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Abstract—This paper is about the collaborative use of a far-
infrared spectrum human detector and a visible spectrum human
detector; the idea is to make collaborate these two detectors
of different nature to automatically adapt the human detection
whatever the luminosity changes and whatever the infrared emis-
sion changes of the scene. Our collaborative approach of detection
handles: 1) gradual luminosity changes due, for instance, to the
passage from night to day (and vice-versa), 2) sudden luminosity
changes due, for instance, to navigation in a forest (when going
through a glade in a forest), 3) infrared emission saturation when
the global temperature of the scene is very high and does not
permit to distinguish human people in infrared. Our approach of
detection permits to detect people 24 hours a day and regardless
the weather conditions. Furthermore, the proposed approach is
relatively fast: it is practically as fast as using one detector alone
whereas two are used in the same time.

I. INTRODUCTION

Human detection is still a challenging problem despite the
recent advances in the field. There is still room for improve-
ment to make human detection faster and more robust. The
classic approaches to enhance the detection often consist of
designing better features and/or choosing better classification
methods. Furthermore, as is frequently the case, the detection
relies on one camera only. In this paper, we propose to extend
the robustness of human detection using a far-infrared human
detector and a visible human detector in concert, in a flexible
and fast manner.

A. Human detection in the visible spectrum

Almost all the actual state-of-the-art human detection al-
gorithms rely on classifiers: a classifier is first trained and,
at runtime, the classifier is called to take decisions. A very
popular algorithm based on this approach is the Histogram of
Oriented Gradients (HOG) detector of Dalal and Triggs [1].
Since then, researchers have continued to improve detectors’
speed and robustness. Amongst the top-performing ones, many
state-of-the-art algorithms are based on the Integral Channel
Features (ICF) detector of Dollár et al. [2]. It uses integral im-
ages and a soft-cascade classification to speed up the detection.
Amongst the most well-known ICF-based detectors: the Fastest
Detector in the West (FPDW) [3] approximates the features in
the image pyramid, whilst the very recent and fast Aggregate
Channel Features (ACF) detector performs pixel look-ups in
aggregated image channels [3].
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Fig. 1. Our collaborative detection approach adapts itself if one detector is
suddently failing or one camera is becoming inefficient: (1) the visible and
the far-infrared spectrum are available, people are detected, (2) the infrared
spectrum is no longer available, the detection is still continuing and (3) the
visible spectrum is no longer available, the detection is still continuing.

B. Human detection in the infrared spectrum

Most of the works concerning human detection in the
infrared spectrum are adaptations of approaches used in the
visible spectrum. Zhang et al. compared different configura-
tions of detectors and suggested that there is no need to invent
radically different methods in this modality to perform well
[4]. Olmeda et al. proposed a discrete approach for human
detection based on a robust infrared spectrum descriptor: the
histogram of phase congruency orientation [5]. The phase
congruency is less sensitive to changes of contrast and, thus,
performs well on infrared images [6]. However, computing the
phase congruency is computationally intensive when compared



to other simpler and yet efficient descriptors. Recently, Brehar
et al. proposed to combine a search space reduction with a
slightly modified ACF detector: resulting in 30Hz fast human
detection [7].

C. Combining the visible and the infrared spectrum

The information available through the visible spectrum is
very rich. Indeed, it is possible to obtain: gradient information,
contrast information, color information, etc. This information
allows a very detailed analysis of the scene. However, this
richness of information is only available if there is enough
luminosity in the scene. Indeed, a lack of luminosity impov-
erishes the information: the contrast decreases and the color
range shrinks. The performance of lots of computer vision
approaches are impacted by this phenomenon.

Infrared emission is more stable in time than visible light
emission. Because infrared emission sources are less impacted
by changes of luminosity: they might continue to emit in total
darkness depending on the emission source, such as the human
body. However, infrared camera sensors have some limitations:
they can saturate when the infrared emission is too strong.
Besides, when two infrared emission sources overlaps each
other, it is hard to distinguish from one another. Note that,
people’s clothing may also absorb a lot of infrared emission.

When it comes to detect people, the visible and the infrared
spectrums may be seen as complementary. Human beings
are natural infrared emission sources, they may be spotted
just by finding abnormally high temperature regions of the
scene having a general human shape. In the visible spectrum,
human beings are sets of very specific visual features: complex
mixtures of contours and colors. There are two majors fusion
approaches to benefit from the combination of the visible
and the infrared spectrum: 1) the low-level fusion and 2) the
high-level fusion. 1) The low-level fusion is a fusion of the
visible and infrared images that can be used, for instance, to
highlight particular properties of the scene before the detection
step [8][9][10]. 2) The high-level fusion is the fusion of the
detections obtained from different detectors. Xu et al recently
proposed a fusion framework to add as many detectors as
wanted and increase the detection performance each time [11].

In this paper, we propose another fusion approach: a mid-
level fusion approach based on detection scores which is fast
and flexible.

D. Content of the paper

In this work, a far-infrared human detector and a visible hu-
man detector work together in a collaborative manner to adapt
the detection whatever the moment of the day and whatever
the weather conditions. With our approach, 24 hours a day
adaptative detection is made possible. Our mid-level fusion
approach is more flexible than low-level fusion approaches and
we showed that it is faster than high-level fusion approaches.

In this paper, the two detectors are: the top-performing
ACF detector of Dollár et al [3] and the adapted ACF detector
of Brehar et al [7]. For the purpose of this work, we built an
heterogeneous steroscopic system composed of a far-infrared
and a visible cameras.
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Fig. 2. a) the layout of our stereo acquisition system. V IS and IR are
respectively the visible and the infrared camera, Π1 and Π2 are the image
planes of respectively camera V IS and IR. R: rotation matrix from camera
V IS to camera IR, T: translation matrix from camera V IS to camera IR.
b) picture of our stereoscopic system.

Section II describes the design of our stereoscopic system
and the methods we used to synchronize the frames, Section
III describes in details the ACF detector of Dollár et al, Section
IV describes our fast and adaptative collaborative approach of
detection and Section V is about the tests and results of our
approach.

II. HARDWARE

In order to align visible and far-infrared images, we have
built an heterogeneous stereoscopic system composed of a
GoPro camera and a Flir tau 2 camera. The both cameras are
arranged as illustrated in Fig.2.

In order to capture human patterns in the same time and at
the same places in both images it is necessary to temporally
and spatially synchronize the frames of the two cameras.

1) Temporal synchronisation: During the grabbing, there
might be a slight temporal shift between the visible and the
far-infrared images. This shift might be due to a difference of
acquisition frequencies between the two cameras. In order to
fix this problem, two approaches are generally considered: 1)
driving one camera’s acquisition using the Trigger output of
the other camera or 2) using a reference top to fix the shift
afterwards, regardless of what caused the shift.

In our case, we have obtained an almost perfect temporal
synchronisation by using two identical acquisition pipeline:
the two video streams are converted from analogical signals to
digital signals using two grabbers with the same specifications.
With this approach, our maximum temporal shift was one
frame.

2) Spatial synchronisation: According to Krotosky et al,
there are four different approaches of spatial synchronisation
approaches of parallel-axis stereoscopic systems [12]. These
four approaches are: i) global image registration, ii) stereo
geometric registration, iii) partial image ROI registration and
iv) infinite homography registration. (i) With the global image
registration approach, the synchronization of the objects of the
scene can only be done at a certain depth of the scene. (ii) With
stereo geometric registration, a third information: the depth, is
used to geometrically register objects of the scene depending
on their depth in the scene. (iii) With partial image ROI res-
gitration, specific regions of interest of the scene are matched



and local geometric transformations are applied to synchronize
the objects. (iv) With infinite homography registration, objets
located at the infinite of the stereoscopic system are registered
using the assumption that objects perfectly overlap each other
at infinity.

Fig. 3. Examples of synchronized pairs of visible and far-infrared images
using the infinite homography registration. People close to the stereoscopic
system are not well synchronized, people far from it are well synchronized.

Our choice fell on the 4th approach, that is: the infinite
homography registration (Fig.3). We chose this approach for
three reasons: in people detection applications we cannot make
assumptions about the position of the persons in the scene, we
did not want to use any extra material to get the depth cue
and we did not want to choose a computationally intensive
approach.

The infinite homography transformation requires to make
the assumption that people are located at infinite of the
stereoscopic system. To ensure that, the baseline between the
two cameras has to be much smaller than the distance from
the stereoscopic system to the people of the scene [12].

Concretely, several parameters are required to compute the
infinite homography: the rotation matrix R from camera V IS
to camera IR and the matrices of intrinsic parameters K1 and
K2 of the both cameras.

The infinite homography matrix is defined as follows:

H∞ = K2 ×R×K−11 (1)

And every pixel of camera V IS is projected onto the image
plane of camera IR using the following mathematical relation:

(
u2
v2
w2

)
= H∞ ×

(
u1
v1
1

)
(2)

We obtainted the matrices of intrinsic parameters K1 and
K2 and the rotation matrix R using the Bouguet’s Matlab
toolbox [13].

III. THE BASIS DETECTOR : THE AGGREGATE CHANNEL
FEATURES DETECTOR

The original ACF detector of Dollár et al [3] extracts ten
different channels from a pre-filtered image: the three LUV
color channels, the normalized gradient magnitude channel
and 6 channels corresponding to the bins of the histogram of
oriented gradients. Once the channels are extracted, they are
divided into 4 × 4 adjacent pixel blocks. Each pixel block is
aggregated to form aggregated versions of the channels. And to
finish, the aggregated channels are filtered [3]. At training and
during the detection, visual features are simply pixel lookups
in the 10 filtered aggregated channels of the image.

Brehar et al proposed an infrared version of the ACF
detector [7]. Instead of using 10 channels they use only 8
channels by simply substituting the three LUV channels by
the grayscale channel. In the rest of the article, we will name
this detector the IR-ACF detector. Note that in our work we
do not use the search space reduction approach also proposed
by the same authors to work jointly with the IR-ACF detector
[7]

Two boosted classifiers are trained for our collaborative
detection: the first one for the ACF detector of Dollár et al (for
the visible camera) and the second for the IR-ACF detector of
Brehar et al (for the infrared camera). A serial combination
of 2048 depth 2 decision tree weak-classifiers is trained for
each derecrtor. This is done by looking for the pixels in
the filtered aggregated channels that best separate positive
samples (persons) and negative samples (the rest) samples in
the training data [3]. At detection, the weak-classifiers are
evaluated in a soft-cascade manner: a detection occurs if all the
weak-classifiers are ”passed”, otherwise no detection occurs.
A weak-classifier is passed if its boosting result (added to
previous weak-classifier boosting results) is superior to a trace,
called the rejection trace [2].

IV. COLLABORATIVE DETECTION

In this paper, we consider the problem of people detection
in both the visible and the far-infrared spectrum as a bi-
objective problem. This will allow our detection approach to
adapt itself with respect to the environmental conditions. In
order to solve such a bi-objective problem we have to find
the best fused infrared/visible scores of the search space. This
can be done using the so-called Pareto dominance critera. Fast
exploration of bi-objective solution spaces is possible using
the Multiple Objective Particle Swarm Optimization algorithm
(MOPSO) of Coello et al [14]. However it does not adapt its
solutions according to the environmental conditions, that is: it
does not take into account that one detector might be failing
when searching for the best fused infrared/visible scores. In
this paper we propose an approach to solve this and thus permit
dynamic adaptation.

The rest of the section is divided as follows: the first sub-
section is about the optimization of mono-objective problems
using PSO, the second section concerns the optimization of
bi-objective problems using MOPSO and the last subsection
is about our approach of detection: the Multiple Modalities
(M2D) approach.



A. Mono-objective problem

Mono-objective problems that cannot be optimized ana-
lytically can be optimized using meta-heuristic optimization
algorithms; searching for people in visible spectrum images is
one of these problems. Amongst these optimization algorithms
the Particle Swarm Optimization algorithm is a very popular
and efficient meta-heuristic algorithm where the optimization
is performed by using a swarm of particles ”flying” together
in the search space [15]. Each particle ~pk ∈ P (P is the
particle swarm) is moved in the search space according to both
a global and a local behaviour at each iteration. The global and
local behaviours are, respectively, controlled using the social
parameter s and the cognitive parameter c. Other parameters
are r which is a random value between 0 and 1, ω as the inertia
parameter, ~bk as the personal best position of the particle k,
~vk as the velocity of the particle k, and ~g as the global best
position (Equ.3 and Equ.4). A 64x128 detection window is
centered on each particle ~pk = (u, v, scale) ⊂ S (S is the
search space).

~vk = ω ~vk + cr(~bk − ~pk) + sr(~g − ~pk) (3)

~pk = ~pk + ~vk (4)

B. Bi-objective problem

Let’s first define f1 as the visible detector and f2 as the
infrared detector. ∀d ∈ {1, 2}, fd( ~pk) is the response of the
detector fd for the detection window centered on ~pk. The
simultaneous optimization of the responses of two detectors is
a multi-objective optimization problem. It is the optimization
of:

~f( ~pk) = {f1( ~pk), f2( ~pk)} (5)

Here, contrary to the mono-objective optimization problem,
a different optimization concept has to be considered: the goal
is to find trade-off solutions rather than a unique best solution.
Indeed, improving the response of one detector may come at
the expense of the response of the other detector. In this context
the Pareto dominance is extensively used to find the trade-
off solutions [14]: ~p1 is said to be Pareto dominated by ~p2
(also written as ~p2 � ~p1) if ∀d ∈ {1, 2} fd(~p1) is worse
than, or equal to fd(~p2) and if ∃d′ ∈ {1, 2} such that fd′(~p1)
is worse than fd′(~p2). All the trade-off solutions are part of
the Pareto optimal set P ∗ (Equ.6). The Pareto front (PF ∗,
Equ.7) is the evaluation of the Pareto optimal set in the bi-
dimensional objective space (blue lines in Fig.4). Note that,
with this approach, the problem can be extented to more than
two detectors. In the rest of the article the trade-off solutions
will be analyzed to find good detection candidates.

P ∗ = { ~pk ∈ P/ 6 ∃ ~pk′ ∈ P, ~pk′ � ~pk} (6)

PF ∗ = {~f( ~pk)/ ~pk ∈ P ∗} (7)

C. Our approach: the M2D

The pseudocode of the M2D approach is showed in Alg.1
and 2 with the Pareto-dominance being used in both the
algorithms (at line 3 for Alg.2). The M2D uses a specific
convergence stopping criteria: the number of survivals which
are combined to a local contraction (ctrk, lines 4 and 6 in
Alg.2). A non-dominated particle is said to have survived once
if it is still present in P ∗ after one iteration. A non-dominated
particle is said to have committed a local contraction of
the swarm if another non-dominated particle appears in its
close neigborhood after one iteration (at first, the neigborhood
is the whole search space). The general idea is to find
non-dominated particles having both survived and aided in
contracting the swarm a sufficient number of times (more
than max contractions, line 6 in Alg.2). These ”candidate
detections” are checked: the percentages of passed weak-
classifiers for f1 and f2 are compared to the minimum required
percentages of passed weak-classifiers according to σref (line
7, Alg.2). A candidate detection ~pk is considered as a detection
∈ D if both the percentages of passed weak-classifiers are
above the minimums given by the curves in Fig.5.

D. Dynamic adaptation (σref )

The dynamic adaptation of the detection is made possible
thanks to the σref value (Equ.10) which is used as a reference
for each image. It is updated at each iteration of the M2D main
algorithm (line 11 in Alg.1) and quickly converges towards
a stable value after few iterations (σref is inspired by the
work of Mostaghim et al. [16]). When both the detectors have
equitable responses, M1 and M2 are close to one another
(Equ.8 and Equ.9) : m1( ~pk) and m2( ~pk) are the numbers of
passed weak-classifiers on ~pk for respectively f1 and f2. M1

and M2 are the biggest numbers of passed weak-classifiers
found for respectively f1 and f2. Therefore, in this case, σref
is close to zero (Fig.4.a). When one detector is not working
as good as the other (M1 and M2 very different), most of
the particles are gathered near the axis of the better working
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Fig. 4. Pareto dominated particles are black, Pareto non-dominated
particles are blue (PF ∗). (a) the two detectors contribute equitably,
σref = 0. (b) f1 contributes more to the detection process than f2,
σref > 0. (c) f2 contributes more to the detection process than f1,
σref < 0.



Data: ~f and search space (S)
Result: Detections (D)

1 iteration = 0;
2 random initialization of the particles;
3 compute P ∗;
4 while iteration < max iterations do
5 for each ~pk ∈ P do
6 ~g = closest non-dominated particle;
7 update ~vk and ~pk (Equ.3 and Equ.4);
8 compute ~f( ~pk) in S (update M1 and M2); update bk

with Pareto-dominance;
9 end

10 Algorithm 2 (if returns true, go to line 2);
11 update σref ;
12 iteration = iteration+ 1;
13 end

Algorithm 1: Main M2D algorithm.

1 update P ∗;
2 for each ~pk ∈ P ∗ do
3 if ~pk survived and contracts then
4 ctrk = ctrk + 1;
5 end
6 if ctrk ≥ max contractions then
7 if min contributions ok then
8 D = D ∪ { ~pk};
9 S = S − {area( ~pk)};

10 iteration = 0;
11 end
12 return true;
13 end
14 end
15 return false;

Algorithm 2: Detection algorithm.

detector (Fig.4.b and Fig.4.c). Thus, the equitable separation
line (S) whose slope depends on σref is closer to the axis
of the better working detector (Fig.4.b and Fig.4.c). The
relevance of M1 and M2 for indicating the detectors’ abilities
is related to the initial randomness of the particles’ locations
in the search space. The σref value is used to modulate the
required number of passed weak-classifiers for each detector
in order to obtain a detection (Fig.5). This permits 1) looking
for complementary visible/infrared results and 2) dynamically
managing the sudden failure of one detector or the sudden
ineffectiveness of one sensor.

M1 = max
~pk∈P

(m1( ~pk)) (8)

M2 = max
~pk∈P

(m2( ~pk)) (9)

σref =
M2

1 −M2
2

M2
1 +M2

2

(10)

V. TESTS AND RESULTS

The M2D approach has been tested on three scenarios
(Fig.7): 1) with both cameras working, 2) with only the
infrared camera working and 3) with only the visible camera
working.

for f1

for f2
% weak-classifiers

σref
0-1 1

100

Fig. 5. In red and blue: sigmoidal curves representing the minimum required
percentages of passed weak-classifiers with respect to σref . If f1 is ineffective
(σref = −1) then all the weak-classifiers of f2 have to pass, if f2 is
ineffective (σref = 1) all the weak-classifiers of f1 have to pass.

Fig. 6. Examples of detection results obtained on the synchronized pairs of
far-infrared and visible images used during the tests.

The global performance in case (1) is a trade-off between
the global performance of cases (2) and (3): the sensitivity
is increased when compared to case (3) with the MR being
reduced but the FPPI slightly increasing. This is due to the
addition of the infrared sensor (green curve). This trade-off
is made to the benefit of a fast collaborative (and dynamic)
approach of detection (Tab.II). Note that, as the M2D is a non-
deterministic algorithm we have run multiple tests for each
case and took the mean results to draw the ROC curves of
Fig.7.

Case VIS ok IR ok VIS dys IR ok VIS ok IR dys
MR StdDev 0.014 0.012 0.004
FPPI StdDev 0.007 0.005 0.182

TABLE I. AVERAGE MISS RATE AND FFPI STANDARD DEVIATIONS
FOR THE THREE CASES.

The average Miss Rate and FPPI standard deviations of
the multiple tests show that our non-determinisic approach of
detection is relatively stable (Tab.I). In the third case (VIS ok,
IR dys), the average MR standard deviation is smaller and the
average FPPI standard deviation is bigger: it is more sensitive
when only the visible detector is considered.

Fig.8 shows how the detection performance of the M2D
approach change with respect to the concentration of particles
in the multimodal image pyramid. We can see that above 48×
10−6 particles per square pixel the performance are similar:
increasing the concentration slows down the detection and does
not significantly improve the performance. Thus, having 48×
10−6 particles per square pixel is ideal.

Detecting with the M2D is 1/0.58 times faster than de-
tecting using directly the ACF and the IRACF detectors
(ACF+IRACF approach). Besides, the ACF+IRACF approach



Fig. 7. M2D global performance for three scenarios: 1) both detectors
working correctly, 2) visible detector ineffective and 3) infrared detector
ineffective.

Fig. 8. Detection performance of the M2D approach with respect to the
concentration of particles in the search space (in µ particles per square pixel).

requires extra computation for fusioning the infrared and the
visible detections at the end. The tests have been performed
on the AVIS1 dataset, 100 particles spread on 16 images
levels were used, max iterations has been set to 300 and
max contractions has been set to 5. Fig.6 shows some
images of the AVIS dataset, which contains 316 pairs of syn-
chronized far-infrared and visible images taken in streets. Note
that our AVIS dataset contains more challenging syncronized
cases than the well known OTCBVS dataset [17].

VI. CONCLUSION

In this paper, we proposed a collaborative detection ap-
proach using an infrared spectrum human detector and a visible
spectrum human detector together to extend the detection ca-
pabilities 24 hours a day and whatever the weather conditions.
We presented a detection approach using two detectors that
dynamically adapts itself in case one detector is suddently fail-
ing or one camera is suddently becoming ineffective. Besides,
we also showed that our approach is fast knowing that two
detectors are used in the same time: it is almost as fast as
using one detector alone.
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