. [10], Bagher et al. [25], Dupuy et
al. [26], or Heitz [27]. They have been successful
at representing various families of materials with
only a few parameters clearly related to surface
observations and intuitive to manipulate. So far, they
have been described using (i) a microfacet distribution,
(ii) an elementary reflectance (purely specular or
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Lambertian), and (iii) geometric factors accounting for
light shadowing and masking.

2.1 Definitions and Notation

The notation used in this paper is given in Table 1,
it corresponds to the one proposed by Nicodemus et
al. [28]. Any direction u is defined with a polar angle
✓u and an azimutal angle 'u expressed according to the
macrosurface normal n.

Let us consider a surface sample of normal n lit by a
collimated light source from direction i, as illustrated
in Figure 2. The radiance reflected toward an observer
direction o is given by the BRDF f(i, o,n). It is defined
as the ratio between the elementary radiance dL(i, o,n)
reflected by the surface in direction o and the incident
irradiance dE(i,n) coming from direction i:

f(i, o,n)=
dL(i, o,n)

dE(i,n)
. (1)

A BRDF should be physically plausible, i.e., it should
satisfy Helmoltz reciprocity, i.e., f(i, o,n)=f(o, i,n), and
energy conservation, i.e.,

Z

⌦+

f(i, o,n)|on|d!o1, 8i2⌦+. (2)

The microfacet representation of a BRDF f(i, o,n) cor-
responds to a statistical description of a microfacet dis-
tribution. Given the BRDF f

µ(i, o,m) of an individual
microfacet associated with a normal m, its contribution
is weighted by the distribution D(m) and a geometric
attenuation factor (or GAF) G(i, o,m). The distribution
function D(m) defines the surface roughness, indicating
the proportion of microfacets oriented according to a
given orientation m; the attenuation factor G(i, o,m)
determines the portion of a microfacet of normal m

visible from both the light source and the observer; it has
a major influence at grazing angles. Many authors have
studied the use of various distributions and geometric
attenuation factors [1], [2], [10], [11], [15], [19], [25], [26],
[29], which have to be carefully chosen together [10],
[27]. The equation for the general case of microfacet
based BRDFs is:

f(i, o,n)=
Z

⌦+

|im|
|in| f

µ(i, o,m)
|om|
|on| D(m)G(i, o,m)d!m.

(3)
All microfacets are supposed to be oriented in the upper
hemisphere, so D(m)= 0 if m·n0. The projected areas
of all microfacets have to be equal to the macroscopic
surface, i.e.,

R
⌦+

D(m)|mn|d!m = 1.

In the case of purely specular microfacets, Equation 3
simplifies to [1], [11], [15]:

f(i, o,n)=
F (i,h)D(h)G(i, o,h)

4|in||on| , (4)

where h = i+o

||i+o|| is the half angle vector between i and o,
and F (i,h) corresponds to Fresnel’s reflectance, depend-
ing on the refractive index ni (see Table 1). This equation
defines the glossy aspect of the surface.

n

m

i

o

✓i ✓m
✓o

'm

'o

Fig. 2: Geometry of reflection with our notation.

TABLE 1: Notation used in this paper.
n Macroscopic normal unit vector
m Microfacet normal unit vector
i Incident light unit vector direction
o Observer unit vector direction
h Half angle unit vector, bisector between i and o

|uv| |uv|= u·v if u·v>0 and 0 otherwise
✓u Polar angle associated with direction u

'u Azimuthal angle associated with direction u

d!u Elementary solid angle around direction u

⌦+ Upper hemisphere of direction n

f(i, o,n) Macroscopic BRDF
fµ(i, o,m) Microfacet BRDF

D(m) Microfacet normal distribution
�x, �y Roughness parameters given in local coordinate

system for dealing with anisotropy
G(i, o,m) Geometric attenuation factor

n0 External refractive index
n1 Internal refractive index

ni = n1
n0

Ratio of refractive indices
F (i,m) Fresnel term, interface reflectance
T (i,m) Interface transmittance T (i,m)= 1 -F (i,m)

2.2 Discussion

On the one hand, metallic surfaces highly reflect light
(Fresnel reflectance values are close to 1, with a wave-
length dependency that cannot be neglected), and such
rough surfaces can be modeled using only specular
microfacets. On the other hand, with dielectrics the
specular reflection is nearly constant according to wave-
length, and for common values of ni (i.e., 1  ni < 3),
the Fresnel reflectance is low except at grazing angles.

Considering energy conservation, the interface transmit-
tance is therefore significant although it is generally
ignored [1] or empirically approximated [19]. The model
presented in this paper explicitly deals with transmission
of light through the interface represented by a real
refractive index and multiple light reflections between
a Lambertian substrate and the interface.
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Oren and Nayar [2] have introduced Lambertian mi-
crofacet BRDFs. The objects represented by their model
cannot exhibit any glossy appearance, while the Cook-
Torrance model [1] only employs a constant Lambertian
term, that does not account for backscattering with
rough materials [2]. The strong assumption of consider-
ing only pure Lambertian or pure specular microfacets
restricts the range of materials that can be reproduced.
These models should not be combined for taking into
account simultaneously glossy and matte aspects of re-
flectance for three main reasons: first, energy conserva-
tion is not handled with such a combination since body
reflection should also depend on ni; second, interfaced
Lambertian microfacets exhibit chromaticity variations
according to the interface refractive index discontinuity,
that cannot be handled using a simple combination of
models; and third, Oren and Nayar use a distribution
that is very rarely used in other models.

This paper provides an answer to the aforementioned
issues, and proposes several practical solutions for the
implementation which go beyond this specific model
since they can be used with any microfacet based BRDFs.

3 INTERFACED LAMBERTIAN BRDF

We consider rough surfaces consisting of a Lambertian
substrate of parameter Kd (dependent on wavelength �),
covered with a flat interface corresponding to a refrac-
tive index discontinuity ni (a real index for dielectrics)
between these two media (Figure 3). This model accounts
for both surface and body reflections, and it should not
be considered as a multi-layered representation.

Fresnel interface

microfacet distribution

Lambertian substrate

single microfacet
Lambertian interfaced Lambertian interfaced

Fig. 3: Surface built up with interfaced Lambertian microfacets.
The substrate scatters light while the interface provides bright-
ness.

3.1 Single Microfacet (or Flat Surface)

Microfacets are associated with a BRDF f
µ(i, o,m) de-

fined by a pure specular interface reflection f
µ
s (i, o,m)

combined with the material body diffuse reflection
f
µ
b (i, o,m) that accounts for light transmission through

the interface, light scattering underneath, and light trans-
mission again outside the material:

f
µ(i, o,m)= f

µ
s (i, o,m)+ f

µ
b (i, o,m). (5)

Since each microfacet interface is considered flat, the
surface reflection component fµ

s (i, o,m) is [11]:

f
µ
s (i, o,m)=F (i,h)

�!m(h,m)

4|ih|2 , (6)

where h is the bisector direction of i and o, �!m is the
dirac distribution associated with the elementary solid
angle d!m around m, so that for any solid angle ⌦:

Z

⌦
�!m(s,m)d!m =

(
1 if s 2 ⌦

0 otherwise
(7)

and F (i,h) is the reflectance of the interface (for unpo-
larized irradiance) between a medium of index n0 and
a medium of index n1 (ni =n1/n0):

F (i,h)=
1

2

(g - c)2

(g+ c)2

⇢
1+

[c(g+ c) - 1]2

[c(g - c)+ 1]2

�
, (8)

where c= i·h and g
2 =n

2
i + c

2 - 1.

Lambertian substrate

Fresnel interface

incoming light

first specular reflection

scattering after multiple reflections

substrate-interface multiple reflections

Fig. 4: Light reflection for a single microfacet: light is both
reflected and transmitted by the interface, and light scatters
multiple times between the body and the inner side of the
interface.

As detailed by Elias et al. [30], body scattering (Fig-
ure 4) should account for the first interface transmission
T (i,m)= 1 -F (i,m) of light, followed by a Lambertian
reflection due to the substrate (of reflectance Kd), inner
multiple interactions between interface and substrate
1/(1 -Kd ri), and final transmissions toward the outgo-
ing direction, of transmittance T (o,m):

f
µ
b (i, o,m)=

1

⇡n
2
i

T (i,m)T (o,m)
Kd

(1 -Kdri)
, (9)

where ri is the internal reflectance on the flat interface
lit by a Lambertian source coming from the medium of
index n1:

ri =
Z ⇡

2

✓u = 0
Fi(u,m) sin(2✓u)d✓u, (10)

with Fi the microfacet inner Fresnel reflectance. In prac-
tice, this latter integral can be expressed analytically
using the relation n

2
i (1 - ri)= 1 - re, where re is the exter-

nal reflectance on the flat interface lit by a Lambertian
source coming from the medium of index n0; Molenaar
et al. [31] provide the following expression for re:

re =
1

2
-
2n3

i (n
2
i + 2ni - 1)

(n2
i + 1)(n4

i - 1)
+
(ni - 1)(3ni+ 1)

6(ni+ 1)2
+ (11)

8n4
i (n

4
i + 1)

(n2
i + 1)(n4

i - 1)2
ln(ni)+

n
2
i (n

2
i - 1)2

(n2
i + 1)3

ln

✓
ni - 1
ni+ 1

◆
.

With interfaced Lambertian microfacets, 1/n2
i (Equa-
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0.8

Reflectivity Purple

Green

Blue

(a) Spectral reflectance Kd(�) for three color samples.

Eq. 8

K  /d

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 x0.0

0.2

0.4

0.6

0.8

y

Purple

Green

Blue

(b) Chromaticity variations for the three color samples given above
and the color gamut PAL/SECAM, according to ni for values equal
to ni ={1.0, 1.1, 1.2, 1.3, 1.4, 1.5}, with ✓i = 65o. The arrows illustrate
the variation direction when ni increases.

ni = 1.0 ni = 1.1 ni = 1.2 ni = 1.3 ni = 1.4 ni = 1.5

(c) Visual aspect of chomaticity variations according to ni for
the purple color sample, with PAL/SECAM color gamut and
✓i = 65o.

Fig. 5: Kd(�) and chromaticity variations according to ni, for
three samples from the Macbeth color checker.

tion 9) expresses an extension of the light beam from a
medium of index n1 to a less refringent medium of index
n0< n1. The multiple reflections between the interface
and the substrate lead to chromatic variations depending
on ni. Figure 5a provides three spectral reflectances
of the Macbeth color checker corresponding to CIE xy

values given in Figure 5b for normalized illuminant D65.
This diagram shows that chromaticity actually varies
according to ni, providing darker and more saturated
colors. Figure 5c illustrates colored disks with these
variations.

Even with achromatic surfaces, raising values of ni in-
creases specular reflections, and consequently decreases
body reflections. Figure 6 shows the curves and a ren-
dered 3D object with materials corresponding to a flat
interfaced Lambertian surface, with varying values of
ni. Light inter-reflections between the interface and the
substrate affect the object appearance depending on
Kd/(1 -Kd ri). In addition, the body reflected radiance
also decreases when observation angles become grazing,
contrary to Lambertian or rough Lambertian materials.

This interfaced Lambertian microfacet representation is
by construction energy conserving. Note that this phe-
nomenon can be observed on many measured materials
(as shown in the supplemental material).

(a) Body reflection according to refractive index (the specular reflection
peak is not illustrated here since it only corresponds to a dirac).

ni = 1 ni = 1.2 ni = 1.33 ni = 1.5

(b) Rendered images of a flat interfaced Lambertian BRDF, with various
values of ni.

Fig. 6: (a) BRDF of a flat interfaced Lambertian surface with
Kd = 0.6 and ni ={1.0, 1.2, 1.33, 1.5}; (b) rendered images of the
same BRDFs applied on a 3D object.

3.2 Rough Interfaced Lambertian BRDF

Using f
µ = f

µ
s + f

µ
b from Equation 5 in the integral of

Equation 3 also provides a glossy and a matte compo-
nent (resp. fs and fb):

f(i, o,n)= fs(i, o,n)+ fb(i, o,n). (12)

The specular component corresponds to Equation 4
(coming from Equations 3 and 6), while the body re-
flection from Equations 3 and 9 becomes:

fb(i, o,n)=
Kd

⇡n
2
i (1 - riKd)

⇥ (13)
Z

⌦+

T (i,m)T (o,m)D(m)G(i, o,m)
|im|
|in|

|om|
|on| d!m.

With this representation, several noticeable characteris-
tics can be underlined:

• when Kd = 0, this formulation corresponds to purely
specular microfacets;

• when ni = 1, then T = 1 and ri = 0, and it corresponds
to purely Lambertian microfacets (Oren and Nayar’s
model [2]);

• when � = 0, the BRDF is a flat interfaced Lambertian
surface;

• when ni = 1 and � = 0, the model is equivalent to a
flat Lambertian material.

In this paper, we have employed various distributions
and geometric attenuation factors from the literature.

Gaussian distribution of normals is essentially used in
the Oren-Nayar model [2]. This distribution is employed
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in this paper only for comparison purposes, with the
following isotropic formulation:

D(m)=C e
(- ✓2

m/2�2)
/ |mn|, (14)

where � is the roughness parameter (expressed in ra-
dians) and 1/C = 2⇡

R ⇡/2
✓m = 0 e

(- ✓2
m/2�2) sin ✓md✓m. Using

such a distribution is not straightforward in practice due
to the estimation of C. An analytical approximate ver-
sion of C that depends on � is proposed in the Appendix.
Note that a correspondence with Beckmann or GGX dis-
tributions can be done with �Beckmann/GGX =

p
2�Gauss.

We have employed this distribution for our approximate
model in order to propose a solution compliant with
Oren and Nayar’s representation [2].

In this case, we also use the Torrance-Sparrow geometric
attenuation factor G(i, o,m) [15], which is mathemati-
cally well posed [27]:

G(i, o,m)=max

✓
0,min

✓
1,
2|in||mn|

|im| ,
2|on||mn|

|om|

◆◆
. (15)

This factor assumes V-cavities much longer than large,
which is somehow physically unrealistic and prone to
discontinuities at grazing angles, as already noticed by
several authors.

Beckmann distribution is often referenced in the liter-
ature [1], [10], [19]. It corresponds to a Gaussian dis-
tribution of microfacet slopes, and can be derived for
anisotropic distributions [9], [13]:

D(m)=
e

✓
� tan2 ✓m

✓
cos2 'm

�2
x

+ sin2 'm
�2
y

◆◆

⇡�x�y|mn|4 (16)

where �x and �y correspond to the roughness param-
eters (standard deviations of slopes) associated with a
local coordinate system. The well-known Cook-Torrance
model [1] corresponds to the isotropic form of this distri-
bution (for �x=�y), associated with the Torrance-Sparrow
GAF [15]. However, several authors have shown that
the representation proposed by Smith [32] is physically-
speaking preferable [10], [11], [27]. It makes the assump-
tions that masking and shadowing are independent:

G(i, o,m)=G1(i,m)G1(o,m). (17)

Given that the GAF should be independent from the
normal m of a microfacet, i.e., G1(u,m) is not correlated
with any other microfacet, even nearby, it leads to the
following expression:

G1(u,m)=

(
G1(u) when u·m > 0

0 when u·m  0,
(18)

with
G1(u)=

u·nR
⌦+

u
D(m)|um|d!m

. (19)

Ashikhmin et al. [10] suggest a prior numerical integra-
tion for all directions u. With the Beckmann distribu-
tion, this integral has an analytical expression [27] with

G1(u)= 1/(1+⇤(u)), where:

⇤(u)=
erf(a) - 1

2
+

1

2a
p
⇡
e
- a2

, (20)

and a= 1/(↵u tan ✓u), ↵u =
q
�2
x cos

2 'u+�2
y sin

2
'u. In the

remainder of this paper, we will make the distinction
between Gaussian and Beckmann distributions as de-
scribed in the two previous paragraphs, although Beck-
mann also corresponds to a Gaussian.

GGX distribution [11], [33] has been extended to
anisotropic distribution [27]:

D(m)=
1

⇡↵x↵y|mn|4
⇣
1+ tan2 ✓m

⇣
cos2 'm

�2
y

+ sin2 'm

�2
y

⌘⌘2 .

(21)
The associated GAF is also obtained using
G1(u)= 1/(1+⇤(u)), with:

⇤(u)=
�1 +

p
1+ 1/a2

2
, (22)

where a= 1/(↵u tan ✓u), ↵u =
q
�2
x cos

2 'u+�2
y sin

2
'u.

3.3 Multiple Reflections Between Microfacets

Light multiple reflections between microfacet interface
and body (Figure 4) are analytically handled by our
model (Equation 9). However energy conservation also
depends on light multiple reflections between micro-
facets. They should be explicitly accounted for. Figure
7 shows the variation of the integrated reflectance (inte-
gration over all outgoing and incident directions, given
Kd = 1 and ni = 1.5), according to �. With � = 0, the sur-
face corresponds to a flat interfaced Lambertian surface,
which is energy conserving; the reflectance part due to
light multiple reflections increases with roughness and
cannot be neglected up to a certain value. For instance,
when � = 1.0 it represents more than 20%.

Fig. 7: Normalized total reflectance for a distribution of inter-
faced Lambertian microfacets according to �, with a perfectly
scattering background (Kd = 1, Beckmann distribution, and
ni = 1.5). The blue curve illustrates the integrated body reflec-
tion without light multiple scattering between microfacets. The
black dotted line illustrates the expected total reflection, with
R= 1.

Equation 3 stands for single-bounce reflections; mul-
tiple light reflections between microfacets have been
neglected by many authors, and handled by Oren and
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Nayar [2], who consider the influence of two bounces of
reflections with pure Lambertian microfacets, under the
assumption of V-cavities (Figure 8).

Recently, Heitz et al. [34] discussed multiple light re-
flections with Smith representation and Monte Carlo
integration. We show in this paper how it can be handled
within V-cavities and interfaced Lambertian microfacets.

Given an incident light direction i, the BRDF is the
sum of all the contributions f

1 = f
1+ f

2+ · · · , where f
k

corresponds to the observed radiance (or reflectance with
unitary irradiance) after k reflections:

f
1(i, o,n) =

dL
1(i, o,n)

|in|

=
Z

⌦+

R
1(i, o,m)

|in|
|om|
|on| D(m)d!m,

(23)

where dL
1 is the total reflected radiance in direction o

for a collimated light beam coming from direction i. This
formulation takes into account all light interactions with
all possible microfacets complying with distribution D.
R

1(i, o,m)=
R
S L(x̄)dx̄ is the total reflected radiance for

all light paths x̄ (from the path domain S and L(x̄) is
the path contribution function) with at least one bounce
inside a V-cavity represented by its normal m.

L(x̄) is estimated using path tracing; Equation 23 can
be numerically integrated using Monte Carlo quadra-
ture: First, a microfacet orientation is chosen according
to importance sampling, depending on the probability
density function (pdf) D(m)|mn|; Second, a point xi is
uniformly chosen on the microfacet; Third, a light path is
built from a randomly chosen direction i. This path hits
point xi from direction i, reflects several times within
the V-cavity, and finally gets out of the microsurface.
This process can be directly integrated in any Monte
Carlo path tracing system as explained in Section 4.1.
With this method, shadowing and masking terms are
automatically handled.

We propose to investigate the contributions of light mul-
tiple reflections within a virtual hemispherical sensor,
subdivided such that every cell corresponds to the same
solid angle (Figure 8).

o

Cell center

Path contribution
i o

(a) Light path x̄ (b) Sensor and sensor cell

Fig. 8: Light inter-reflections within V-cavities: (a) Light path
starts using a given direction i and interacts with the pair of
microfacets before exiting in direction o; (b) its contribution is
collected on a hemispherical sensor subdivided in cells of equal
solid angle; f1(i, o,n) is computed in each cell using density
estimation based on all paths contributing to the cell.

Inside each sensor cell, density estimation is used to
capture f

1(i, o,n) where o is the center direction of the
cell:

f
1(i, o,n) ⇡

PN
j = 1

1
|in|L(x̄j)

|ox̄j mj |
|ox̄j n| D(mj)

Ntot �!o
, (24)

where Ntot is the total number of samples used to esti-
mate Equation 23, N is the number of paths contributing
to the cell, ox̄j is the outgoing direction of path x̄j , mj is
the sampled microfacet normal and �!o the solid angle
of any cell.

Figure 9 illustrates the effects of taking into account
inter-reflections (two and multiple bounces). Simulations
are done with one billion light paths and a sensor con-
taining 3240 cells. Pure specular microfacets produce al-
most no additional reflected light; conversely, with body
reflection and a rough surface, light inter-reflections have
a significant impact on the BRDF.

0 0.06 0.11 0.17 0.22

f 1
f 2
f∞

-90o 90o

-45o

0o

θi =60
o

(a) Kd = 0.9, ni = 1.0,� = 0.6
0 0.06 0.11 0.17 0.22

f 1
f 2
f∞

-90o 90o

-45o

0o

θi =60
o

(b) Kd = 0.9, ni = 1.5,� = 0.6

Fig. 9: V-cavities reflectance with inter-reflections, Beckmann
distribution: f1 corresponds to the BRDF with a single light
bounce; f2 corresponds to two light bounces; f1 includes all
bounces, using a Russian roulette strategy.

4 BRDF INTEGRATION AND SAMPLING

Interfaced Lambertian microfacet BRDFs are composed
of two terms fs and fb (Section 3.2) that can be processed
independently. Let us consider the rendering equation:

Lo(x, o,n)=Le(x, o,n) +

Z

⌦+

Li(x, i,n)f(i, o,n)|in|d!i,

(25)
where x is the considered surface element location,
Lo(x, o,n) corresponds to the outgoing radiance,
Le(x, o,n) is the self-emitted radiance, Li(x, o,n)
is the incident radiance coming from direction !i,
and f(i, o,n)= fs(i, o,n)+ fb(i, o,n). The glossy term
corresponds to the well-known formulation provided
by Equation 4, while the body part is directly derived
from Equation 3, using the microfacet body contribution
f
µ
b (Equation 13).

Unfortunately, this equation still requires numerical in-
tegration. The next section shows how it can be handled
straightforwardly in any Monte Carlo rendering system,
producing correct results without making use of any
approximation.
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4.1 Monte Carlo Integration

Most renderers based on ray-tracing approaches make
use of Monte Carlo integration for estimating the render-
ing equation. In those cases, BRDF importance sampling
is used for reducing variance, as pointed out by many
authors [11], [19], [35], [36].

Sampling the BRDF requires integrating Equation 3.
The idea is to sample microfacet orientations using a
stochastic process.

The specular component (Equation 4) corresponds to
the usual Cook-Torrance formulation (with potentially
different distributions and/or attenuation factors). It is
thus managed with the existing importance sampling
strategies [11].

The body component can also be estimated using
stochastic sampling. Note that although microfacet re-
flectance and the resulting BRDF are smooth, uniform
sampling is not efficient due to the distribution func-
tion D that may introduce high frequencies (thin peaks
and long tails), and consequently noise in the resulting
images. Importance sampling should thus also be used,
based on D(m)|mn|.

Choosing between surface and body sampling is the
first step. Ideally, fs and fb should be integrated to
determine weighting. However, this process would be
costly and inefficient in practice. Instead, we propose
to simplify the problem considering a planar interface.
Let us consider the total specular reflectance Rs = re

provided by Equation 11, and the total body reflectance
Rb = 1

n2
i
(1 - re)2 Kd

1 -Kdri
, derived from the integration of

Equation 9 over all incidence and observation directions
(the mathematical details are provided in the Appendix);
the proportion between Rs or Rb is used for choosing
between the specular and the body direction: given a
uniform random value ⇠0 2 [0, 1[, if ⇠0 < Rs/(Rs+Rb), a
specular direction is sampled, otherwise a body direction
is sampled.

Importance sampling the specular/glossy term has been
discussed by many authors; Walter et al. [11] provide
an overview on the subject. Based on the microfacet
distribution, the pdf is given by D(m)|mn|. The weight
associated with the incoming direction is:

w(i)=
fs(i, o,m)D(m)G(i, o,m)

4|in||on|po(i)
, (26)

with:

po(i)= pdf(m)

����
@!h

@!o

����= pdf(m)
1

4|om| . (27)

Body term sampling is more difficult since all microfacet
contributions should be accounted for. We propose to
transfer the BRDF integration in the rendering system
directly. The Monte Carlo process can be applied to
the whole rendering equation, including the analytical

BRDF:

Lo(o,n)=
Z

⌦+

Li(i,n)

Z

⌦+

f̂b(i, o,m)|in|d!md!i, (28)

where f̂b(i, o,m)= |im|
|in| f

µ
b (i, o,m) |om|

|on| D(m)G(i, o,m), as
stated in Equation 3.

This equation exhibits a four dimensional integral that
can also be solved according to Monte Carlo importance
sampling. Therefore, the process consists in selecting
the incoming direction i according to a first importance
sampling process, based on a pdf equal to |in|/⇡, as well
as a microfacet orientation m with a second importance
sampling process based on a pdf equal to D(m)|mn|.
Anisotropy is straightforwardly handled by the chosen
distribution of D(m). The chosen orientation can also
be used for the construction of a path within the corre-
sponding V-cavity, for using f2 or f1, as described in
Section 3.3.

Using the anisotropic distributions for Beckmann and
GGX (Equations 16 and 21), sampling a microfacet m

is given by the following equations. Let (⇠1, ⇠2) be two
uniform random variables in [0, 1[2; the value of 'm is
identically sampled for all distributions:

'm = arctan

✓
�y

�x
tan(2⇡⇠1)

◆
. (29)

The value for ✓m depends on the chosen distribution, re-
versing the cumulative density function (cdf) associated
with pdf(m)=D(m)|mn|.

With the Beckmann distribution:

✓m = arctan

0

B@

vuut � log(⇠2)
cos2 'm

�2
x

+ sin2 'm

�2
y

1

CA . (30)

With the GGX distribution:

✓m = arctan

0

B@

vuut
⇠1

(1� ⇠1)
⇣

cos2 'm

�2
x

+ sin2 'm

�2
y

⌘

1

CA . (31)

Note that importance sampling a Gaussian distribution
is not straightforward since the cdf cannot be analytically
represented and thus inverted. A solution is to use
another pdf with a similar shape, and we have chosen
GGX (Equation 31), with �GGX =

p
2�Gauss.

4.2 Body Approximate Model

Some applications, including fitting parameters from
measured data, or rasterization software, require a faster
estimation of the BRDF. This is why we provide an ap-
proximate version of the body term, derived for several
distributions, consistent with the one proposed by Oren
and Nayar [2].
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Let us note f
g
a the approximate L1 model defined by

Oren and Nayar (with a Gaussian distribution). Our sup-
plemental material provides a new approximate model
f
b
a for Lambertian microfacets, based on the Beckmann

distribution, thus more consistent with many existing
models [1], [9], [10].

Based on Equation 9, we propose the following approx-
imation of the body reflection fb term:

fb(i, o,n) ⇡ 1

n
2
i (1 -Kdri)

T (i,n) T (o,n)Fa, (32)

where Fa describes the distribution, whose parameters
(�x,�y) define anisotropy:

T (u,n) = aT (u,n)+ bt01, (33)
t01 = 1 - re,
Fa = (1+max (- 1, cF 0

a)) f
a⇤
a (i, o,n),

F
0
a = - re(1 - |in|)2(1 - |on|)2min(0, -H('i,'o)),

H('i,'o) = dxy cos('o) cos('i)+ dyx sin('o) sin('i),

where a, b, c, dxy/yx are rational functions dependent on
�x, �y , and ni; fa⇤

a (i, o,n) corresponds to the anisotropic
Lambertian microfacet term: f

ag
a (i,o,n) for a Gaus-

sian distribution (anisotropic version of Oren and Na-
yar’s approximation, that exactly corresponds to their
isotropic representation when �x =�y); and f

ab
a (i,o,n)

for an anisotropic Beckmann distribution. The complete
approximate model is given in the Appendix. We also
propose a simpler version for isotropic distributions in
the supplemental material.

This formulation is the exact formulation of a flat inter-
faced Lambertian surface when �x =�y = 0 (Equation 9),
and it equals the Oren-Nayar approximate model for a
Gaussian distribution when ni = 1.

5 RESULTS AND DISCUSSION

The interfaced Lambertian microfacets BRDF (referred
to as IL in the following) has been added as a plugin to
the Mitsuba renderer [37], and the approximate version
has been derived as a glsl shader, given in the supple-
mental material. Table 2 provides the configurations of
distributions and attenuation factors used in this paper.
All images have been produced with an environment
lighting, except when specified otherwise in the caption.

TABLE 2: Configurations of distributions and attenuation factors used in
this paper.

Notation Distribution (D) Attenuation factor (G)

Gauss, TS Gaussian normals Torrance-Sparrow
Beckm, TS Beckmann Torrance-Sparrow
Beckm, SB Beckmann Smith-Bourlier
GGX GGX GGX GAF

Body reflection curves for a rough interfaced Lamber-
tian material are shown in Figure 10, with several config-
urations for functions D(m) and G(m). The discontinuity

corresponding to the Torrance-Sparrow GAF V-cavities
essentially influences the BRDF at grazing incidence
and/or observation angles. In addition, when � is low
and/or when ni is close to 1, the difference between
Torrance-Sparrow and Smith GAFs tends to decrease.
Note that the GGX distribution contains a higher tail
compared to Beckmann or Gaussian distributions which
tends to darken the material when � increases [11],
[27]. This distribution also produces larger BRDF values
at grazing observation angles for small values of �

(Figure 10.c). Figure 11 shows the relative variations of
distributions compared to Beckmann/SB, with the same
parameters. With a Gaussian or a Beckmann distribution,
the chosen GAF only slightly affects the appearance, and
the difference is even smaller when � is small.

(a) ni = 1.0,� = 0.1 (b) ni = 1.0,� = 0.6

(c) ni = 1.5,� = 0.1 (d) ni = 1.5,� = 0.6

Fig. 10: Distributions and GAFs for various values of ni and �,
illustrated at ✓i = 60o (log scale).

Monte Carlo rendering results are also provided, using
path tracing. Figure 1 illustrates various materials, all
modeled using interfaced Lambertian microfacets, ei-
ther with the analytic version, or with the approximate
one. Figures 12 and 13 illustrate rendered images with
isotropic materials and various values of ni and �.
Anisotropic materials can be rendered with the same
method, as shown in Figure 14. Note that even with
ni = 1.0 (Lambertian microfacets), anisotropy remains
visible.
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Fig. 11: Image differences for IL (without light multiple reflec-
tions between microfacets), with four distributions and GAFs,
with Kd = 0.6, two levels of roughness � and two values of
ni. The first column corresponds to the reference images. False
colors correspond to the per-pixel difference value.

(a) � = 0.001 (b) � = 0.1 (c) � = 0.3

Fig. 12: Isotropic IL, Beckm, and SB elephants lit by two
rectangular light sources, rendered using path tracing: ni = 1.5,
for glossy materials and various roughnesses, clearly visible on
the specular highlights.

Our approximate model corresponds to an alternative
for interactive GPU applications or for fitting measured
data, when the estimation of BRDF values needs to
be performed faster. Figure 15 presents comparisons
between our approximate model and Monte Carlo BRDF
integration, with a Gaussian or a Beckmann distribution.
The most important differences can be found for large
values of ni and �, and at grazing angles.

Visual comparisons are proposed firstly between IL
and several configurations of opaque microfacet repre-
sentations, and secondly between IL and multi-layered
materials.

Figure 16 illustrates a comparison of our approach with
two reflectance models already in Mitsuba, that handle
both body and glossy reflections based on microfacets:
Plastic (first column) uses a constant Lambertian term

n
i

=
1
.5

n
i

=
1
.3
3

n
i

=
1
.2

n
i

=
1
.0

� = 0.001 � = 0.005 � = 0.1 � = 0.3

Fig. 13: Appearance variations according to ni and �, with
a Beckmann distribution and Smith GAF. The bottom row
corresponds to pure Lambertian microfacets, and the bottom-
left image is an almost flat Lambertian surface.

(a) �x = 0.1,�y = 0.1 (b) �x = 0.2,�y = 0.6 (c) �x = 0.6,�y = 0.2

Beckm, SB, ni = 1.5

(d) �x = 0.1,�y = 0.1 (e) �x = 0.1,�y = 0.6 (f) �x = 0.6,�y = 0.1

Beckm, SB, ni = 1.0

Fig. 14: Anisotropic interfaced Lambertian microfacets, using a
point light source, with (top) ni = 1.5 and (bottom) ni = 1.0.

(a) Gaussian distribution, with ni = 1.5 and � = 0.6

(b) Beckmann distribution, with ni = 1.5 and � = 0.6

Fig. 15: Comparison between Monte Carlo BRDF estimation of
Lambertian (L) and interfaced Lambertian (IL) materials and
our approximate model, with Gaussian (G) and Beckmann (B)
distributions, and Torrance-Sparrow (TS) GAF (log scale).
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and Non Linear Plastic (denoted as Plastic2) implements
the model proposed by Kelemen et al. [19] for energy
conservation. The visual comparison points to several
interesting observations: the Plastic material is much
brighter than all the others due to the constant Lamber-
tian term, as expected; IL2 is slightly brighter than IL1,
which is visible when � increases, and the computation
of IL1 brings only low additional energy, difficult to
observe in practice in the images, though physically
more accurate; neither Plastic nor Plastic2 models can
reproduce the backscattering effects that appear when
the substrate roughness increases, contrary to IL.

Figure 17 compares our model with the multi-layered
representation proposed by Jakob et al. [12] (denoted as
Layers) with a single layer for the rough interface (which
is the best comparable configuration). Flat Lambertian
surfaces (Lambert, Plastic2 and Layers) have darker sil-
houettes and a clearly visible geometry relief, while
rough Lambertian materials (Rough Lambertian and IL)
look flatter. Note that for this configuration, Plastic2 and
Layers look very similar, and without backscattering.
Multi-layered BRDFs proposed by Jakob et al. [12] esti-
mate explicitly light multiple reflections between layers,
but backscattering is again impossible to model since
the authors consider the Lambertian substrate as flat,
as discussed in Sections 1, 2.2 and in the supplemental
material. We do not claim that our model should be
considered as a substitute to multi-layer models, since
they are able to handle many other BRDF configurations.
However, it is a physically consistent representation for
handling correctly opaque microfacet based dielectric
materials.

It may also be tempting to combine Oren-Nayar (Gaus-
sian distribution and Torrance-Sparrow GAF) for the
body component and Cook-Torrance formulations using
the same distribution and GAF, since backscattering
would be handled. However such a combination is
neither physically correct as explained in Section 2.2,
nor equivalent to interfaced Lambertian microfacets, as
shown in Figure 18.

Computational performance has also been compared
with the models already existing in Mitsuba, as shown
in Figure 16. Firstly, with path tracing, computation time
is similar between the IL1 exact model and the Mit-
suba rough plastic models (corresponding to Plastic and
Plastic2). When including multiple reflections between
microfacets, the extra cost varies from 30 to 60%, due
to the additional ray paths. With path tracing, the exact
BRDF estimation is as fast as the approximate one. This is
due to the Monte Carlo process employed, that relies on
only one microfacet during ray tracing, as explained in
Section 4.1. For real-time applications, the approximate
model should be used since the exact BRDF estimation
would require sampling many microfacet orientations,
which is much slower. In this case, the computation time
is similar to Oren and Nayar’s approximate representa-

(a) � = 0.001 (b) � = 0.05

(c) � = 0.3 (d) � = 0.6

Fig. 18: Comparison between Oren-Nayar coupled with specu-
lar microfacets (Gaussian distribution and Torrance-Sparrow
GAF) and interfaced Lambertian (IL, same distribution and
GAF), with Kd = 0.6, ni = 1.5, and various values of � (log
scale).

tion.

Fitting measured data has been used to compare our
model with actual BRDF data, where backscattering can
be observed and body reflection actually decreases with
larger observation angles, instead of being constant (see
Figure 19). Such data cannot be precisely handled by
the Cook-Torrance model because of its pure Lambertian
behavior outside specular highlights, and backscattering
cannot be represented by specular microfacets either.
Figure 1 illustrates four rough interfaced Lambertian ma-
terials, including comparisons with measured materials
and anisotropy. Several comparisons are illustrated in
the supplemental material.

Fig. 19: Comparison between fitted (IL, Beckm, SB) and mea-
sured data from MERL database [38], for two incident di-
rections ✓i = 30o and ✓i = 70o (log scale). MERL1 corresponds
to specular-white-phenolic (Kd = 0.34, ni = 1.12, � = 0.065) and
MERL2 corresponds to white-paint (Kd = 0.425, ni = 1.20,
� = 0.101).
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Plastic Plastic2 IL1 IL2 IL1 ILa
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Fig. 16: Comparison between IL and other existing models, with ni = 1.5, and � = 0.1 for the first row, � = 0.3 for the second row,
� = 1.5 for the third row. The first two models (columns) correspond to a Lambertian term for the body reflection, associated with
Cook-Torrance. Plastic has a constant Lambertian value, while Plastic2 uses Kelemen et al. improvement [19]; IL1 corresponds to
IL model; IL2 adds one reflection bounce between microfacets; IL1 includes all reflections; ILa corresponds to our approximate
model. All the model employ a Beckmann distribution associated with Smith GAF except for IL for which Torrance and Sparrow’s
GAF is used for estimating multiple reflections between microfacets. The reference computation time is given by IL, each other
image contains the relative time in the top left corner.

(a) Lambert (b) Rough Lambertian (c) Plastic2 (d) IL1 (e) Layers

Fig. 17: Comparisons between several models, including IL and multi-layered BRDFs: (a) flat Lambertian, (b) rough Lambertian
[2], (c) Mitsuba non linear plastic [19], (d) IL with all reflections between microfacets using our approach with V-cavities, and
(e) multi-layered representation from Jakob et al. [12]. For all models a Beckmann distribution is associated with Smith GAF
except for IL for which Torrance and Sparrow’s GAF is used for estimating multiple reflections between microfacets, � = 0.9
(except Lambert which is not concerned), and ni = 1.5 (except for Lambert and rough Lambertian which are not concerned). The
top row uses an environment map illumination while the bottom row corresponds to a point light source placed at the observer
position. Note that backscattering effect only appears with rough Lambertian and IL representations.
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6 CONCLUSION

This paper presents an analysis and implementation
methods for interfaced Lambertian microfacet BRDFs,
based on physical foundations. Our rendering method-
ology can be extended to any type of microfacet-based
BRDFs for Monte Carlo based lighting simulation sys-
tems.

The presented model includes backscattering effects,
anisotropy, and light multiple reflections, while gen-
eralizing Cook-Torrance [1], Oren-Nayar [2] and any
intermediate combination. Furthermore, it relies on few
parameters (refractive index, substrate reflectance and
surface roughness) and can be straightforwardly inte-
grated within any Monte Carlo based rendering system
using importance sampling with any distribution and
geometric attenuation factor. This model should not be
considered as an alternative to multi-layered BRDF rep-
resentations since it is designed specifically for handling
interface refractive index changes in the case of opaque
microfacets.

We also propose an approximate version (corresponding
to two distributions) of this model that can be employed
with interactive rendering systems, or fitting BRDF data,
for avoiding numerical integration which remains time
consuming.

Our method proposes an estimate of light inter-
reflections between microfacets, using a V-cavity approx-
imation is simple to implement. A method based on the
Smith GAF has been proposed by Heitz et al. [34].

An interesting question concerns the correlation between
the interface and the substrate roughnesses, since a
single-roughness value constrains both specular peaks
and body reflection, which is not always observed in
measured materials. This is a harder challenge we wish
to investigate.

Another interesting issue concerns the impact of all the
BRDF parameters on the human visual system. Although
physical and mathematical background is very impor-
tant for lighting simulation, some models or sets of
parameters seem very similar, and also highly depend
on the lighting environment.
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