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Mean field games (MFG) are dynamic games with infinitely many infinitesimal agents. In this context, we study the efficiency of Nash MFG equilibria: Namely, we compare the social cost of a MFG equilibrium with the minimal cost a global planner can achieve. We find a structure condition on the game under which there exists efficient MFG equilibria and, in case this condition is not fulfilled, quantify how inefficient MFG equilibria are.

Introduction

Mean field games (MFG) study Nash equilibria in differential games with infinitely many indistinguishable agents. In this note, we investigate the classical question of the efficiency for these Nash equilibria: we compare the social cost corresponding to a MFG equilibrium with the optimal social cost obtained by a global planner.

To fix the ideas and describe the model we have in mind, we start with a finite horizon differential game played by a large number of agents (say N ). Agent i P t1, . . . , N u controls her dynamics:

" dX i t " α i t dt `?2dB i t , t P r0, T s, X i 0 " x i 0 where T is the horizon, the pB i q are N independent Brownian motions and the px i 0 q are N i.i.d. random variables on R d , independent of the pB i q, with law m 0 . The control pα i q is chosen by agent i in order to minimize a cost of the form

J i pα 1 , . . . , α N q " E "ˆT 0 LpX i t , α i t , m N Xt q dt `GpX i T , m N X T q  , where m N Xt " 1 N ř N j"1 δ X j t
is the empirical measure of the players. We assume that dynamics and costs have a special structure: agent i controls directly her own drift and her running cost at time t depends on her position X i t , on her control α i t and on the empirical measure of all players m N Xt ; her terminal cost depends on her position X i T at the terminal time T and on the empirical measure m N X T at that time. Note that, under our assumptions, the agents have symmetric dynamics and costs functions.

The social cost associated with the N agents is the average of the J i : Jpα 1 , . . . , α N q :" 1 N N ÿ i"1

J i pα 1 , . . . , α N q.

B t m ´∆ m ´divp mD p Hpx, Dûpt, xq, mptqqq " 0 in p0, T q ˆRd mp0, xq " m 0 pxq, ûpT, xq "

δ p G δm p mpT q, xq in R d (1.1) 
where Hpx, p, mq " sup αPR d ´α ¨p ´Lpx, α, mq is the convex conjugate of L and where we have denoted by αpt, xq " ´Dp Hpx, Dûpt, xq, mptqq the optimal feedback control of the global planner. The map p G is defined by

p Gpmq :" ˆRd Gpx, mqmpdxq (1.2) 
while δL{δm and δ Ĝ{δm are the derivatives of the maps m Ñ Lpx, α, mq and m Ñ Ĝpmq, respectively, with respect to the measure variable m (see Section 2).

Decentralized setting. When there is no cooperation between the agents, one expects them to play a Nash equilibrium. The characterization of Nash equilibria (in memory strategy) is known in this setting [START_REF] Buckdahn | Nash equilibrium payoffs for nonzerosum stochastic differential games[END_REF][START_REF] Kononenko | Equilibrium positional strategies in non-antagonistic differential games[END_REF] and related to the Folk's Theorem (any feasible and individually rational payoff can be achieved as a Nash equilibrium). However, when the number N of agents is large and the agents are indistinguishable, it is not reasonable to ask all the agents to observe each other: the notion of memory strategy (or even of global feedback strategy) does not seem to make much sense. One would expect the agent to act instead by taking into account their own position and the distribution of the position of other agents: this is precisely what mean field games formalize.

Mean field games. Mean field games (MFG) model differential games with infinitely many indistinguishable players. They were introduced by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. i-le cas stationnaire[END_REF][START_REF]Jeux à champ moyen. ii-horizon fini et contrôle optimal[END_REF][START_REF]Mean field games[END_REF]. At the same period, Huang, Caines and Malhamé discussed the same concept under the terminology of "Nash certainty equivalence principle" [START_REF] Huang | Individual and mass behaviour in large population stochastic wireless power control problems: centralized and nash equilibrium solutions[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle[END_REF]. The MFG system associated with the above control problem reads, in terms of PDEs, $ & % ´Bt u ´∆u `Hpx, Du, mptqq " 0 in p0, T q ˆRd B t m ´∆m ´divpmD p Hpx, Du, mptqqq " 0 in p0, T q ˆRd mp0, xq " m 0 pxq, upT, xq " Gpx, mpT qq in R d .

(1.3)

In the above system, u " upt, xq is the value function of a typical player while m " mpt, xq describes the evolving probability density of all agents. Note that the drift ´Dp Hpx, Dupt, xqq in the equation for m corresponds to the optimal feedback of the agent. Heuristically, the pair pu, mq describes a Nash equilibrium in the infinite population problem.

The social cost associated with a MFG equilibrium pu, mq, which is the averaged cost of each player, can be defined as:

Cpu, mq :" ˆT 0 ˆRd Lpx, α ˚pt, xq, mptqqmpt, xq dxdt `ˆR d Gpx, mpT qqmpT, xqdx,
where α ˚pt, xq " ´Dp Hpx, upt, xqq is the optimal feedback in the MFG. The quantity Cpu, mq is the second main object of investigation of this paper.

Comparison between the two problems. The difference between the two problems-the centralized optimal control of McKean-Vlasov dynamics and the MFG equililbria-has been often discussed in the literature: see, for instance, [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF][START_REF] Carmona | Probabilistic theory of mean field games with applications[END_REF][START_REF] Carmona | Forward-backward stochastic differential equations and controlled mckean-vlasov dynamics[END_REF][START_REF] Carmona | Control of mckean-vlasov dynamics versus mean field games[END_REF][START_REF]Social optima in mean field lqg control: centralized and decentralized strategies[END_REF]. So far the attention has focussed on the difference in structure between the two systems of equations (namely, for our problem, (1.1) and (1.3)). Note that, in our specific setting, there is no real difference between (1.1) and (1.3): so one could expect that the two problems are very close in terms of social cost.

Comparison between C ˚and Cpu, mq. In this paper, we plan to compare the social costs C ånd Cpu, mq. Obviously one has C ˚ď Cpu, mq. We want to understand a little better the case of equality and the size of the difference Cpu, mq ´C˚.

This question has been often addressed in the classical game theory: a characterization of efficiency can be found for instance in [START_REF] Dubey | Inefficiency of nash equilibria[END_REF], which also proved that, generically, the Nash equilibria are not efficient. The problem became very popular under the name of "price of anarchy", introduced in [START_REF] Koutsoupias | Worst-case equilibria[END_REF] for noncooperative games in which agents share a common resource. We also refer for instance to [START_REF] Johari | Efficiency loss in a network resource allocation game: the case of elastic supply[END_REF][START_REF] Johari | Network resource allocation and a congestion game: The single link case[END_REF][START_REF] Roughgarden | How bad is selfish routing?[END_REF][START_REF]Bounding the inefficiency of equilibria in nonatomic congestion games[END_REF] and the references therein, in the framework of selfish routing games and congestion games. Related to our setting with infinitely many players, the recent paper [START_REF] Lacker | Rare nash equilibria and the price of anarchy in large static games[END_REF] discusses the price of anarchy for static games with a large number of players.

This large literature is in sharp contrast with the literature on differential games, where efficiency has seldom been investigated, and only recently: [START_REF] Başar | Prices of anarchy, information, and cooperation in differential games[END_REF] estimates the price of anarchy in some scalar linear-quadratic (LQ) differential games; Directly related to our work, [START_REF] Balandat | On efficiency in mean field differential games[END_REF] addresses the question of the inefficiency of MFG Nash equilibria by numerical simulations. This question is also discussed in [START_REF] Carmona | Price of anarchy for mean field games[END_REF], in the settings of LQ MFG and of MFG on finite Markov chains.

Main results. The main topic of our paper is the estimate of the difference between C ˚and Cpu, mq-in our set-up, the ratio C ˚{Cpu, mq, generally used for the price of anarchy, does not seem to make much sense. To simplify a little the estimates, we work in the periodic setting (and therefore in the torus T d " R d {T d ) instead of R d : We expect the similar results to hold for other boundary conditions, but the proof should be more technical.

Our starting point is the obvious remark that the MFG system (1.3) describing pu, mq and the system of necessary conditions (1.1) We are only able to obtain an upper bound for Cpu, mq ´C˚u nder additional assumptions: First we assume that H has a separate form: H " H 0 px, pq ´F px, mq; Second, we suppose that Ĝ (defined by (1.2)) and F (defined in a similar way) are convex (in which case the solution of the MFG system (1.1) is unique, see [START_REF]Mean field games[END_REF]). Then, in Theorem 5. Examples. To fix the ideas, we assume that the MFG system is separated: H " H 0 px, pq F px, mq and has zero terminal condition: G " 0. We explain in Section 6 through several examples, that our estimates roughly imply that MFG Nash equilibria are in general inefficient, at least unless the coupling has a very specific structure.

On the positive side, we prove the existence of MFG systems which are globally efficient, i.e., such that, for any initial condition pt 0 , m 0 q there exists a MFG equilibrium pu, mq starting from pt 0 , m 0 q with Cpu, mq " C ˚: More precisely, we show in Theorem 3. [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] for some map F " Fpmq. Moreover, one can check (Example 6.1) that such a coupling function F genuinely depends on m unless F is affine. However, the above structure on F is seldom encountered in practice, and in general there exist (many) initial conditions for which there is no efficient MFG equilibria. This is the case for instance if F " F pmq does not depend on x or if F derives from a potential. In these two cases, the MFG system is globally efficient if and only if F is constant (Examples 6.2 and 6.3). Moreover, our bounds can be simplified in this setting: When F does not depend on x, the lower bound for a MFG equilibrium can be rewritten in term of the Holder constant of the map t Ñ F pmptqq:

Cpu, mq ´C˚ě C ´1 ε " sup t 1 ‰t 2 |F pmpt 2 qq ´F pmpt 1 qq| pt 2 ´t1 q 1{2 * 4 ,
where the supremum is taken over t 1 , t 2 P rε, T ´εs. When F is potential (and thus, as explained in Example 6.3, F vanishes and thus is convex), the two inequalities can directly be expressed in function of F :

C ´1 ε ˆˆT ´ε ε ˆTd rF py, mptqqs 2 dydt ˙2 ď Cpu, mq ´C˚ď C ˆˆT 0 ˆTd rF py, mptqqs 2 dydt ˙1{2 .
In the same way, one can show (Example 6.4) that the MFG equilibria associated with a coupling function of the form F px, mq " ˆTd φpx, yqmpdyq , for some smooth map φ : T d ˆTd Ñ R, cannot be globally efficient unless φ does not depend on y (and therefore F does not depend on m).

Extension and limits. Although we won't make it explicit, one can check that our results generalize to other MFG systems (for instance with local coupling functions or to ergodic MFG systems). However we leave several questions unanswered. First we do not know if the upper bound also holds without our additional assumption. Our technique of proof does not seem to give much result in full generality or requires very restrictive assumptions (see Remark 5.1). Second, our lower bound seems difficult to generalize to problems with more complex dynamics or for problems with bounded controls: Indeed our approach strongly relies on the fact that the minimization problem for C ˚has regular solutions, and this requires some assumptions. Finally let us strongly underline that our estimates have little to do with the universal estimates obtained in the context of the "price of anarchy": Our bounds heavily depend on the regularity of the data and only show how the difference Cpu, mq ´C˚i s small or large in function of the specific quantities

› › ´Td δF δm py, m, ¨qmpdyq › › L 2 and › › ´Td δG δm py, m, ¨qmpdyq › › L 2 .
The paper is organized as follows: In Section 2 we explain our main notations, state our standing assumptions and characterize the minimizers for C ˚in terms of equation (1.1). Section 3 states necessary conditions and sufficient conditions for a MFG equilibrium to be efficient. In Section 4 and 5, we quantify how far a MFG equilibrium is from efficiency: Section 5 gives a lower bound and Section 5 an upper bound. We conclude by Section 6 with the discussion on several examples.
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Assumptions and preliminary results

Notations and assumptions

Throughout the paper we work with maps which are all periodic in space, or, in other words, on the d´dimensional torus T d :" R d {Z d : this simplifying assumption allows us to ignore problems related to boundary issues or growth conditions of the data. We denote by PpT d q the set of Borel probability measures on T d , endowed with the Monge-Kantorovitch distance d 1 :

d 1 pm, m 1 q " sup φ ˆTd φpm ´m1 q,
where the supremum is taken over all 1´Lipschitz continuous maps φ : T d Ñ R.

We will use the notion of derivative of a map U : PpT d q Ñ R as introduced in [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF]. We say that U is C 1 if there exists a continuous map δU δm :

T d ˆPpT d q Ñ R such that U pm 1 q ´U pmq " ˆ1 0 ˆTd δU δm px, p1 ´tqm `tm 1 qpm 1 ´mqpdxqdt @m, m 1 P PpT d q.
The above relation defines the map δU δm only up to a constant. We always use the normalization convention ˆTd δU δm px, mqdmpxq " 0 @m P PpT d q.

(2.4)

If u : T d ˆr0, T s Ñ R is a sufficiently smooth map, we denote by Dupx, tq and ∆upx, tq its spatial gradient and spatial Laplacian and by B t upx, tq its partial derivative with respect to the time variable.

Assumptions. The following assumptions are in force throughout the paper.

• The Lagrangian L " Lpx, α, mq : 

T d ˆRd ˆPpT d q Ñ R is of class C 2 with
C ´1I d ď D 2 pp Hpx, p, mq ď CI d . (2.8) 
• The coupling function G : T d ˆPpT d q Ñ R is globally Lipschitz continuous with space derivatives B x i G : T d ˆPpT d q Ñ R also Lipschitz continuous. We also assume that the map G is C 2 with respect to m and that its derivatives δG δm : T d ˆPpT d q ˆTd Ñ R and

δ 2 G δm 2 : T d ˆPpT d q ˆTd ˆTd Ñ R are Lipschitz continuous.
We will say below that a constant depends on the regularity of the data if it depends on the horizon T , dimension d, on the C 2 regularity of H, on the constant C in (2.8), on the bound on G and on the modulus of Lipschitz continuity of δG{δm and of δ 2 G{δm 2 .

It will be convenient to set

Ĝpmq :" ˆTd Gpx, mqmpdxq, @m P PpT d q.

(2.9) This implies the claim in view of Convention (2.4).

Let

An optimality condition

We now investigate optimality conditions for the problem, written in an unformal way as

min pm,wq ˆT t 0 ˆTd Lpx, w m pt, xq, mptqqmpt, xqdxdt `ĜpmpT qq.
under the constraint B t m ´∆m `divpwq " 0 in pt 0 , T q ˆTd , mpt 0 q " m 0 in T d .

We recall how to give a rigorous meaning to the following expression. We denote by Ept 0 q the set of time-dependent Borel measures pmptq, wptqq P PpT d q ˆMpT d , R d q such that t Ñ mptq is continuous,

ˆT t 0 |wptq|dt ă 8,
and equation B t m ´∆m `divpwq " 0 in rt 0 , T s ˆTd , mpt 0 q " m 0 holds in the sense of distribution. We also denote by E 2 pt 0 q the subset of pmptq, wptqq P Ept 0 q such that wptq is absolutely continuous with respect to mptq with a density dwptq dmptq satisfying ˆTd ˆT t 0 ˇˇˇd wptq dmptq pxq ˇˇˇ2 mpdx, tqdt ă 8.

Then we define J on Ept 0 q by Jpm, wq :"

$ ' ' ' ' & ' ' ' ' % ˆT t 0 ˆTd L ˆx, dwptq dmptq pxq, mptq ˙mpdx, tqdt `ĜpmpT qq if pm, wq P E 2 pt 0 q, ` 8 otherwise. 
We now explain that minimizers of the functional J correspond to solutions of the MFG system. This remark was first pointed out in [START_REF]Mean field games[END_REF] and frequently used since then in different contexts. (2.12)

As it has been often pointed out (see [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF][START_REF] Carmona | Probabilistic theory of mean field games with applications[END_REF][START_REF] Carmona | Forward-backward stochastic differential equations and controlled mckean-vlasov dynamics[END_REF][START_REF] Carmona | Control of mckean-vlasov dynamics versus mean field games[END_REF][START_REF]Social optima in mean field lqg control: centralized and decentralized strategies[END_REF] for instance), the above system does not correspond to a mean field game in general because of the extra term on the right-hand side of the Hamilton-Jacobi equation.

The proof of Lemma 2.11 is standard and has been described in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] when H " H 0 px, pq F px, mq has a separate form. We only explain the main changes.

Proof. The existence of a solution can be established exactly as in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF]. Let now p m, ŵq be a minimum of J. For any pm, wq P E and λ P p0, 1q, we set m λ :" p1 ´λq m `λm, w λ :" p1 ´λq ŵ `λw. We have by minimality of p m, ŵq:

ˆT 0 ˆTd Lpx, w λ m λ , m λ qm λ `Ĝpm λ pT qq ě ˆT 0 ˆTd Lpx, ŵ m , mq m `Ĝp mpT qq. (2.13)
By the convexity condition of L " Lpx, α, mq in (2.5), the map ps, zq Ñ Lpx, s{z, mqs on p0, `8q ˆRd is convex for any fixed x, m. So we have

ˆT 0 ˆTd Lpx, w λ m λ , m λ qm λ ď p1 ´λq ˆT 0 ˆTd Lpx, ŵ m , m λ q m `λ ˆT 0 ˆTd Lpx, w m , m λ qm.
So we can rewrite (2.13) as:

λ ˆˆT 0 ˆTd Lpx, w m , m λ qm ´ˆT 0 ˆTd Lpx, ŵ m , m λ q mě ˆT 0 ˆTd Lpx, w λ m λ , m λ qm λ ´ˆT 0 ˆTd Lpx, ŵ m , m λ q m ě ´ˆˆT 0 ˆTd Lpx, ŵ m , m λ q m ´ˆT 0 ˆTd
Lpx, ŵ m , mq m˙´p Ĝpm λ pT qq ´Ĝp mpT qqq.

Thus dividing by λ ą 0 and letting λ Ñ 0 `we find, thanks to the regularity of L and Ĝ: We can then conclude exactly as in [START_REF] Briani | Stable solutions in potential mean field game systems[END_REF] that there exists û such that pû, mq is a classical solution to the MFG system (2.11) and that ŵ " ´mD p Hpx, Dû, mptqq.

ˆT 0 ˆTd Lpx,

Efficiency of MFG equilibria

Let pt 0 , m 0 q P r0, T s ˆPpT d q be an initial distribution and pu, mq be the solution of the MFG system $ & % ´Bt u ´∆u `Hpx, Du, mptqq " 0 in pt 0 , T q ˆTd B t m ´∆m ´divpmD p Hpx, Du, mptqqq " 0 in pt 0 , T q ˆTd mpt 0 , xq " m 0 pxq, upT, xq " Gpx, mpT qq in T d .

( 

where the infimum is taken over the pairs pm, αq such that B t m ´∆m `divpmαq " 0, in pt 0 , T q ˆTd , mpt 0 , xq " m 0 pxq in T d .

(3.16)

Although C ˚depends on the initial position pt 0 , m 0 q, we will omit to write this dependence explicitly to simplify the expressions. We say that an equilibrium pu, mq, solution of the MFG system (3.14), is efficient if

Cpu, mq " C ˚.
We say that the MFG system (3.14) is globally efficient if, for any initial position pt 0 , m 0 q P r0, T s ˆPpT d q, there exists an efficient MFG equilibrium with initial position pt 0 , m 0 q. As the double integral vanishes because of Convention (2.4), we get c 1 ptq " 0, and therefore, coming back to (3.17), ˆRd δL δm py, α ˚pt, yq, x, mptqqmpt, yqdy " 0 @pt, xq P r0, T s ˆTd .

A necessary condition for efficiency

Equality upT, xq " vpT, xq `cpT q also implies by Lemma 2.1 that Gpx, mpT qq " δ p G δm pmpT q, xq `cpT q " ˆTd δG δm py, mpT q, xqmpT, yqdy `Gpx, mpT qq ´ˆT d Gpy, mpT qqmpT, yqdy `cpT q.

Integrating with respect to mpT, xqdx and using Convention (2.4), we obtain:

0 " ´ˆT d Gpy, mpT qqmpT, yqdy `cpT q, and therefore ˆTd δG δm py, mpT q, xqmpT, yqdy " 0 @x P T d .

Characterization of the global efficiency

Let us recall that we say that the MFG system (3.14) is globally efficient if, for any initial position pt 0 , m 0 q P r0, T s ˆPpT d q, there exists an efficient MFG equilibrium with initial position pt 0 , m 0 q. In order to proceed and characterize global efficiency, we need to work in a special case: we assume that H has the separate form Hpx, p, mq " H 0 px, pq ´F px, mq @px, p, mq P T d ˆRd ˆPpT d q.

(3.18

)
Then L is also in a separate form:

Lpx, α, mq " L 0 px, αq `F px, mq, where L 0 px, αq " sup p α ¨p ´H0 px, pq is the convex conjugate of H 0 with respect to the last variable. In this case, the MFG system (3.14) becomes: $ & % ´Bt u ´∆u `H0 px, Duq ´F px, mptqq " 0 in pt 0 , T q ˆTd B t m ´∆m ´divpmD p Hpx, Duqq " 0 in pt 0 , T q ˆTd mpt 0 , xq " m 0 pxq, upT, xq " Gpx, mpT qq in T d .

( Then, the MFG system is globally efficient: for any initial condition pt 0 , m 0 q P r0, T s ˆPpT d q, there exists a solution pu, mq to the MFG system (3. which is also equivalent to the existence of C 2 maps F : PpT d q Ñ R and G : PpT d q Ñ R such that F px, mq " Fpmq `δF δm pm, xq, Gpx, mq " Gpmq `δG δm pm, xq @px, mq P T d ˆPpT d q.

Surprisingly, this condition depends only on the coupling terms F and G, but not on the Hamiltonian H 0 .

Proof. We have seen in Propositions 3.2 and 3.3 that the existence of F for which (3.21) holds is sufficient for the global efficiency. Conversely, if the MFG system is globally efficient, then, for any initial condition pt 0 , m 0 q P r0, T s ˆPpT d q, where m 0 has a smooth density, there exists a MFG equilibrium pu, mq such that ˆTd δF δm py, x, mptqqmpt, yqdy " 0 and ˆTd δG δm py, x, mpT qqmpT, yqdy " 0.

In particular, for t " t 0 , we obtain ˆTd δF δm py, x, m 0 qm 0 pyqdy " 0.

Choosing t 0 arbitrarily close to T , mpT q becomes closer and closer to m 0 (because m 0 has a smooth density), we obtain: ˆTd δG δm py, x, m 0 qm 0 pyqdy " 0.

We conclude by approximation and using Proposition 3.3 again.

4 Lower bound on C ´CT heorem 4.1. Under our standing assumptions, let pu, mq be a solution to the MFG system (3.14) starting from pt 0 , m 0 q P r0, T s ˆPpT d q. Then we have the lower bound: for any ε ą 0,

Cpu, mq ´C˚ě C ´1 ε ´ˆT ´ε t 0 `ε ˆTd "ˆT d δL δm px, α ˚pt, xq, y, mptqqmpt, xqdx  2 dydt ¯2 (4.22) `C´1 ´ˆT d "ˆT d δG δm px, mpT q, yqmpT, xqdx  2 dy ¯4,
where α ˚pt, xq " ´Dp Hpx, Dupt, xq, mptqq and where the constants C ě 1 on the regularity of H, G and on m 0 and where C ε ě 1 depends also on ε.

Remark 4.1. The presence of ε is related to the constraints mpt 0 q " m 0 and upT q " Gpx, mpT qq: they prevent the choice of arbitrary test functions in the proof. For instance, if G " 0, one can replace T ´ε by T in the integral.

Proof of Theorem 5.1. As the equation for m is uniformly parabolic, for ε ą 0 there exists a constant C ε such that m has a C 2 density which is bounded below by C ´1 ε on rt 0 `ε{2, T s. With a given pµ, βq smooth solution to

B t µ ´∆µ `divpβq " 0 in pt 0 , T q ˆTd , µpt 0 , xq " 0 in T d , (4.23) 
with β " µ " 0 on rt 0 , t 0 `ε{2s, we set τ ε :" 1{p2C ε }µ} 8 q and, for h P r0, τ ε s, pm h , α h q :" pm `hµ, pmα ˚`hβq{pm `hµqq where α ˚pt, xq :" ´Dp Hpx, Dupt, xq, mptqq. Note that the pair pm h , α h q satisfies m h ptq P PpT d q for any t and the constraint (3.16) for any h P r0, τ ε s (in particular m h pt 0 q " m 0 because µpt 0 q " 0). Moreover, h Ñ pm h , α h q is smooth because µ " 0 on rt 0 , t 0 `ε{2s and m is bounded below by a positive constant on rε{2, T s.

Next we define the map φ : r0, τ ε s Ñ R by φphq :"

ˆT t 0 ˆTd L px, α h pt, xq, m h ptqq m h pt, xqdxdt `ˆT d Gpx, m h pT qqm h pT, xqdx.
We have 

φ 1 phq " ˆT t 0 ˆTd L px, α h pt,
where we used the equation satisfied by the pair pµ, βq and the fact that upT, ¨q " Gp¨, mpT qq for the last equality. Let us also note for later use that 

φ 2 phq " ˆT t 0 ˆTd D 2 α L px, α h , m h q pβ ´µα h q ¨p β m h ´µα h m h qdxdt `2 ˆT t 0 ˆTd ˆTd D α δL δm px, α h , m h ,
Recall that, for any h P r0, τ ε s, the pair pm h , α h q satisfies m h ptq P PpT d q for all t P rt 0 , T s and the constraint (3.16). Therefore φphq ě C ˚@h P r0, τ ε s.

As We now use (4.26) to obtain Cpu, mq ´C˚ě pκ ´Cεqh ´C 2ε 2 h 2 @h P r0, τ 0 s.

φphq ď φp0q `hφ 1 p0q `h2 2 
Choosing ε " cκ (for some constant c ą 0 small enough) and h " mintτ 0 , C ´1κ 3 u (for some large constant C with the same dependence as above), we get our second lower bound:

Cpu, mq ´C˚ě C ´1κ 4 .
Putting together our two lower bounds on C ´C˚, we finally obtain Inequality (4.22).

5 Upper bounds on C ´C˚.

In order to obtain an upper bound for C ´C˚, we come back to the case where H is separated, i.e., satisfies (3.18). Let us recall that, in this case, the MFG system becomes (3.19). Recall the notation Fpmq :" ˆTd F px, mqmpdxq, Ĝpmq :" ˆTd Gpx, mqmpdxq, @m P PpT d q.

Theorem 5.1. Under our standing assumptions, assume that the initial condition m 0 has a smooth and positive density. Assume in addition that the maps F and Ĝ are convex on PpT d q.

Let pu, mq be a solution to the MFG system (3.19) starting from pt 0 , m 0 q. Then we also have the upper bound: 

Examples

Throughout this part, we assume to fix the ideas that H " H 0 px, pq ´F px, mq is separated (i.e., satisfies (3.18)). To simplify the expressions, we also suppose that t 0 " 0 and G " 0. Let us recall that condition (3.20) characterizes the fact that the MFG system is globally efficient: for any initial distribution m 0 , there exists an efficient MFG equilibrium, i.e., a solution pu, mq to (3.14) such that Cpu, mq " C ˚. Our first example shows that there are MFG systems which are globally efficient. However, the other examples show that this is seldom case for many standard classes of coupling functions. where the supremum is taken over t 1 , t 2 P rε, T ´εs.

Example 6.3. We now assume that F derives from a potential: There exists a C 1 map Φ : PpT d q Ñ R such that F " δΦ{δm. Note that, in this setting, we have F pmq " ˆTd δΦ δm pm, xqmpdxq " 0 @m P PpT d q.

In particular, F is convex. Then, by Lemma 2.1, ˆTd δF δm px, m, yqmpdxq " ´F py, mq @py, mq P T d ˆPpT d q.

This implies that the MFG system associated with which implies (by choosing m to be a Dirac mass), that φ does not depend on y. In other words, F does not depend on m.

F

  characterizing the minimum for C ˚are very close, and, in fact, are (almost) identical if where α ˚pt, xq " ´Dp Hpx, Dupt, xq, mptqq. The constants C ě 1 depends on the regularity of the data and C ε ě 1 depends also on ε. The presence of ε is technical and is related with the constraints at time t " 0 (where mp0q " m 0 ) and t " T (where upT, xq " Gpx, mpT qq).

	ˆTd	δL δm	py, αpt, yq, x, mptqq mpt, yqdy " 0	and	ˆTd	δG δm	py, mpT q, xqmpT, dyq " 0.
	It turns out that, if a MFG equilibrium pu, mq is efficient, i.e., if Cpu, mq " C ˚, then the above equalities must hold (Proposition 3.1).
	When the above equalities do not hold, one may wonder how far MFG equilibria are from
	efficiency. This is precisely the aim of our main results (Theorem 4.1 and Theorem 5.1) which
	give lower and upper bounds for the difference between C ˚and Cpu, mq. The lower bound, stated
	in Theorem 4.1, reads, for any ε ą 0: Cpu, mq ´C˚ě C ´1 ε ´ˆT ´ε ε ˆTd	"ˆT d `C´1 δL δm ´ˆT d px, α ˚pt, xq, y, mptqqmpt, xqdx "ˆT d δG δm px, mpT q, yqmpT, xqdx  2 dydt  2 ¯2 dy ¯4,

  1, we show the upper bound:

	Cpu, mq ´C˚ď C	´ˆT 0 ˆTd	"ˆT d	 2 px, mpT q, yqmpT, xqdx dydt px, y, mptqqmpt, xqdx `ˆT d δF δm "ˆT d δG δm	 2	dy	¯1{2	,
	where the constant C depends on the regularity of H, F and m 0 . As δL{δm " δF {δm in the separate case, this lower bound is close to the upper bound given above (with a different exponent, though). We can conclude that, in this setting, the size of the quantity › › ´Td δF δm py, m, ¨qmpdyq › › L 2 and › › ´Td δG δm py, m, ¨qmpdyq › › L 2 along the MFG equilibrium pu, mq controls the difference Cpu, mqĆ ˚.

  us compute, for later use, δ p G{δm:

	Lemma 2.1. We have			
		δ p G δm	pm, yq "	ˆTd	δG δm	px, m, yqmpdxq `Gpy, mq	´ˆT d	Gpx, mqmpdxq.	(2.10)
									*
	" lim sÑ0 `ˆT d	1 s	Gpx, pp1 ´sqm `sm 1 q ´Gpx, mq (	mpdxq	`ˆT d	Gpx, mqpm 1 ´mqpdxq
	"	ˆTd ˆTd	δG δm	px, m, yqpm 1 ´mqpdyqmpdxq	`ˆT

Proof. For m 1 P PpT d q, we have

lim sÑ0 `1 s p p Gpp1 ´sqm `sm 1 q ´p Gpmqq " lim sÑ0 `1 s "ˆT d Gpx, pp1 ´sqm `sm 1 qppp1 ´sqm `sm 1 qpdxq ´ˆT d

Gpx, mqmpdxq d Gpx, mqpm 1 ´mqpdxq.

  .14) The social cost associated with the equilibrium pu, mq is defined by Cpu, mq " ˆT t 0 ˆTd tLpx, α ˚pt, xqq `F px, mptqqu mpt, xq dxdt `ˆT d Gpx, mpT qqmpT, xqdx, where α ˚pt, xq :" ´Dp Hpx, Dupt, xqq and Lpx, α, mq " sup pPR d p´α ¨p ´Hpx, p, mqq. We want to compare Cpu, mq with the social cost obtained by a global planner, which is defined as

C ˚:" inf pm,αq ˆT t 0 ˆTd tLpx, αpt, xq, mptqqu mpt, xq dxdt `ˆT d Gpx, mpT qqmpT, xqdx,

  Proposition 3.1. Let pu, mq be a MFG equilibrium, i.e., a solution to (3.14). If pu, mq is efficient, then, for any pt, xq P r0, T s ˆTd ,

	ˆTd	δL δm	py, α ˚pt, yq, x, mptqqmpt, yqdy " 0	and	ˆTd	δG δm	pt, mpT q, xqmpT, yqdy " 0,
			´c1 ptq "	ˆRd	δL δm	py, α ˚pt, yq, x, mptqqmpt, yqdy.	(3.17)
	We integrate the above equality against mptq:
			´c1 ptq "	ˆTd ˆRd	δL δm	py, α ˚pt, yq, x, mptqqmpt, yqmpt, xqdydx.

where α ˚pt, xq :" ´Dp Hpx, Dupt, xq, mptqq.

Proof. Assume that equality Cpu, mq " C ˚holds. Then the pair pm, α ˚q is a minimizer for C ˚.

By the characterization of minimizers in Lemma 2.2, there exists v such that the pair pv, mq solves system (2.11) with, by (2.12), α ˚pt, xq " ´Dp Hpx, Dupt, xq, mptqq " ´Dp Hpx, Dvpt, xq, mptqq @pt, xq P rt 0 , T s ˆTd .

By injectivity of D p H with respect to the second variable (coming from the strict convexity of H with respect to p), we get Du " Dv. This implies that there is a constant cptq such that upt, xq " vpt, xq `cptq. By the equations satisfied by u and v we have therefore, for any pt, xq,

  Assume that H is of separate form (i.e., (3.18) holds) and that, for any px, mq P T d ˆPpT d q,

	ˆTd	δF δm	py, x, mptqqmpt, yqdy " 0	and	ˆTd	δG δm	py, x, mpT qqmpT, yqdy " 0.
	The following statement is a kind of converse.	
	Proposition 3.2. ˆTd	δF δm	py, m, xqmpdyq " 0 and	ˆTd	δG δm	py, m, xqmpdyq " 0.	(3.20)

.
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Note also that δL{δm reduces to δL δm py, α, x, mq " δF δm py, x, mq, where the right-hand side is independent of α. In this case, Proposition 3.1 states that, if the MFG equilibrium pu, mq is efficient, then, for any pt, xq P rt 0 , T s ˆTd ,

  Without loss of generality, we can assume that m 0 has a smooth and positive density. Otherwise we can proceed by approximation. Let p m, αq be the minimum of(3.15) and û be such that pû, mq solves (2.11) (recall Lemma 2.2). By assumption(3.20) and the structure condition (3.18), pû, mq solves we see that upt, xq " ûpt, xq `´T d Gpy, mpT qqmpdyq the MFG system(3.19). Moreover, by the definition of u, û and m, Theorem 3.4. Assume that H is of separate form (i.e., (3.18) holds). Then the MFG system is globally efficient if and only if

	ˆTd	δF δm	' ' & ' ' % $ py, m, xqmpdxq " 0, ´Bt û ´∆û `H0 px, Dûq ´F px, mptqq " 0 B t m ´∆ m ´divp mD p Hpx, Dûpt, xqqq " 0 mpt 0 , xq " m 0 pxq, ûpT, xq " δ p δm p mpT q, xq G ˆTd δG δm py, m, xqmpdxq " 0,	in R d . in pt 0 , T q ˆRd in pt 0 , T q ˆRd @px, mq P T
	As, by Lemma 2.1,			
						δ p G δm	pm, xq " Gpx, mq	´ˆT d	Gpy, mqmpdyq
		δF δm	px, m, yq "	δF δm	pm, yq	`δ2 F δm 2 pm, x, yq "	δ 2 F δm 2 pm, y, xq	`δF δm	pm, xq,
	because, according to [6, Lemma 2.2.4],
					δ 2 F δm 2 pm, x, yq "	δ 2 F δm 2 pm, y, xq	´δF δm	pm, yq	`δF δm	pm, xq.
	We can then conclude that			
	ˆTd	δF δm	px, m, yqmpdxq "	ˆTd	δ 2 F δm 2 pm, y, xqmpdxq	`ˆT d	δF δm	pm, xqmpdxq " 0,
	by Convention (2.4).			
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) such that Cpu, mq " C ˚.

Proof.

Cpu, mq " Cpû, mq " C ˚.

Let us now point out an equivalent form of (3.20):

Proposition 3.3. The map F satisfies (3.20) if and only if there exists a C 2 function F :

PpT d q Ñ R such that F px, mq " Fpmq `δF δm pm, xq @px, mq P T d ˆPpT d q.

(3.21)

In this case, one can take F " F, where F is given by Fpmq :" ˆTd F px, mqmpdxq @m P PpT d q.

Proof. If (3.20) holds, then it is obvious by (2.10) that F is of the form (3.21) with F " F . Conversely, if F is of the form (3.21), then

To summarize, we have obtained the following characterization of global efficiency: d ˆPpT d q,

  xq, m h ptqq µpt, xqdxdt `ˆT t 0 ˆTd D α Lpx, α h pt, xq, m h ptqq ¨pβpt, xq ´αh pt, xqµpt, xqq dxdt

	`ˆT t 0 ˆTd ˆTd px, α we obtain δL δm	
	φ 1 p0q "	ˆT t 0 ˆTd p´B `ˆT t 0 ˆTd ´Dupt, xq ¨pβpt, xq ´α˚p t, xqµpt, xqq dxdt	
		`ˆT t 0 ˆTd ˆTd `ˆT d " Gpx, mpT qqµpT, xq δL δm px, α ˚pt, xq, mptq, yqµpt, yqmpt, xqdydxdt `ˆT d δG δm px, mpT q, yqµpT, yqmpT, xqdy	*	dx
	"	δL δm δG ˆT t 0 ˆTd ˆTd `ˆT d ˆTd δm px, mpT q, yqµpT, yqmpT, xqdydx, px, α ˚pt, xq, mptq, yqµpt, yqmpt, xqdydxdt	

h pt, xq, y, m h ptqqµpt, yqm h pt, xqdydxdt `ˆT d " Gpx, m h pT qqµpT, xq `ˆT d δG δm px, m h pT q, yqµpT, yqm h pT, xqdy * dx. Recalling the definition of α ˚and the fact that L px, α ˚pt, xq, mptqq " ´Hpx, Dupt, xq, mptqq `Dp Hpx, Dupt, xq, mptqq ¨Dupt, xq " ´Bt upt, xq ´∆upt, xq ´α˚p t, xq ¨Dupt, xq, and that D α Lpx, α ˚pt, xq, mptqq " ´Dupt, xq, t upt, xq ´∆upt, xq ´α˚p t, xq ¨Dupt, xqqµpt, xqdxdt

  yq ¨pβ ´αh µqpt, xqµpt, yqdxdydt `ˆT t 0 ˆTd ˆTd δ 2 L δm 2 px, α h , m h , y, zqµpy, tqµpz, tqm h pt, xqdxdydt `2 ˆT t 0 ˆTd ˆTd δL δm px, α h pt, xq, m h ptq, yqµpt, yqµpt, xqdydxdt `2 ˆTd ˆTd δG δm 2 px, m h pT q, yqµpx, T qµpy, T qdxdy `ˆT d ˆTd δ 2 G δm 2 px, m h pT q, y, zqµpx, T qµpy, T qm h pt, xqdxdy.

  }φ 2 } 8 " Cpu, mq `hφ By Convention (2.4), we have ´Td µpt, yqdy " 0, so that we can find a continuous map β " βpt, xq such that (4.23) holds. Note that µ is uniformly bounded by a constant C 1 in L 8 independently of ε and therefore we can choose τ ε " 1{pC 0 C 1 q. Let us define φ as above. Then φ is of class C 1,1 with }φ 2 } 8 ď C 2 , where C 2 depends only on ε and on the regularity of H and F and C 0 . Thus, applying (4.26) with h " mintτ ε , ´φ1 p0q{}φ 2 } 8 u, we obtain our first lower bound: for some constant C ε depending on the data, on m 0 and on ε. P rt 0 , T ´εs pt ´pT ´εqq{ε if t P rT ´ε, T s where ε P p0, T {2q is small. Note that we can choose the lower bound C ε such that m ě C ´1 ε on rT {2, T s independent of ε. Hence the constant τ ε :" 1{p2C ε }µ} 8 q does not depend on ε either, and we call it τ 0 .As before we can find a continuous map β " βpt, xq such that (4.23) holds. As }γ 1 } 8 ď T {ε, we have }β} 8 ď C{ε where C depends on the regularity of G only. Moreover µ is bounded in L 8 and, therefore, }α h } 8 ď C{ε.Let φ be associated to pµ, βq as above. Then, by (4.25) and our growth assumptions (2.6), (2.7), we have }φ 2 } 8 ď C{ε 2 . On the other hand, from the choice of µ and (4.24),

	C ´C˚ě C ´1 ε	ˆT t 0 `ε ˆTd ´ε	"ˆT d	δL δm	px, α ˚pt, xq, y, mptqqmpt, xqdx	 2	mpt, yqdydt,
	In order to obtain the lower bound involving G, we choose
		µpt, yq :" ´γptqmpT, yq	ˆTd	δG δm	px, mpT q, yqmpT, xqdx,	(4.28)
	1 p0q px, α ˚pt, xq, mptq, yqµpt, yqmpt, xqdydxdt `h2 2 }φ 2 } 8 , if t φ 1 p0q " γptq :" " 0 ˆT T ´ε γptq ˆTd ˆTd δL δm Cpu, mq ´C˚ě ´hφ 1 p0q ´h2 2 }φ 2 } 8 `ˆT d ˆTd γpT q δG δm px, mpT q, yqµpT, yqmpT, xqdydx, @h P r0, τ ε s. We now apply the above computations to two particular cases, one to get the lower bound where we obtain, (4.26) ď Cε ´κ, involving F and the other one for the lower bound involving G. For ε P p0, pT ´t0 q{2q, let us set: µpt, yq :" ´γptqmpt, yq ˆTd δL δm px, α ˚pt, xq, y, mptqqmpt, xqdx, (4.27) with κ :" ˆTd "ˆT d  2 δG δm px, mpT q, yqmpT, xqdx mpT, yqdy.
	where		γptq :"	$ ' ' & ' ' %	1 0 2pt ´ε{2q{ε if t P rt 0 `ε{2, t 0 `εs if t P rt 0 `ε, T ´εs if t P rt 0 , t 0 `ε{2s pT ´tq{ε if t P rT ´ε, T s
	By (4.24) and the definition of µ in (4.27) we have
	φ 1 p0q " ď	´ˆT t 0 ´ˆT t 0 `ε ˆTd γptq ˆTd ´ε "ˆT "ˆT d d δL δL δm δm px, α ˚pt, xq, y, mptqqmpt, xqdx px, α ˚pt, xq, y, mptqqmpt, xqdx  2  2 mpt, yqdydt. mpt, yqdydt

  where the constants C ě 1 depends on the regularity of H 0 , F , G and on m 0 .Remark 5.1. The result can actually be generalized to MFG systems with non separated Hamiltonian. However, in this case, the convexity condition has to be stated on the map However, as this later condition seems very restrictive, we have chosen to state the result for separated Hamiltonians. is bounded in L 8 by a constant which depends on the regularity of the data and of m 0 . Combining the last set of inequalities, we find } m ´m} L 2 pr0,T sˆT d q `}Dpû ´uq} L 2 pr0,T s,L 2 mptq`mptq pT d qq ď Cκ. We are now in position to compare Cpu, mq and C Duqq ´Lpx, ´Dp H 0 px, Dûqq `F px, mptqq ´F px, mptqqu mdxdt ď Cp}m ´m} L 2 pr0,T sˆT d q `}Dpû ´uq} L 2 pr0,T s,L 2 mptq pT d qq q ď Cκ. This proves the result.

	and mptq are probability measures, we have
	Cpu, mq ´C˚ď C ´1 ˆT t 0 ˆTd pmpt, xq `mpt, xqq|Du ´Dû| 2 dxdt ´ˆT t 0 ˆTd "ˆT d δF δm px, y, mptqqmpt, xqdx `ˆT d "ˆT d δG δm ´ˆT t 0 ˆTd ˜δ p F δm pmptq, xq ´ˆT d δF δm py, mptq, xqmpt, yqdy ´δ p  2 F δm p mptq, xq ¸pmpt, xq ´mpt, xqqdxdt dydt (5.29)  2 dy ¯1{2 , ´ˆT d ˜δ p G δm pmpT q, xq ´ˆT d δG δm py, mpT q, xqmpT, yqdy ´δ p F δm p mpT q, xq ¸pmpT, xq ´mpT, xqqdx. px, mpT q, yqmpT, xqdx As F and Ĝ are convex, and thus δ p C ď F δm p m, xq and δ p G δm p m, xq are monotone, we obtain:
		C	´1 ˆT t 0 ˆTd	pmpt, xq `mpt, xqq|Dupt, xq ´Dûpt, xq| 2 dxdt
			ď	pm, wq Ñ δF δm py, mptq, xqmpt, yqpmpt, xq ´mpt, xqqdydxdt ˆTd Lpx, w{m, mqdm. ˆT t 0 ˆTd ˆTd `ˆT d ˆTd δG δm py, mpT q, xqmpT, yqpmpT, xq ´mpT, xqqdydx
			ď Cκ sup tPr0,T s	} mptq ´mptq} L 2 pT d q
	where Proof of Theorem 5.1. We compute as usual (see [24]) d dt ˆTd pu ´ûqpm ´mq. κ :" ˜ˆT d ˆT t 0 "ˆT d  2 δF δm py, mptq, xqmpt, yqdy dt `"ˆT
	We have, since mp0q " mp0q " m 0 ,
	0 "	ˆT t 0 ˆTd	mpH 0 px, Dûq ´H0 px, Duq ´Dp H 0 px, Duq ¨pDû ´Duqdxdt
		`ˆT t 0 ˆTd `ˆT t 0 ˆTd `ˆT d ˜Gpx, mpT qq mpH 0 px, Duq ´H0 px, Dûq ´Dp H 0 px, Dûq ¨pDu ´Dûqdxdt ˜F px, mptqq ´δ p F δm p mptq, xq ¸pmpt, xq ´mpt, xqqdxdt ´δ p G δm p mpT q, xq ¸pmpT, xq ´mpT, xqqdx.
	Using the uniform convexity of H 0 , we find:
	C Cpu, mq " C ˚`ˆT ´1 ˆT t 0 ˆTd ď ´ˆT pmpt, xq `mpt, xqq|Du ´Dû| 2 dxdt t 0 ˆTd ˜F px, mptqq ´δ p F δm ˚: p mptq, xq ¸pmpt, xq ´mpt, xqqdxdt ´ˆT d ˜Gpx, mpT qq ´δ p G δm t 0 ˆTd tLpx, ´Dp H 0 px, Dûqq `F px, mptqqu pm ´mqdxdt p mpT q, xq ¸pmpT, xq ´mpT, xqqdx, `ˆT t 0 ˆTd tLpx, ´Dp H 0 px,	(5.30)
	where C depends on a lower bound of D 2 pp H 0 in (2.8). By (2.10) and using the fact that mptq

d δG δm py, mpT q, xqmpT, yqdy  2 dx ¸1{2 . The map µpt, xq :" mpt, xq ´mpt, xq solves B t µ ´∆µ ´divpµD p H 0 px, Duqq " divp mpD p H 0 px, Dûq ´Dp H 0 px, Duqqq with initial condition µp0, ¨q " 0. So, following [7, Lemma 7.6], we have, for any t P r0, T s, }µpt, ¨q} L 2 pT d q ď C ˆˆT t 0 ˆTd m2 ps, xq|D p H 0 px, Dûps, xqq ´Dp H 0 px, Dups, xqq| 2 dxds ˙1{2 ď C ˆˆT t 0 ˆTd p mps, xq `mps, xqq|Dpû ´uqps, xq| 2 dxds ˙1{2 , because m

  Example 6.1. Let us recall that given a C 2 map F : PpT d q Ñ R and defining the coupling function F by F px, mq :" Fpmq `δF δm pm, xq @px, mq P T d ˆPpT d q, the MFG system (3.19) is globally efficient (Theorem 3.4). We now prove that, if F is not affine in m, then F genuinely depends on m: indeed, if F does not depend on m, there exists a map f : T d Ñ R with Integrating against m and using Convention (2.4), this implies that Example 6.2. Let us now suppose that F " F pmq does not depend on x. Then Hence the associated MFG system if globally efficient (i.e., (3.20) holds) if only if δF δm pm, xq vanishes identically, in which case F is constant.Moreover, if pu, mq is a MFG equilibrium, then we have, by (6.31) and the fact that B t m is uniformly bounded by the regularity of the data, |F pmpt 2 qq ´F pmpt 1 qq| " ˇˇˇˆt so that our bound from below can be rewritten in term of the modulus of Holder continuity of F along the trajectory m: for any ε P p0, T {2q, |F pmpt 2 qq ´F pmpt 1 qq| pt 2 ´t1 q 1{2

							"
	Cpu, mq ´C˚ě C ´1 ε	sup t 1 ‰t 2
					Fpmq	`δF δm	pm, xq " f pxq.
							ˆTd
					Fpmq "	f pxqmpdxq,
			Fpmq "	ˆTd ˆTd	φpx, yqmpdxqmpdyq.
	Then the coupling					
	F px, mq " Fpmq	`δF δm	pm, xq
	ˆTd					
	"	φpx, yqmpdyq	`ˆT d	φpz, xqmpdzq	´ˆT d ˆTd	φpz, yqmpdzqmpdyq
			ˆTd	δF δm	pm, yqmpdxq "	δF δm	pm, yq.	(6.31)
			2 t 1 ˆTd ˆˆT d Cpt 2 ´t1 q 1{2 ˜ˆT δF δm pmptq, yqmpt, xqdy ˙Bt mpt, yqdydt ˇˇď 0 ˆTd "ˆT d ¸1{2  2 δF δm px, mptq, yqmpt, xqdx dydt ,

which is affine in m.

For instance, let φ : T d ˆTd Ñ R be a non vanishing map and set F as satisfies (3.20) and depends on m as soon as φ " φpx, yq genuinely depends on x and y. * 4 .

  if globally efficient if and only if F vanishes identically. Moreover, if pu, mq is a MFG equilibrium, Hence the MFG system associated with F is globally efficient if and only if ˆTd φpx, yqmpdxq " ˆTd ˆTd φpx, zqmpdzqmpdxq @py, mq P T d ˆPpT d q,

	ˆT 0 ˆTd	"ˆT d	δF δm	px, mptq, yqmpt, xqdx	 2	dydt "	ˆT 0 ˆTd	rF py, mptqqs 2 dydt.
	So our estimates simply read:			
	C ´1							
					Then	δF δm	px, m, yq " φpx, yq	´ˆT d	φpx, zqmpdzq, so that
	ˆTd	δF δm	px, m, yqmpdxq "	ˆTd	ˆφpx, yq	´ˆT d	φpx, zqmpdzq ˙mpdxq.

ε ˆˆT ´ε ε ˆTd rF py, mptqqs 2 dydt ˙2 ď Cpu, mq ´C˚ď C ˆˆT 0 ˆTd rF py, mptqqs 2 dydt ˙1{2 . Example 6.4. Finally we suppose that F is of the form F px, mq " ˆTd φpx, yqmpdyq for some smooth map φ : T d ˆTd Ñ R.