
An Experimental Analysis of PaaS Users
Parameters on Applications Energy Consumption

David Guyon∗, Anne-Cécile Orgerie∗ and Christine Morin∗
∗ Univ Rennes, Inria, CNRS, IRISA, Rennes, France – Email: {david.guyon, anne-cecile.orgerie, christine.morin}@irisa.fr

Abstract—Reducing the energy consumed by datacenters be-
comes of major importance due to the current climate changes
and the increasing success of cloud computing. Studies to op-
timize the energy consumption of cloud systems exist but do
not take into account the end-user. The goal of this paper is to
understand and quantify the link between the PaaS parameters
a user can configure and the application energy consumption.
In this work we summarize the parameters available at the
PaaS layer and measure their influence on the energy consumed
by RUBiS, a web application benchmark. Different database
technologies and programming languages are compared as well
as their software versions. Experimentation results show that
by themselves the existing PaaS parameters can variate the
application energy consumption. Although it shows that different
programming languages do not consume the same, we discovered
that a wider energy difference exists between database technolo-
gies which means higher energy savings is possible when the
less consuming technology is used. Thus, users could optimize
the energy impact of their applications by carefully configuring
on-hand PaaS parameters.

Keywords-Cloud computing; Platform-as-a-Service; web appli-
cations; energy consumption

I. INTRODUCTION

In 2012, the IT sector represented an annual energy con-
sumption greater than the consumption of a country such as
Russia [1]. This energy consumption continues to increase
because of the success of cloud computing. The worst case
scenario for 2030 shows a worrying 13% of global electricity
only to power data centers [2]. Even if the current trend is
going toward renewable energy sources, most of the energy
consumed still comes from fossil sources [1]. On a global
scale, in 2007 it represented 2% of the global GreenHouse
Gas (GHG) emissions, a level of emissions similar to the
global aviation sector [3]. Due to the current climate changes,
reducing the energy consumption of cloud computing becomes
of major importance.

Many studies [4] on green cloud computing have focused
on the Infrastructure-as-a-Service (IaaS) layer which delivers
virtual computing resources. Through different types of op-
timization, they manage to reduce the energy consumption
caused by the IaaS layer. The reason why research works target
IaaS clouds is because this layer is the closest to the hard-
ware which makes it more feasible to achieve higher energy
savings. On top of the IaaS layer stands the Platform-as-a-
Service (PaaS) layer that delivers a development and execution
environment for user’s applications. This layer experiences
growing success [5], however, few research works have been

conducted on the possible energy optimization that can be
done at this cloud service layer.

Application developers use PaaS clouds to develop, deploy
and execute their applications. At each of these 3 phases,
PaaS clouds deliver several parameters to control the execu-
tion of applications [6]. During the development phase, the
application’s programming language is specified as well as
the version of the language interpreter when required. The
same configuration is available for the database management
system. It defines what software and their version need to
be installed in the execution environment. These parameters
show that PaaS users have a control over the application’s
execution but the monitoring feedback does not include any
energy related information.

Several types of applications can be deployed on PaaS
clouds. Silva et al. [7] classify different categories of ap-
plications with their own characteristics in terms of resource
utilization such as, high performance computing applications,
data-intensive distributed applications and transactional appli-
cations. The latter refers to typical multi-tier web applications
which is the type of application selected in this study because
many PaaS providers target web applications.

The goal of this work is to understand the impact of PaaS
level users’ decisions on the energy consumption. In this work,
we focus on web applications and target the software parame-
ters offered by PaaS clouds. In the experimental evaluation, we
make real energy consumption measurements of a typical web
application developed in two different programming languages
and compatible with two different database technologies. Also,
two language interpreters in different versions are used. Exper-
imentation results reveal a relation between the configuration
of the PaaS environment and the energy consumed by the
servers on which the application is running. We also show
that the software selection and also their version can have an
impact on the application energy consumption of up to 12%
increase. The impact is even more significant when changing
the database technology. The results show that a database
technology can make the database tier consume 141% more
energy than with another technology.

The remaining of this paper is organized as follows. In
Section II we present the context and motivation of this work.
Section III details our methodology. Experimental results are
discussed in Section IV. Section V discusses the feasibility of
our measurement approach. Finally Section VI concludes.



II. CONTEXT AND MOTIVATION

Despite the fact that the exact definition of PaaS is still
an open debate, Giessmann and Stanoevska give this def-
inition [8]: ”Platform as a Service refers to an execution
environment, wherein external developers deploy and run
their complementary components.”. This type of cloud is
dedicated to application developers because it provides online
resources to build and run their applications without the need
to download or install anything [9]. Applications run in VMs
managed by the PaaS provider. This management includes the
maintenance of the operating system and installed software
stack.

This study focuses on a specific type of application widely
deployed in PaaS clouds: multi-tier web applications. This type
of application has a fluctuating resource utilization based on
the request load (workload). Web applications are commonly
separated in three tiers [10]: the web server delivers web pages
with a web cache system, the application server executes the
application’s logic and the database server stores the data.
This separation offers elasticity: cloud resources can be added
or removed on each tier to adapt the performance to the request
load. It avoids high response time, unappreciated by web site
users. In this work we use a type of application inspired by 3-
tiered architectures. We separate the database from the logic as
it is a usual behavior in PaaS clouds. However, the separation
of the web server and the application tiers is not a by default
setup and remains complex to realize. In our case, the web
server and the application server features execute together in
the application tier. To summarize, our study targets 2-tiers
web applications decomposed in a web server/application tier
and a database tier.

At the time the PaaS application is ready to execute, the
provider delivers an environment where the application will
run. Concretely an environment corresponds to a set of VMs
where a software stack is already installed. This stack depends
on the details of the software project given by the developer,
such as the programming language, the version of the language
interpreter, the database management system and the packages
requirement of her application. The available software configu-
ration differs from one provider to another. As an example, the
languages Ruby, Node.js, PHP, Python and Java are supported
by three widely used PaaS providers, Engine Yard [11],
Heroku [12] and Clever Cloud [13]. However, Engine Yard
offers a finer control over the version of PostgreSQL than
the others, Heroku can natively execute Clojure applications
and Clever Cloud provides a larger choice of versions for the
programming language interpreters. Each provider has its own
way to implement the software management system. Some
PaaS providers prefer to have a single large VM image with
all software installed on it to ease its maintenance. In the open-
source solution ConPaaS [14], the provider manages many VM
images, each one for a specific type of environment. In such
architecture a VM image is dedicated to PHP applications,
while another VM image is only used to execute Java Servlet
applications. A more detailed presentation of PaaS cloud

providers can be found in [6].
A PaaS user cannot interact with the computing resources

and the underlying operating system directly. However, as
explained before, users have access to parameters to control
the execution of their applications. To summarize, they have
access to the following software parameters:

• software stack to use depending on the programming
language of the application

• database management system to store the data
• software versions for running the application and the

database

PaaS parameters allow users to undertake actions that im-
pact the execution of their applications. Despite the availability
of these parameters, it is complex for users to understand if
there is a variation in energy consumption linked with the
choices they make when defining their applications. This is
why we want to verify if the configuration of the parameters
is related to the energy consumption. The quantification of
the parameters’ influence on the energy consumption would
deliver which of them are the more influencing. In a previous
work [15], we showed that, in an IaaS cloud context, the
VMs size parameter given to users have an impact on the
energy consumed by the cloud. Small size VMs favor the
consolidation but may have lower performance. The current
study focuses on PaaS clouds that deliver additional param-
eters that need to be analyzed to understand their impact on
the energy consumption. At this level of the cloud stack, the
energy consumption depends on both the virtual resources and
the deployed applications. In [16] the authors also show that
there exists a relation between programming languages and
energy consumption. Yet, their study is out of the context of
cloud computing, the amount of computing resource is fixed
and software versions are not compared. The virtualization
layers of the cloud computing creates a distance between
users applications and the real hardware consuming the energy.
This distance increases the complexity of creating a relation
between PaaS parameters and energy consumption.

In this paper, the power consumption and performance of a
2-tier web application are analyzed. The application tier exists
in two different versions, each version developed in a different
programming language and both versions are compatible with
several versions of programming language interpreters. As for
the database tier, it is also available in two different versions
with two different database management system technologies.
An experimental analysis is applied on the previously listed
software parameters that are accessible thanks to the web
application’s implementation.

III. EXPERIMENTAL SETUP

This section provides the details about the selected bench-
mark and workload. The PaaS cloud platform that has been
used to run the experiments is presented. We also define the
experimental scenarios and the metrics.



A. RUBiS Benchmark

Our experiments use a benchmark approach similar to pre-
vious studies [17]. From the existing web application bench-
marks, we selected RUBiS [18], an online auction website
modeled after the Internet website eBay.

Fig. 1: Architecture of the RUBiS benchmark.

As shown in Figure 1, RUBiS is composed of 3 elements.
The client is a Java program that simulates users navigating on
the website. It is responsible for sending requests to the appli-
cation tier and behaves according to the workload definition
(detailed in the next section). The application tier handles both
the web serving and the execution of the application source
code. This is why the entry point of the application tier is
an Apache server that serves static HTML pages or redirects
users’ requests to the running application when asking for
dynamic content pages. In order to build the dynamic pages,
the application requests data from the database tier. The data
retrieved from the database is included in pages built by the
application which are then sent to the client. Depending on the
user’s request, it may imply one or many connections between
the application and the database.

Our main criterion of choice for this benchmark is its imple-
mentation in several programming languages. The application
tier is available in both PHP and Java Servlet. The PHP version
only needs the Apache server to execute, while the Java Servlet
also requires the application server Tomcat. Thus, RUBiS can
execute with a PHP interpreter or with a Java interpreter,
both versions after the same features. As for the database tier,
it comes with the MySQL relational database management
system. We modified the RUBiS benchmark in order to support
the PostgreSQL object-relational database system because this
is a widely used database technology (see Section III-D).

B. Workload

RUBiS comes with a workload system that simulates users
sending requests on the web pages of the emulated web
application. The benchmark’s configuration file offers a fine
tuning of the workload. Our workload is defined to last for
a total of 30 minutes, including 5 minutes at the beginning
to increase the load (up ramp) and 5 minutes at the end to
decrease the load (down ramp). The workload contains a total
of 2000 threads where each thread represents a client doing
navigation on the website. A maximum of 2000 transitions
can be made by each user. All experiments conducted in this
study use the workload definition presented in this section.

C. Platform-as-a-Service Cloud Layer

The benchmark executes on top of our own cloud system.
As for the hardware, the servers provided by the Grid’5000
platform [19] are equipped with 16 cores from the Intel Xeon

CPU E5-2620 processor, 32GB of RAM, 600GB of HDD
and a 10GB Ethernet connection. The virtualization layer is
handled by QEMU version 2.1.2 which is used through libvirt
1.2.9 [20], a virtualization API to simplify the management of
virtual hosts.

In our experiment, the application tier and the database tier
of RUBiS execute in two separate VMs. The VM operating
system executes a Debian 3.16.43. The management of VMs in
our PaaS cloud is inspired by ConPaaS [14]. There are several
pre-configured VMs for each version of the benchmark. Each
VM has the software stack required by the version of RUBiS it
has to execute. These VMs represent the application tier of the
RUBiS architecture presented in Figure 1. In addition to these
pre-configured VMs, there are also two VMs dedicated to the
database tier. A VM executes a MySQL database while the
other VM executes a PostgreSQL database. Both VMs have
their database tables pre-filled with the same data. As for the
virtual resources, all VMs are given 2 vCPUs, 2GB of RAM
and 20GB of HDD.

D. Scenarios Definition

There are two groups of scenarios: the application scenarios
and the database scenarios.

An application scenario corresponds to a VM image in
which the required software stack for a specific version of
RUBiS is installed and ready to use. In total we designed 6
scenarios. Two scenarios are dedicated to execute the PHP
version of RUBiS with respectively PHP5 and PHP7. In the
case of PHP7, it is deprecated to use the mysql command,
thus the application source code has been updated to use the
advised command mysqli. The four remaining scenarios are
for the Servlet version running with Java 7 or Java 8, and
either with Tomcat 7 or Tomcat 8. Details of the scenarios are
shown in Table I.

TABLE I: Application scenarios with the version of the
software installed in each application VM.

scenario version of software
PHP5 PHP 5.6.30-0+deb8u1
PHP7 PHP 7.0.20-1 dotdeb+8.2
T7J7 Tomcat 7.0.56 and OpenJDK 1.7.0
T7J8 Tomcat 7.0.56 and OpenJDK 1.8.0
T8J7 Tomcat 8.0.14 and OpenJDK 1.7.0
T8J8 Tomcat 8.0.14 and OpenJDK 1.8.0

As shown in Table II, we defined two database scenarios.
The first one corresponds to a VM where the MySQL rela-
tional database management system is installed. This is the
database tier delivered with RUBiS without any modification.
The second scenario is a VM with the PostgreSQL object-
relational database management system installed. This one has
been created from scratch in order to be able to compare differ-
ent database technologies. The data in the MySQL database
has been exported/imported to the PostgreSQL database so
that the content of each database is identical. The MySQL



Fig. 2: Definition of the total energy consumption and dy-
namic energy consumption. The graph represents the power
consumption of the application tier VM for the PHP5 version
of RUBiS.

and PostgreSQL installed versions are the default versions
available in the Debian packages repository at the time of
this study. In order to use either one or the other database
scenario, compatibility updates were required in the legacy
RUBiS application tier. A new version of the PHP7 has been
developed which uses the PHP Data Objects (PDO) extension
instead of the mysqli command. This special version of the
PHP7 scenario is only used in the experiment where the
database tier changes.

TABLE II: Database scenarios with the version of the database
management system installed in each database VM.

scenario version of software
MySQL MySQL 5.5.57

PostgreSQL PostgreSQL 9.4.12

Apache2 is used as the HTTP server and redirects the
network requests directly to the PHP application or the Java
application through Tomcat. The Apache 2.4.10 version has
been installed in all application VMs.

E. Energy and Performance Measurements

Two metrics are used to quantify the energy consumption
and the average request response time.

The energy metric, in Watt-hour (Wh), represents the
amount of energy which is consumed by the run of the
workload for a given scenario. Figure 2 shows how this metric
is calculated. Power measurements are possible thanks to
the power meters [21] plugged to the servers used for our
experiments. They deliver a power value each second at a
resolution of 0.125W. A power meter measures the entire
consumption of a server, this is why each VM is deployed
in a different server. In the case where the deployed VM
is running alone on a server, the VM energy consumption
is defined as the dynamic energy consumption of the server.
As shown in Figure 2, the dynamic energy (hatched area) is
the total energy consumption (yellow area) minus the idle
energy of the server. For this calculation, two values are
required: idle and total energy consumption of the server. For
the former, a 5 minutes long measurement is done before
each experiment when servers do not execute anything. This

preliminary measurement provides the idle power consumption
of each server. As for the latter, the server power consumption
is measured during the execution of the 30 minutes long
workload which gives the total energy consumption.

As for the average request response time, it is used to
express the system’s performance. This metric, in ms, is
measured internally by the benchmark and returned in the
execution logs. We use the average response time that the
2000 users take to access the home page of the RUBiS
website. When the workload starts, all users try to reach
the home page at the same time which implies an important
requests load. We observed that the response time of the
home page varies significantly between scenarios because of
the different software technologies used. The response time
variation becomes almost negligible a few seconds after the
workload starts because requests are not received at the same
time. The larger variation of the response time at the start
of the workload gives a better feedback on the application’s
performance, which is why this is the one analyzed in this
work.

F. Experimental Structure

To evaluate the impact of PaaS software parameters on the
energy consumption and response time of applications, two
different experiments were designed.

1) varying application tier: Two PaaS parameters are taken
into account: the programming language and the version of
the language interpreter. This experiment follows the software
configuration of each application scenario listed in Table I. The
database tier remains fixed and uses the MySQL technology.
Each scenario executes its application tier and database tier
in fixed size VMs with 2 vCPUs. The workload considered is
the one defined in Section III-B.

2) varying database tier: Only the database management
system parameter is taken into consideration. This parameter
can take two values as presented in Table II: MySQL and
PostgreSQL. The application tier remains fixed and uses the
special version of PHP7 with PDO. PDO allows the PHP7
application tier to be compatible with both database scenarios.
All VMs have a fixed size of 2 vCPUs and the workload is
the same as the first experiment.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

This section presents the results of the two previously
described experiments. Each experiment result shows the mean
value and the standard deviation of 5 executions. The 5
executions ran in parallel on different servers.

A. Impact of Software Versions

Figure 3 displays both the dynamic energy consumed by
the application tier and the database tier when we apply the
workload on each application scenario (see Table I). The graph
on the right represents the average response time of all clients
to access the home page (metric explained in Section III-E).

It shows that on average the application tier of the two PHP
scenarios consumes 7.27% less energy compared to the four



Fig. 3: Dynamic energy consumption of application and
database tiers and response time for each application scenario.

Java scenarios. This difference is explained by the additional
cost caused by the Java Virtual Machine in the Java versions.

Differences also exist between versions. Even if scenarios
PHP5 and PHP7 have a similar application energy consump-
tion, PHP7 presents a database consuming 8.14% more than
the PHP5 database. The utilization of the database differs in
these two scenarios because PHP7 is using the more recent
mysqli command. The update from mysql to mysqli adds a
security layer which implies additional computations, thus
additional energy costs. However, in both PHP scenarios the
response time is similar with a small variation of 13.6 ms.

Similar energy variations can be seen between Tomcat
versions and Java versions. Going from Java 7 to Java 8 always
present a decrease in application energy consumption: 2.91%
less energy consumption when using Tomcat 7 and 2.29%
with Tomcat 8. Regarding the response time, it significantly
improves by 28.29% (Tomcat 7) and 24.58% (Tomcat 8)
when the application programming language goes from Java
7 to Java 8. The opposite behavior appears when going from
Tomcat 7 to Tomcat 8. The application energy consumption
increases by 3.76% and 4.42% as well as the response time
by 6.34% and 11.85% for the Java 7 and Java 8 scenarios, re-
spectively. However, the database energy consumption remains
stable.

Varying programming languages and software versions
mainly impact the energy consumption of the application
VM with a maximum of 12.04% more energy consumption
between PHP7 and Tomcat 8 Java 7. A smaller energy impact
is shown on the database VM with a maximum variation of
5.5% between scenarios Tomcat 7 Java 7 and Tomcat 8 Java
8 (here we ignore the PHP5 scenario because of its use of the
deprecated mysql command).

B. Impact of Database Management Systems

The impact on energy and performance of the database
technology is shown in Figure 4. For each database scenario
(see Table II), results present the dynamic energy consumed
by the application tier and the database tier as well as the
average response time of all clients to access the home page
(metric detailed in Section III-E)

As expected, the application tier has a similar energy
consumption in both scenarios that is explained by their

Fig. 4: Dynamic energy consumption of application and
database tiers and response time for each database scenario.

Fig. 5: CPU usage of both VM databases when processing
200 SQL requests in parallel. Each request is a SELECT of
100.000 entries from the users table.

source code that slightly differs. Their energy consumption
has a variation of 1.18Wh which represents an increase of
11%. However, the database tier shows a significant energy
consumption increase of 140.84% when changing from the
MySQL to the PostgreSQL database technology. In addition
to this important increase in energy consumption, requests
response time also increased by 33.91%. The MySQL tech-
nology is a relational database system while the PostgreSQL
technology is an object-relational database system. While
MySQL has been initially designed for web applications, it
is not the case for PostgreSQL. Their internal mechanisms
organize information differently which justifies the important
energy consumption difference.

In Figure 5, a different benchmark is used to show the CPU
usage of both database technologies when stressed with an
identical workload. The workload is generated by 4 copies
of a program sending 50 SELECT SQL requests to retrieve
100.000 entries from the users table. These 4 duplications
of the program execute in parallel. Each database executes
in a VM with 4 vCPUs, thus 100% CPU usage means that
all CPUs are fully used. MySQL takes about 140 seconds
to process this workload while PostgreSQL takes less than
30 seconds. This difference of durations is explained by the
ability of PostgreSQL to benefit from parallelization. This is
also why PostgreSQL is able to reach 100% CPU usage while
MySQL barely exceeds 25% (1 vCPU used at its maximum
capacity). The higher is the CPU utilization, the higher is the
power consumption. In the experiment presented in Figure 4,
the workload continuously stresses the database during 30
minutes. In the case of PostgreSQL, it results in a higher total



CPU utilization than MySQL, which explains the significant
energy increase of 140.84%.

In comparison with the previous experiment, the database
parameter has more impact on the energy consumption of
the database VM than the software versions parameter on the
application VM.

V. DISCUSSION ON FEASIBILITY AND USABILITY

We now put into context the results obtained in this work
with the compatibility of our approach with other applications
and how the users can benefit from these.

Other types of application: Our experimental analysis
is done on a multi-tier web application because this is the
most widely deployed type of application in the context of
PaaS clouds. However, our work remains relevant with other
types of application as long as the application programming
language and software versions can be analyzed in terms
of energy consumption and performance. For example, in
the case of Python applications, the energy consumption and
performance of a benchmark Python program need to be
analyzed with different versions of the Python interpreter
and with different amount of cloud resources. This way it is
possible to adapt this work to other types of PaaS applications.

Preliminary benefits: As explained in [22], increasing
consumer knowledge with energy-related information has the
potential to change consumer behavior. Providing the correct
information at the right time to users may have an impact on
their development decisions. A team of developers familiar
with 2 different programming languages may be incentivized
by energy/performance information to decide which language
to use. However, this performance/energy information needs to
be known before starting to write the application source code.
This preliminary information can have a significant impact on
the energy consumption over the long term.

Benefits during applications execution: When an applica-
tion is already written in a specific programming language, it
would be too expensive in terms of time and budget to rewrite
the entire source code. Yet, users can still tune parameters such
as the software versions. This change may only require small
updates of the source code so that the application can execute
with a less consuming software version.

Measurements on users applications: In this work, the
energy consumption and performance of a benchmark are
analyzed while varying PaaS parameters. The measurement
analysis results are valid in the case of the multi-tier web
application benchmark we used. However, results may differ
with users applications that are too different from the bench-
mark. To avoid this difference between the benchmark and
real applications, a solution would be to execute continuous
energy measurements on the real application that is running.
This solution would present the actual real energy consumption
and performance of users applications. However, this kind of
measurement requires to deploy power models of VMs [23].
Beside the implementation complexity, each power model
consumes energy which in total may result in additional energy

cost. Real measurements may not be worth the energy cost and
the limited accuracy of values given by these power models.

VI. CONCLUSION AND FUTURE WORK

Users of PaaS clouds have access to parameters such as
the programming language, the database technology and the
softwares versions. However, it is difficult to know how related
these parameters are with the energy consumption. In this
study, we analyze and quantify the energy consumption of
a web application deployed in a PaaS cloud with different
configurations of parameters. The web application is available
in both PHP and Java Servlet versions and its database is
compatible with the MySQL and the PostgreSQL database
management technologies. We compared the energy consump-
tion and performance of each application’s version.

Experimentation results show that, in the case of a 2-
tier web application deployed in a PaaS cloud, the already
available PaaS parameters have an impact on the energy
consumption of the cloud application. Indeed, two different
programming languages show different energy profiles. Ap-
plications written in Java present on average a 7.84% increase
in energy consumption in comparison with PHP versions. In
addition to the programming languages, a different energy con-
sumption is found when changing the version of the software
used to execute the application. The energy consumption of
the application VM increases by 4.42% when moving from
Tomcat 7 to Tomcat 8. Similar energy profile differences can
be seen with different database management systems. The
PostgreSQL database consumes 140.84% more energy than
the MySQL database. These experimentation results are a first
step towards a better understanding of the relation between
PaaS parameters and cloud applications energy consumption.

Parameters delivered by PaaS systems also include a control
over the size and number of VM instances users desire to
execute their cloud application. As a future work we would
like to extend this study to evaluate the impact of these
parameters on the underlying energy consuming devices. In
this future work we plan to measure the energy and perfor-
mance of an application while we increase the size of the
VM (number of vCPUs) the application is running on. We
will also analyze, for an identical total amount of vCPUs, the
energy and performance of duplicating the application tier in
a varying number of VMs.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out using
the Grid’5000 experimental test-bed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] G. Cook, J. Lee, T. Tsai, A. Kong, J. Deans, B. Johnson, and E. Jardim,
“Clicking Clean: Who is Winning the Race to Build a Green Internet?”
Greenpeace Inc., Washington, DC, 2017.

[2] A. S. Andrae and T. Edler, “On Global Electricity Usage of Commu-
nication Technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp.
117–157, 2015.



[3] G. Cook, T. Dowdall, D. Pomerantz, and Y. Wang, “Clicking Clean:
How Companies are Creating the Green Internet,” Greenpeace Inc.,
Washington, DC, 2014.

[4] A.-C. Orgerie, M. D. d. Assunçao, and L. Lefèvre, “A Survey on Tech-
niques for Improving the Energy Efficiency of Large-scale Distributed
Systems,” ACM Computing Surveys, vol. 46, no. 4, pp. 47:1–47:31, Mar.
2014.

[5] Right Scale, “State of the Cloud Report,” Tech. Rep., 2015.
[6] S. Costache, D. Dib, N. Parlavantzas, and C. Morin, “Resource Man-

agement in Cloud Platform as a Service Systems: Analysis and Oppor-
tunities,” Journal of Systems and Software, 2017.

[7] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva,
“CloudBench: Experiment Automation for Cloud Environments,” in
Cloud Engineering (IC2E), 2013 IEEE International Conference on.
IEEE, 2013, pp. 302–311.

[8] A. Giessmann and K. Stanoevska, “Platform as a Service–A Conjoint
Study on Consumers’ Preferences,” in Proceedings of the International
Conference on Information Systems, ICIS 2012, F. G. Joey, Ed. AIS
Electronic Library: Association for Information Systems, December
2012, p. 20.

[9] G. Lawton, “Developing Software Online with Platform-as-a-Service
Technology,” Computer, vol. 41, no. 6, 2008.

[10] D. Huang, B. He, and C. Miao, “A Survey of Resource Management
in Multi-Tier Web Applications,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1574–1590, 2014.

[11] “Engine Yard.” [Online]. Available: http://www.engineyard.com/
[12] “Heroku.” [Online]. Available: https://www.heroku.com/
[13] “CleverCloud.” [Online]. Available: https://www.clever-cloud.com/
[14] G. Pierre and C. Stratan, “ConPaaS: A Platform for Hosting Elastic

Cloud Applications,” IEEE Internet Computing, vol. 16, no. 5, pp. 88–
92, 2012.

[15] D. Guyon, A.-C. Orgerie, C. Morin, and D. Agarwal, “How Much
Energy can Green HPC Cloud Users Save?” in Parallel, Distributed and
Network-based Processing (PDP), 2017 25th Euromicro International
Conference on. IEEE, 2017, pp. 416–420.

[16] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A Prelimi-
nary Study of the Impact of Software Engineering on GreenIT,” in Green
and Sustainable Software (GREENS), 2012 First International Workshop
on. IEEE, 2012, pp. 21–27.

[17] T. Palit, Y. Shen, and M. Ferdman, “Demystifying Cloud Benchmark-
ing,” in Performance Analysis of Systems and Software (ISPASS), 2016
IEEE International Symposium on. IEEE, 2016, pp. 122–132.

[18] Rice University Bidding System, “RUBiS.” [Online]. Available:
http://rubis.ow2.org/

[19] “Grid’5000.” [Online]. Available: https://www.grid5000.fr
[20] Red Hat, “libvirt: The Virtualization API,” 2012.
[21] M. D. De Assuncao, J.-P. Gelas, L. Lefevre, and A.-C. Orgerie, “The

Green Grid5000: Instrumenting and using a Grid with energy sensors,”
in Remote Instrumentation for eScience and Related Aspects. Springer,
2012, pp. 25–42.

[22] K. Tsuda, M. Uwasu, K. Hara, and Y. Fuchigami, “Approaches to induce
behavioral changes with respect to electricity consumption,” Journal of
Environmental Studies and Sciences, vol. 7, no. 1, pp. 30–38, 2017.

[23] C. Mobius, W. Dargie, and A. Schill, “Power Consumption Estimation
Models for Processors, Virtual Machines, and Servers,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 6, pp. 1600–1614,
2014.


