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SOLUTION OF NON-LINEAR THERMAL TRANSIENT PROBLEMS BY A REDUCTION METHOD

A new algorithm for solving transient thermal problems in a reduced subspace of the original space of discretization is described. The basis of the subspace is formed by using the system response at the first time step (or an approximation to it) and a set of orthogonal vectors obtained by the algorithm of Lanczos. Derivatives of these vectors are included when treating non-linear cases. The method allows one to handle the sharp gradients that appear in thermally loaded structures, and the response is accurately predicted by using only a small number of degrees of freedom in the reduced system. The algorithm is specially well suited for treating large-scale problems. Examples dealing with one-, two-and three-dimensional cases of linear and non-linear conduction problems are presented.

INTRODUCTION

The finite element method is currently one of the most popular techniques used in the solution of continuum mechanics problems, particularly in solving thermal problems. One reason for this popularity is the capability of easily modelling any complex geometry and/or boundary condition. However the number of degrees of freedom in the discretization, which directly determines the computer costs, is very often fixed by the geometrical configuration of the domain under study rather than by the complexity of the expected solution. So, for most of the cases, the number of degrees of freedom of the discretization allows the representation of highly complex variations of the unknown field, whereas the desired solution presents a smooth variation that can be expressed by using a few properly chosen degrees of freedom. Therefore, the cost of the computations becomes unreasonably high in relation to the complexity of the computed solution.

Reduction methods eliminate this drawback of direct discretization procedures. They search for the solution of the problem in a subspace of the original discretization space, and so they reduce the expense of computations by reducing the order of the system to be solved. Moreover, since they compute the basis vectors of the subspace from the initial finite element discretization, they do not lose the capability of representing easily any complex geometry and/or boundary condition.

The success of the reduction process strongly depends on a proper choice for the subspace of approximation. Some physical insight into the problem helps to select best suited basis vectors for each problem.

Reduction methods are widely employed in structural problems. Different choices have been proposed for the basis vectors. In non-linear statics, a non-linear solution and its various orders of path derivatives were used successfully as basis vectors. 1.2 The modal superposition technique is currently used everywhere to solve linear dynamics problems. 3 • 4 The same technique has been applied to non-linear structural dynamics analysis by two different approaches: employing a constant stiffness matrix with a non-linear force [START_REF] Bathe | On nonlinear dynamic analysis using substructuring and mode-superposition[END_REF] and following the actual tangent spectrum of the structure at each instant. 6 • 7 The latter approach could handle highly non-linear behaviours, but required a permanent actualization of the basis. Another method, which does not require such frequent recalculation of the basis vectors, has been proposed 8 • 9 and uses as basis vectors the modes together with their derivatives with respect to the new generalized displacements.

Techniques that do not need an eigensystem solution to calculate the basis vectors, and that take into consideration the spatial distribution of the loads for their generation, have also been proposed for linear 10 -12 and non-linear [START_REF] Ide1sohn | A load-dependent basis for reduced nonlinear structural dynamics[END_REF] dynamics problems. These techniques are based on the Lanczos method, which is an efficient algorithm for extracting some frequencies and mode shapes of an eigensystem. [START_REF] Lanczos | An iterative method for the solution of the eigenvalue problem oflinear differential and integral operators[END_REF] Lanczos' method can also be seen as a method for generating a set of orthogonal vectors for a Rayleigh-Ritz analysis. Wilson et a/. [START_REF] Wilson | Dynamic analysis by direct superposition oi• Ritz vectors[END_REF] were the first to propose a method for generating a set of orthogonal vectors, with the aforementioned characteristics, and employed these vectors to perform linear dynamics analysis. Nour-Omid and Clough 11 recognized that the basis employed by Wilson was really a set of Lanczos co-ordinates. They also developed a method that transforms the equations of motion into a tridiagonal system of differential equations, which is easier to treat.

Reduction methods have been applied in stationary non-linear thermal problems. [START_REF] Noor | Reduction methods for nonlinear steady-state thermal analysis[END_REF] In this case, the basis vectors were chosen by following the same strategy mentioned above for non-linear statics structural problems.

In order to successfully deal with transient thermal problems by a reduction method, we should consider special peculiarities inherent to the problem under study. One of the difficulties we are faced with is the development of sharp temperature gradients inside the domain. [START_REF] Hogge | Steep gradient modelling in diffusion problems[END_REF] The selected subspace of approximation should contain vectors that represent these sharp gradients. Two techniques that are employed frequently in structural dynamics, modal superposition [START_REF] Hogge | Analyse numerique des problemes thermiques en construction aeronautique et spatiale[END_REF] and Guyan-Irons, [START_REF] Bushard | On the value ofGuyan reduction in dynamic thermal problems[END_REF] have been applied also for thermal transient problems. However, these techniques do not account for the development of any temperature gradient; then, unless too many degrees of freedom are retained in the reduced system, both methods fail whenever the temperature response is not smooth enough.

The new technique we are proposing is based on generating a first basis vector which is the system variation in the response for the first time step; this vector is introduced into the Lanczos algorithm to yield a sequence of orthogonal vectors. Then we take as a basis these orthogonal vectors together with a constant vector. The subspace generated contains the sharp gradients that appear in the thermal response and only a small number of degrees of freedom is required in the reduced system to yield an accurate solution. [START_REF] Idelsohn | Metodos de reduccion en el analisis no lineal de estructuras[END_REF] (After completing this work, we heard that a similar technique developed independently had been presented. [START_REF] Nour-Omid | A new algorithm for heat conduction analysis[END_REF] Also, we extend the application of the method to non-linear transient thermal problems. In order to do this we introduce new vectors in the basis that take into consideration the non-linear effects. These vectors are derivatives of the previously mentioned basis vectors with respect to their own amplitude parameters. They take into account the modifications of the basis produced by the alterations of the system properties due to the changes of the temperature status.

When applying the finite element method to the solution of thermal problems, reduced numerical integration has been used to decrease the cost of computations. However, special care should be taken to avoid singularities in the iteration matrix that can affect the computed solution. [START_REF] Noor | Mixed models and reduction techniques for large-rotation nonlinear problems[END_REF] 1. [START_REF] Liu | Efficient linear and nonlinear heat conduction with a quadrilateral element[END_REF] Reduction methods highly reduce the system dimension; so, the finite element matrices can be integrated by a reduced integration rule without having any problem with singularities in the system matrix. That is, the total computational effort is less than the effort demanded by the complete system solution, not only due to the reduction of the system size, but also due to the application of a reduced integration rule.

Numerical examples for one-, two-, and three-dimensional cases of linear and non-linear transient conduction problems are presented, and the potential of the technique proposed is demonstrated.

GOVERNING EQUATIONS

Let us consider a body n enclosed by a surface r with unit normal q which is subdivided into a prescribed T-surface r T and a prescribed flux surface rq. The governing equations are

-V •q + s =peT, T=T*, q•q=q:, T= T 0 , inn On rT on rq inn at t =0 (1) 
where T = temperature, s = source per unit volume, q = heat flux, p =density, c = specific heat and a superposed dot designates the time (t) derivative. Fourier's law is assumed for the heat flux:

q= kVT (2) 
where k is the thermal conductivity matrix.

Performing the finite element discretization process and applying the standard weighted residuals Galer kin procedure, equations (1) and (2) can be recast into the following discrete system of equations: in which

G(T) + C(T)T = F G;(T) = L VNik(T)VNjTjdn CiiT) = L Ni(pc)NjdQ Fi= f Nisdil+ f Niq:dr n rq (3) (4) 
The term T represents the vector of nodal temperatures, Ni are the element shape functions, C is the global heat capacity matrix, F is the global 'loads' vector and G is the global internal loads vector which, for linear heat conduction, can be written as G(T)= KT (5) where K denotes the global 'linear stiffness' matrix.

The system of non-linear ordinary differential equations (3) needs to be time-integrated. This integration is performed numerically by appealing to the generalized trapezoidal rule.

By assuming a linear variation of the temperature field in a discrete time interval M, i.e. from time tn to time tn+ 1 , and by imposing that (3) be satisfied at time tn+<XAt(tn+a:), we have

1 1 G(Tn+,.) + ~Cn+"Tn+" = Fn+a + ~Cn+a:T n• aut aut aE(O, 1] (6) 
Solving (6) for Tn+"' the temperature at time tn+ 1 is given by the following expression:

Tn+1 =~Tn+a+ ( 1-~)Tn (7)
This scheme is unconditionally stable for a> = 0•5, for both linear and non-linear cases. [START_REF] Hughes | Unconditionally stable algorithms for nonlinear heat conduction[END_REF] 

REDUCTION METHODS IN LINEAR THERMAL TRANSIENT PROBLEMS

Reduction methods are based on generating a set of vectors that forms the basis of a subspace.

The system response is assumed to be contained in this subspace. We also project (3) onto this subspace in order to get a reduced system of ordinary differential equations that afterwards is numerically time-integrated. There exist many proposals for computing the basis vectors. Clearly, the success of the method depends strongly on the choice of the set of vectors. We will analyse two different ways: the eigenmodes (a widely employed technique in structural dynamics) and the Lanczos vectors.

Modal superposition

By solving the eigenproblem (8) where A.i, i = 1, ... , N are the eigenvalues (ordered such that 0 <A;< A.i when i <j) and q,i are the corresponding eigenmodes; then the modal superposition method assumes that the system response can be expanded in terms of the R eigenmodes associated with the R lowest frequencies:

R T(t) = L «PiYi(t) = <lly (9) i ; 1
Then, premultiplying the system of equations ( 3) by the transpose of <ll, and taking into consideration the orthogonality relations q,Jcq,j = oij

«PTK«Pj = oijA.i (10)
The system response can be obtained after integrating the following R uncoupled ordinary differential equations: i= l, ... ,R (11) This approach is widely used in structural dynamics, where it is observed that usually only a few eigenvectors are enough to compute a very accurate solution. Unfortunately, this is not the case in transient thermal problems. These problems exhibit a wide spectrum response; very high frequencies are excited, and so the modal superposition method becomes impractical owing to the large number of modes that should be included to obtain an accurate solution.

Example 1 (see 'Numerical examples' section) shows the kind of troubles we find when using a poor modal representation.

Lanczos vectors

Wilson et al. [START_REF] Wilson | Dynamic analysis by direct superposition oi• Ritz vectors[END_REF] were the first to propose these vectors as forming a suitable basis, where the system's response can be expanded in structural dynamics problems, although they did not mention these vectors as being those of Lanczos. Reference 1 1 recognized that they were really the basis vectors employed in the method proposed by Lanczos to solve the eigenvalue problem. Reference 13 extended their application to solve non-linear structural dynamics problems.

The algorithm for generating these basis vectors can be written as follows:

K\lii+1 = C\j!; i-1 \Iii+ 1 = Wi+ 1-L WfC\lii+ 1)\j!j j= 1 Pi+ 1 = (\li r+ 1 c+i+ d 112 1 - \j!i+1 = \j!i+1 Pi+ 1 (12) 
In fact, it is not necessary to orthogonalize with respect to all previously computed vectors at each step; an orthogonalization with respect to the two preceding vectors is enough to obtain an orthogonal set. [START_REF] Nour-Omid | Dynamic analysis of structures using Lanczos' coordinates[END_REF] Then the algorithm for their generation can be written as follows:

K\li;+ 1 = C\j!; •a;= 'i!T C\li;+ 1 P; = (\li f C\liY 12 \Iii+ 1 = Wi+ 1-a;\jl;-Pi'i!i-1 Pi+ 1 = (\li r+ 1 c+i+ d 112 \jli+ 1 = (1/Pi+ d\lii+ 1 (13) 
This simple form of the Lanczos algorithm is subject to a rapid loss of orthogonality with respect to the first computed vectors. In order to prevent this error, a full reorthogonalization is performed periodically. Various algorithms exist that indicate when this correction should be performed. 11 • 24 In structural problems, the first vector \j/ 1 is usually selected to be a static solution, i.e.

1 'i!1 = (\liiC'i! 1 )1i2 W1 ( 14 
)
where E is the vector represents the spatial distribution of the applied loads, and it is assumed that the time varying loads can be expressed as

F(t) = Eg(t) (15) 
with g(t) a scalar time function.

In order to solve thermal transient problems, we propose to employ as a first vector the increment of the nodal temperatures computed at time rx At, that is the vector computed by solving (16) This vector is afterwards C-normalized and introduced into the algorithm (13) to yield a set of vectors. Then we take a unit constant vector, which is C-orthonormalized and added to this set to form the basis. Note that, for many cases, the latter vector represents the temperature status at t = oo; then, specially for these cases, a large participation factor can be expected for it. The system response is now expanded as

R T =To+ L \ji;Y; =To+ 'l'y (17) i~ 1
The reduced vector of generalized temperatures y is computed by solving

['I'TK'I']y + ['I'TC'I'JY = 'I'TF(t) K y+ C y= F (18)
In the last equation, the overbar refers to the reduced system. This reduced system of ordinary differential equations is integrated by using the trapezoidal rule. The method was tested in a variety of problems, giving highly accurate results with only a few degrees of freedom in the reduced model.

Reference 11 suggests a different procedure to obtain, after computing the Lanczos vectors, the reduced equations of motion. This procedure, which takes advantage of the orthogonality properties of the Lanczos vectors and yields tridiagonal 'stiffness' and diagonal capacity matrices, can be employed conveniently in linear problems. However, it cannot be applied in non-linear problems, and so it will not be treated here because our aim is to extend the application of the method to non-linear problems.

REDUCTION METHODS AND NON-LINEAR THERMAL TRANSIENT PROBLEMS

After projecting the non-linear system of differential equations onto the subspace spanned by the basis vectors, the following reduced system of equations is obtained:

G(y) + Cy = F (19)
where G = 'I'TG

C = 'I'TC'I' (20) 

F = 'I'TF

This system of ordinary differential equations should be time-integrated to compute the response. We employ the trapezoidal rule for this purpose, and to solve the resulting system of non-linear algebraic equations, we use the Newton-Raphson method.

The basis vectors were computed by using the proposed modification of the Lanczos sequence (16). The algorithm for computing these vectors was implemented by employing the following equivalent tangent stiffness matrix: Kii = f VN;kequiv VNjdQ (21) n Note that this matrix was obtained by omitting the non-symmetrical component of the true tangent stiffness matrix. The equivalent capacity matrix was computed as Cij = fn N;(pc)equivNjdQ (22) When computing the first basis vector, that is an approximation to the response at time rx At, we take the mean material properties in the range of temperatures in which we are working. The other basis vectors are computed by using the material properties given by the temperature distribution at time rx At.

Whenever the non-linear terms play an important role, the basis cannot express the temperature increment for a long period of time. The system properties change with the temperature status and so the basis vectors should change accordingly. We can rewrite ( 17) giving

R T = T 0 + L W;(z;)z; (23) i= 1
We now assume that the temperature increments can be developed in a Taylor series as follows: (24) where repeated indexes imply summation from I to R. From (23), the derivatives of the nodal temperatures at T 0 are J2T I = (~\jl~ + J\jlj){To) OZ; Jzj 0 Jzj oz;

(25)

Then we express the temperature increments as the linear combination of the Lanczos vectors and their derivatives, both evaluated at T 0 : AT= L{ W;(T 0 ), ( ~;; +~;:}To), ... } 'Vy (26) Note that the entire process can be seen as a generalized Taylor series with 'free' coefficients y.

The derivatives of the basis vectors can be obtained by differentiating the first of equations ( 13) and the C-orthonormalizing. This procedure leads to the following expression:

K J\jl;+ 1 --JK .1.
C J\jl; JC .1.

- 't'i+1 + + 't'i Jzj Jzj Jzi Jzi (27)
In structural dynamics applications of the method, we assume that the terms of the right-hand side associated with the matrix C can be neglected. Numerical trials evidenced that the approximation did not affect the final results. [START_REF] Ide1sohn | A load-dependent basis for reduced nonlinear structural dynamics[END_REF] Here, in thermal problems, we make the same assumptions:

K awi+ 1 --~! .1. ' "' \ - 'f'i+l ozi Jzi (28)
Approximate derivatives of the tangent stiffness matrix were computed by employing material properties obtained with a linear fit model of the temperature-dependent actual material laws. This approximation gave better results than the differentiation of the true material laws because the linear fit eliminates small localized variations of the material laws that affect the behaviour predicted by the basis vector derivatives.

OPERATION COUNTS

The most CPU-time-consuming operation when solving the non-linear system of differential equations (3) (without performing the reduction process) is to form and factorize the tangent

iteration matrix [K + (1/er: At)C].
The factorization has an order o(N M 2 ) operations, N being the total number of degrees of freedom of the discretized system and M the mean bandwidth.

On the other side, when employing the reduced basis strategy, the main cost is the evaluation of the reduced tangent iteration matrix 'I'T[K + (1/o: At)C]'I'. This matrix product can be computed by avoiding the operations with zero entries in the iteration matrix, and therefore, its cost is of an order o(N M' R) operations. Here, R denotes the number of degrees of freedom in the reduced system and M' is a connectivity index. This index is defined as the maximum number of degrees of freedom linked to a given degree of freedom 'via' a finite element (generally, M' « M). For instance, in a three-dimensional mesh of linear (displacement based) cubes for thermal problems (l degree of freedom at each node), M' equals 27. The factorization of the iteration matrix is replaced by the matrix product 'I'T[K + ( 1/er: At)C]'I', and by comparing their costs it is evident that the number of operations is reduced by a factor of order o(M 2 1 RM').

With the reduced system strategy the main cost becomes the evaluation of the elemental stiffness and capacity matrices and the residue. Nevertheless, as the size of the system of differential equations is notably decreased, the finite element matrices can usually be integrated by using a reduced numerical integration rule without having problems with singularities of the integrated matrix (for instance, we employ one Gauss quadrature point for integrating the linear cube in thermal problems). Therefore, this represents a further advantage when using reduction methods.

In the next section Example 3 of the achievable savings of computer time when following the strategy proposed in this paper. •

NUMERICAL EXAMPLES Example 1. Transient response of a unidimensional structure submitted to a suddenly applied flux

This first example was intended to show that in spite of dealing with a very simple problem, the Lanczos vectors give accurate solutions for both linear and non-linear cases whereas the eigenmodes do not. The bar displayed in Figure 1 was modelled by using 10 equally spaced linear finite elements giving 11 degrees of freedom.

First, a linear response was computed by using the mean properties k = 40 and c = 0•2.

Figure 2 shows a comparison between the 4 degrees of freedom responses obtained by using the eigenmodes and the Lanczos vectors. We can clearly appreciate that the Lanczos vectors give accurate solutions. On the other hand, the eigenmodes solution exhibits oscillations in the initially computed time steps; these spatial oscillations disappear when the temperature penetrates into the structure, reaching a smoother spatial distribution.

Figure 4 displays the non-linear response computed with the temperature dependent material properties given in Figure 3. Again, we make a comparison between the Lanczos vectors solution and the eigenmodes one. The former vectors give a highly accurate solution, whereas the latter ones give a poor result. Note that now, the modes solution is worse than the solution obtained by using constant material properties. In fact, the non-linearities magnify the spatial oscillations that were already present in the linear case; however, the response for increasing values of time agrees with the true solution as it already happened in the linear problem. This example shows the capability of the proposed method for solving complex situations with only a few degrees of freedom in the reduced system. The analysed structure is composed of two materials, whose diffusivities considerably differ between them. The structure was submitted to a sudden temperature variation on one side (Figure 5).

The finite element mesh has a total of 306 DOF. It was refined properly so as to represent the sharp gradients on the external boundary and between the two materials (Figure 6).

Figures 7 and8 show the isotherms at times 2•5 and 15 for both the complete system response and a reduced system response with only 12 degrees of freedom. The reduced model was formed by using the Lanczos vectors. Figure 9 shows the temperature profile on the segment A-B at various times. We can see that the Lanczos vectors response approximates accurately the response given by the 306 degree of freedom finite element system.

On the other hand, Figure 10 displays the isotherms computed by including the 12 first eigenmodes in the basis. We can clearly appreciate that this solution is completely wrong. we can appreciate that the eigenmodes could not give a good answer However, we should mention that no criterion was followed to determine the number of modes to be included in the basis; we fixed this number by taking the same number as we had in the Lanczos vectors analysis.

Example 3. Transient non-linear response of a bimaterial cube with a step varying temperature on one face

This last example deals with a three-dimensional structure, again involving two materials with very different diffusivities. Now, the non-linear response is computed. Figure II presents a description of the problem together with the temperature dependent material laws (the displayed material laws correspond to actual physical data for graphite and carbon tape--phenolic materials). The finite element mesh, numbering 729 degrees of freedom, is shown in Figure 12.

Two different reduced system solutions were computed. In the first case we used a reduced basis with 8 degrees of freedom. The basis vectors were computed by the algorithm ( 13), (16), and their derivatives were not included in the basis. In the second case we employed 14 degrees of freedom and in addition to the 8 vectors previously mentioned for the first case, we included the derivatives of the three first vectors with respect to their own amplitudes.

Figures 13 and14 show the isotherms for times 5 and 15 computed by solving the full system of 729 degrees of freedom, and by solving both reduced systems of 8 and 14 degrees of freedom. well the true solution computed with the 729 degree of freedom finite element discretization. Also, it is clear that the response computed by including the derivatives shows a remarkable improvement with respect to the response computed by including only the Lanczos vectors in the basis. In fact, actual material non-linearities are not as severe as geomaterial non-linearities are, even though the material laws presented seem really complicated. So, in this case, the inclusion of the basis vector derivatives did not produce an amazing improvement with respect to the previous solution. We think that higher non-linear behaviours, such as when dealing with radiating boundaries, will require a larger participation of the derivatives.

The computer code was programmed on a VAX 11/780 and further optimization of the code can still be done. Nevertheless, for the sake of making the comparison available, we present in Table I the CPU times spent during the different phases of the solution process.

CONCLUDING REMARKS

An algorithm for solving transient thermal problems in a reduced subspace of the original space of discretization, has been described. The basis is formed as follows: the increment in the system response at the first time step (or an approximation to it) is used as the first basis vector; the latter vector is introduced into the Lanczos algorithm to yield a sequence of orthogonal vectors; afterwards we take a unit constant vector which is C-orthogonalized and included in the basis together with the previous set.

With regards to the method, the following salient features can be mentioned:

(a) The method allows one to handle the sharp gradients that appear in thermally loaded structures. Other methods, such as modal superposition or Guyan-Irons, failed to yield acceptable solutions for these kinds of responses. (b) The response can be accurately predicted by using only a small number of degrees of freedom in the reduced system (c) The method is suited to solve both linear and non-linear thermal transient problems, as shown in the examples. (d) Owing to the reduced dimension of the final system, the finite element matrices can be integrated with a reduced integration rule neither affecting the accuracy nor introducing singularities in the system to be solved.

The algorithm is specially well suited for treating large-scale transient thermal problems. Examples involving one-, two-and three-dimensional cases that demonstrate the high potential of the technique are presented.
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Table I .

 I CPU time (s) spent on a VAX 11/780 at different stages of the program when solving Example 3.

		Full system		Reduced system solutions
		solutions			
		(729 DOF)	14 DOF	14 DOF with	8 DOF with
				red. integ.	red. integ.
	Evaluation of the finite element				
	matrices and factorization	198	72-5	34•5	26•5
	Evaluation of the residue	36•5	32•5	32•5	31